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1. Introduction and Prehminaries

If X is a non-empty set, we denote by 2x the family of all subsets of X, by (X) or by
(X) the family of all non-empty finite subsets of X, and by XI the cardinality of
X. If X is a subset of a vector space, co(X) denotes the convex hull of X. A

n de-
notes the standard n-simplex co{co, el,... en} where e is the (i + 1)th unit vector in
Nn + 1. If X is a topological space, then clx(A denotes the closure of A in X and
intx(A denotes the interior of A in X.

Let X be a topological space and D be a non-empty subset of X. Suppose that
F’(D)-,2X\{0} is a mapping such that (a) for each A,B E (D), A C B implies
F(A) C F(B) and (b) for each A E (n), say A {a0,..., ai,..., an} there exists a con-

tinuous function ’ZX-,F(A) such that for each 0 _< 0 <... < k <_ n, (co{eio,...,
eik}) C r({aio,...,aik}). Then (X,D;F) is called a G-convex space [12]. When D-

X, we shall write (X; F) in place of (X, X; r).
Let (X,D;r) be a G-convex space and K C X. Then (i) K is G-convex [12] if for

each A G (D), A C K implies F(A)C K; (ii) the G-convex hull [12] of K, denoted by
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G-co(K), is the set gl {B C X" B is a G-convex subset of X containing K}.
As noted in [12], the concept of a G-convex space is a generalization of convexity

in vector spaces, norvath’s pseudo-convex spaces [8] and c-structure [9], H-spaces [1-
3] and many others.

The following definition is a slight modification of Park’s definition in [11].
Let X and Y be subsets of a G-convex space (E,F) such that G-co(X)C Y, and

suppose for each x E, {x} is G-convex, i.e., F({x})- {x}. Suppose that for each
A e (E), G-co(A) is compact and F(A)- G-co(A). Then F:X---,2Y is called a G-
ggM-map if for each A (X), G-co(A) C AF(x).

Note that if F is a G-KKM-map, then x F(x) for all x X, since G-co({x})-
F({x})- {x} C F(x).

Theorem 1.1" Let (E,F) be a G-convex space such that, for each x E, {x} is G-
convex (i.e., F{x} {x}), and for each A (E), G-co(A) is compact and F(A) G-
co(A). Let X and Y be non-empty subsets ore such that X C Y and Y is G-convex.
Suppose F: X---.2Y is such that

(a) F is a G-KKM-map;
() fo ac e x, F() co Y;
(c) there exists xo e X such that F(xo) is compact.

Then x e xF(x) # O"
Proof: We shall first show that the family (F(x): x X} has the finite intersection

property. For any n N, consider any finite subset A- (Yo, Y,’",Yn} of X. Since
(E,r) is a G-convex space, there is a continuous function " A-r(A) such that for
each 0 _< 0 < < k

_
n, (co{eiO,...,eik}) C F({yio,...,yik} ). Since F is a G-KKM-

map, r(A) G-co({yo, Yl,...,y} c 7=otZ(y).
Let G --l(F(yi)) for all i-0, 1,...,n. Then each G is closed in An as F(yi)

is closed and is continuous.
Now, for each 0

_
0 < < k

_
n, co({eio,...,eik})C -l(F({Yio,...,yik}))-

k oF(yij k -1 k oG(G-o({0,...,})) c (= )) =0 (F(.)) =
Therefore, by the KKM theorem [10],

Let x’e V =oGi. Then x’ G for all i-0,1,...,n. But Gi- -l(F(yi)), so
that (x’)F(yi) for all i-O,1,...,n. Hence (x’) =oF(Yi). Thus {F(x)"
x X} has the finite intersection property. Therefore, {F(x0)V1F(x):x X} has the
finite intersection property. Consequently, glx e x(F(xo)gF(x)) . Hence
f3 e xF(x) 7 O. 13
The following result i8 Lemma 2.1 of Tan and Zhang in [16].
Lemma A: Lel (E,F) be a G-convex space and X be a non-empty subset of E.

Then
() G-co(X) i a -cov ubt of E;
(2) G-co(X) is the smallest G-convex subset of E containing X;
(3) G-co(X)- t {G-co(A)" A
We now state the following generalized version of the celebrated 1972 Ky Fan’s

minimax inequality [7, Theorem 1] due to Chowdhury and Tan [5, Theorem 1].
Theorem A: Let E be a topological vector space, X be a non-empty convex subset

of E, h’X-- be lower semicontinuous on co(A) for each A (X). Let I:X
X--- t2 { cx, + oc} be such that

(a) for each A Y(X) and each fixed x G co(A), yf(x,y) is lower semicontin-
uous on co(A);
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(b) for each A E zY(X) and each y co(A), minx e A[f(x’ Y) + h(y)- h(x)] _< 0;
(c) for each A zY(X) and each x,y co(A) and every net {ya}a E F in X

converging to y with

f(tx + (1 t)y, ya) + h(ya)- h(tx + (1 t)y)

_
0 for all a F and all t [0, 1],

we have f(x,y) + h(y)- h(x) O;
(d) there exist a non-empty closed and compact subset K of X and xo K

such that f(xo, y) + h(y)- h(xo) > 0 for all y X\K.
Then there exists g such that f(x, ) <_ h(x)- h() for all x X.
The purpose of this paper is to present a further generalization of Theorem A into

G-convex spaces. In Section 2 of this paper, we shall obtain a G-KKM type theorem
which is a generalization of Lemma 2 in [5] into G-convex spaces. Thus our G-KKM
type theorem will also extend and improve the classical KKM theorem [10] into G-
convex spaces. In Section 3, we shall apply the G-KKM type theorem to generalize
Theorem A [5, Theorem 1] and other minimax inequalities in [5] and, in turn, to gen-
eralize Ky Fan’s minimax inequality [7, Theorem 1] into G-convex spaces. In Section
4, we shall obtain four equivalent formulations of the second minimax inequality in
Section 3. Four fixed point theorems will also be formulated, each of which either
will be equivalent to this second minimax inequality or will follow from it.

2. A G-KKM Type Theorem on G-Convex Spaces

In this section we shall prove the following result of G-KKM type, which generalizes
Lemma 2 in [5] into G-convex spaces.

Theorem 2.1: Let (E,F) be a G-convex space such that, for each x E, {x} is G-
convex (i.e., F({x})- {x}), and for each A (E}, G-co(A) is compact and r(A)-
G-co(A). Let X be a non-empty G-convex subset of E. Let F’X---,2X.be a G-KKM-
map such that

(a) clxF(xo) is compact for some x0 e X;
(b) for each A e (X) with xo G A and for each x G G-co(A), F(x) glG-co(A) is

closed in G-co(A); and
(c) for each A e (X) with xo e A,

( (x e a-co(A) x e a-co(A)

Then x xF(x) :/: "Proofi Fix an A (X) with x0 A. Define a.a-o(A)-a-(A) by GA(X
F(,) G-co(A) for each x a-co(A).

Now, for each x a-co(A), aA(X is non-empty, since F is a G-KKM map, and
closed in a-co(A) by (b). Note that a-co(A)- r(A)is compact. Thus each GA(X
is also compact. For each B {a-co(A)) we have B e IX) as a-co(A) X, and so

G-co(B) BF(,). But G-co(B) a-co(A). t follows that

\ x B ] xB xEB
Thus GA is a G-KKM-map on G-co(A). Hence, by Theorem 1.1, we have

GA() 0, i.e., F(,) a-co(A) O. (.)
x G-co(A) x G-co(A)



496 MOHAMMAD S.R. CHOWDHURY

Let {El} I be the family of all G-convex hulls of finite subsets of X containing
the point x0, partially ordered by C.

Now, for each E I, let E G-co(Ai) where A IX)o and (X)0 is the family of
all non-empty finite subsets of X containing the point x0.

By (2.1), for each G I, AxeEiF(x) n Ei 7 O. For each G I, fix any u G

n x ElF(X) Ei and let

i-{ujlji, jeI}.

Clearly, (i) {i li e I} has the finite intersection property and (ii) i C F(xo) for all
I. Then clxO C clxF(xo) for all I. By compactness of clxF(xo)

i e IClxi " Choose any i e IClxOi Note that for any I and all j I
with j i,

x E ] x ExE
3

Therefore,
c N (2.2)
xE

Now, for any x X, there exists o E I such that x, Eio. Therefore, for all >_
io, we have x, Eio C E and

" EiNclx4Pi C Ei N(clxNz EiF(z))
(by (c))

( N F(z)NE)
Thus, e F(x) for all x E X. Hence e zF(x) # O.

3. Applications of the G-KKM Type Theorem to Minimax Inequalities
in G-Convex Spaces

In this section we shall obtain several minimax inequalities as applications of the G-
KKM type theorem.
We shall first establish the following minimax inequality.
Theorem 3.1: Let (E,A) be a G-convex space such that, for each x e E, {x} is

G-convex (i.e., F({x})= {x}), and for each A (E), G-co(A) is compact and
r(A) G-co(A). Let X be a non-empty G-convex subset of E and h:X---N be lower
semicontinuous on G-co(A) for each A E (X). Let S:X xXU {- oc, + oc} be
such that

(a) for each A G (X) and each fixed x GG-co(A), yf(x,y) is lower semi-
continuous on G-co(A);

(b) for each A (X) and each y G-co(A), minx e A[f(x, y)+ h(y) h(x)] < 0;
(c) for each A (X) and each x,y G-co(A) and every net {Yc}c F in X con-

verging to y with
f(z, y) + h(yc h(z) <_ 0 for all c F and all z G-co({x, y}),
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we have f(x, y)+ h(y)- h(x) < O;
(d) there exist a non-empty closed and compact subset K of X and x0 E K such

that f(xo, y) A- h(y) h(xo) > 0 for all y X\K.
Then there exists g such that f(x,) < h(x)- h() for all x X.

Proof: Define F: X2X by

F(x) {y X: f(x, y) + h(y)- h(x) <_ 0} for each x X.

If F is not a G-KKM map, then for some finite subset A {Xl,...,Xn} of X, there
exists E G-co(A) A(A), such that [_J = 1F(xi). Thus f(xi,) + h()-
h(xi) > 0 for 1,...,n. Therefore,

min [f(xi, + h()- h(xi) > 0
l<i<n

which contradicts the assumption (b). Hence F’X2X is a G-KKM map. Moreover
we have

(i) F(Xo) C K by (d), so that clxF(xo)C clxK= It" and hence clxF(Xo)is
compact in X;

(ii) for each A (X) with z0 A and each x G-co(A),

F(x) N G-co(A) {y G-co(A): f(x, y) + h(y) h(x) < 0}
{y G-co(A): f(x, y) + h(y) < h(x)}

is closed in G-co(A) by (a) and the fact that h is lower semicontinuous on G-
co(A);

(iii) for each A (X} with x0 A, if y (clx(x e G-co(A)F(x))) fq G-co(A),
then y G-co(A) and there is a net {ya}a e r in x e G-co(A)F(x)such that
ya-y. For each x EG-co(A), since G-co({x,y})CG-co(A), we have
yaF(z) for all cGP and all zG-co({x,y}). This implies that
f(z, ya) + h(ya)-h(z)<_ 0 for all c F and all z G-co({x, y}) so that by
(c), f(x, y) + h(y) h(x) <_ 0; it follows that y x O-co(A)F(x)) f3 G-
co(A). Hence, (clx( x G-co(A)F(x))) G-co(A) ( x

_
G-co(A)F(x))

f3 G-co(A).
Hence by Theorem 2.1 we have

x xF(x), so that f(x, ) + h()- h(x) < 0 for all x e X, i.e., f(x, ) < h(x)- h()
for all x

Theorem 3.1 generalizes Theorem 1 of Chowdhury and Tan in [5] into G-convex
spaces.
When h --0, Theorem 3.1 reduces to the following.
Theorem 3.2: Let (E,r) be a G-convex space such that, for each x E, {x} is G-

convex (i.e., F({x})--{x}), and for each A (E), G-co(A)is compact and r(A)=
G-co(A). Let X be a non-empty G-convex subset of E. Let f:XxXt_J
{- cx, / oc} be such that

(a) for each A (X) and each fixed x G-co(A), yf(x,y) is lower semicon-
tinuous on G-co(A);

(b) for each A (X) and each y G-co(A), minx e Af(x, y) < O;
(c) for each A (X) and each x,y G-co(a) and every net {y}a e r" in X con-

verging to y with f(z, ya) < 0 for all F and all z G-co({x,y}), we have
f(x,y)<_O;

(d) there exist a non-empty closed and compact subset K of X and xo K such
that f(xo, y) > 0 for all y X\K.
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Then there exists E K such that f(x,) < 0 for all x e X.
Theorem 3.2 generalizes Theorem 2 of Chowdhury and Tan in [5] into G-convex

spaces.
Note that Theorem 3.2 implicitly implies the following minimax inequality.
Theorem 3.3: Let (E,F) be a G-convex space such that, for each x G E, {x} is G-

convex (i.e., F({x})= {x}), and for each A G (E), G-co(A)is compact and r(A)=
G-co(A). Let X be a non-empty G-convex subset of E. Let f:XXU
{ oc, + o0) be such that

(a) for each A (X) and each fixed x G-co(a), y-f(x,y) is lower semicon-
tinuous on G-co(A);

(b) for each A (X) and each y G-co(a), minx At(x, y) < O;
(c) for each a (X) and each x,y G-co(a) and every net {Yc)a 1-’ in X con-

vergin9 to y with f(z, ya) <_ 0 for all c F and all z G-eo({,y)), we have
f(,V) <_ O;

(d) there exist a non-empty closed and compact subset K of X and xo K such
that, whenever supz e xf(x,x) < cx3, f(xo, y > SUPx xf(x,x) for all

X\K.
Then the minimax inequality,

min sup f(x, y) < sup f(x, x),
holds, u K x X x X

Proof: Let t supz e xf(x’x)" Clearly, we may assume that t < + cxz. Define for
any x, y X, g(x, y) f(x, y) t. Then g satisfies all the hypotheses of Theorem 3.2
when f is replaced by g. Hence, by Theorem 3.2, there exists a G K such that
g(x,)<_O for all x G X. This implies f(x,)<t for all x E X, so that
SUpx 6 xf(x, ) <- t and, therefore,

min sup f(x, y) < sup f(x, ) < t sup f(x, x),
yK xX xX xX

min sup f(x, y) < sup f(x, x). t-1
yK xX xX

Theorem 3.3 generalizes Theorem 3 of Chowdhury and Tan in [5] into G-convex
spaces. Theorem 3.3 also generalizes Theorem 1 in [7] in several ways.

Theorem 3.4: Let (E,F) be a G-convex space such that, for each x E, {x} is G-
convex (i.e., F({x))- {x}), and for each A G (E), G-co(A) is compact and F(A)-
G-co(A). Let X be a non-empty G-convex subset of E and let f g: X xX
( oc, + oc} be such that

(a) f(x,y) <_ g(x,y) for all x,y X and g(x,x) <_ 0 for all x G X;
(b) for each A (X) and each fixed x G-co(A), y-f(x,y) is lower semicon-

tinuous on G-co(A);
(c) for each y G X, the set {x G X: g(x, y) > O) is G-convex;
(d) for each A (X) and each x,y G-co(A) and every net {Yc) 6 F in X con-

verging to U with f(z, ya) < 0 for all F and all z G G-co({x,y}), we have
f(x,y)<_O;

(e) there exist a non-empty closed and compact subset K of X and xo G K such
that f(x0, y) > 0 for all y X\K.

Then there exists G g such that f(x,) < 0 for all x G X.
Proof: It is easy to see that the conditions (a) and (c) here imply the condition (b)

of Theorem 3.2, so that the conclusions follows. D
Note that Theorem 3.4 generalizes Theorem 4 of Chowdhury and Tan in [5] into
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G-convex spaces and, in turn, generalizes Theorem 1 of Shih and Tan in [13, pp. 280-

Theoein 3.5: Let (E,F) be a G-convex space such that, for each x E, {x} is -convex (i.e., F({x})= {x}), and for each A (E), G-co(A) is compact and r(n)=
G-co(A). Let C be a non-empty closed and G-convex subset ore and let f:C C--
be such that

(a) f(x,x) <_ 0 for all x E C;
(b) for each A (C) and each fixed x G-co(A), y-f(x,y) is lower semicon-

tinuous on G-co(A);
(c) for each y C, the set (x C: f(x,y) > 0} is G-convex;
(d) for each A (C) and each x,y G-co(A) and every net (Yc)a E F in C con-

<_ o att r z e
f(x,y)<_O;

(e) there exist a non-empty closed and compact subset L of E and xo C n L such
that f(x0, Y) > 0 for all y C\L.

Then there exists C f3 i such that f(x, ) <_ 0 for all x C.
Proof: Let f g, K C L and X C in Theorem 3.4. The conclusion follows.

Theorem 3.5 generalizes Theorem 5 of Chowdhury and Tan in [5] into G-convex
spaces and, in turn, improves and generalizes Theorem 1 of Brzis-Nirenburg-Stam-
pacchia in [4]. Note that if the compact set L is a subset of C, C is not required to
be closed in E in Theorem 3.5. Note also that in Theorem 1 of [4], the set C was not
assumed to be closed inE. However, this is false in general as is observed by the
Example 1.3.14 in [14].

It is important to be noted here that, as applications to Theorem 3.2, we may
obtain results on existence theorems of equilibria in G-convex spaces. The author
plans to continue work on this topic in the near future.

4. Equivalent Formulations of Theorem 3.2

Following the ideas of Ky Fan [7, pp. 103-113], Ding and Tan [6, pp. 237-239] and
Tan and Yuan [15, pp. 486-489], we shall obtain several equivalent formulations of
Theorem 3.2 and fixed point theorems. For ready reference, we shall now state and
prove four equivalent formulations of Theorem 3.2 and four fixed point theorems.

Theorem 3.2-A: (First Geometric Form) Let (E,F) be a G-convex space such
that, for each x E, {x} is G-convex (i.e., F({x})= {x}), and for each A e (E), G-
co(A) is compact and F(A) G-co(A). Suppose that X is a non-empty G-convex sub-
set of E and N C X X is such that

(al) for each A G (X) and each fixed x G G-co(A), the set {y G G-co(A):
(x, y)G N} is open in G-co(A);

(bl) for each A (X) and each y GG-co(A), there exists x GA such that

(Cl) for each A G (X) and each x,y G G-co(A) and every net {Yc}c E F in X con-

verging to y such that (z, ya)N for all cG F and for all zG G-co({x,y}),
N;

(dl) there exist a non-empty closed and compact subset K of X and x0 K such
that (x0, Y)G N, for all y G X\K.

Then there exists G K such that the set {x G X:(x,) G N} 0.
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Theorem 3.2-B: (Second Geometric Form) Let (E,r) be a G-convex space such
that, for each x E, {x} is G-convex (i.e., F({x})= {x}), and for each A (E), G-
co(A) is compact and F(A)= G-co(A). Suppose that X is a non-empty G-convex sub-
set of E and M C X X is such that

(a2) for each A e {X} and each fixed x G-co(A), the set {y G-co(A):
(x, y)e M} is closed in G-co(A);

A e (X) a.e v ea-co(A), A  uch t at

(c2) for each A (X) and each x,y G-co(A) and every nel {Yc) e [" in X con-

verging o y such lhal (z, ya) M for all c F and for all z G-co({x,y}),
we have (x,y) M;

(d2) there exist a non-empty closed and compact subset K of X and xo K such
that (x0, y M, for all y G X\K.

Then there exists a point g such that X x {} C M.
Theorem 3.2-C: (Maximal Element Version) Let (E,F) be a G-convex space such

that, for each x E, {x} is G-convex (i.e., r({x})= {x}), and for each A (E), G-
co(a) is compact and F(A)= G-co(a). Suppose that X is a non-empty G-convex sub-
set of E and G: X---,2X is a set-valued map such that

(a3) for each a (X) and each fixed x G-co(a), G-l(x) G-co(A) {y G-
co(a): x G(y)} is open in G-co(a);

(b3) for each a G(X) and each yG-co(A), there exists x G A such that
t a(v);

(c3) for each A G (X) and each x,y G-co(A) and every net {ya}a 6 r in X con-

verging to y such that z G(y), for all G F and for all z G G-co({x,y}),
we have x G(y);

(da) there exist a non-empty closed and compact subset K of X and xo K such
that xo G(y), for all y X\K.

Then there exists a point It" such that G() O.
Theorem 3.2-D: (Fixed Point Version) Let (E,F) be a G-convex space such that,

for each x e E, {x} is G-convex (i.e., (}), ad ach A e (E), G-co(A)
is compact and r(A)= G-co(A). Suppose that X is a non-empty G-convex subset of
E and G: X---,2X is a set-valued map such that

(a4) for each A (X) and each fixed x G-co(A), G-l(x) flG-co(A) is open in
G-co(A);

(b4) for each A IX} and each x,y G-co(A) and every net {y} r in X con-

verging to y such that z G(y), for all G F and for all z G-co({x,y}),
we have x G(y);

(c4) there exist a non-empty closed and compact subset K of X and x0 K such
that xo G(y), for all y X\K;

(d4) for each y G g, G(y) O.
Then there exists Yo X such that Yo G-c(G(Yo))"
Theorem 3.2-D implies the following fixed point theorem.
Theorem 3.6-A: (Second Fixed Point Theorem) Let (E,F) be a G-convex space

such that, for each x E, {x} is G-convex (i.e., F({x})-{x}), and for each
A (E), G-co(A) is compact and r(A)- G-co(A). Suppose that X is a non-empty
G-convex subset of E and G: X--,2X is a set-valued map such that

(a5) for each A (X) and each fixed x G-co(A), G-l(x)G-co(A)is open in
G-co(A);

(bs) for each y X, G(y) is G-convex;
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(c5) for each A E (X) and x,y G-co(A) and every net {Ya}aE F in X con-

verging to y such that z G(y), for all c G F and for all z G G-co({x,y}),
we have x G(y);

(dh) there exist a non-empty closed and compact subset K of X and xo G K such
that xo G G(y), for all y G X\K;

(%) for K, O.
Then there exists a point Yo X such that Yo G(yo)"
The following fixed point theorem is equivalent to Theorem 3.6-A.
Theorem 3.6-B: (Third Fixed Point Theorem) Let (E,F) be a G-convex space

such that, for each x e E, {x} is G-convex (i.e., F({x})= {x}), and for each A
(E), G-co(A)is compact and FA)- G-co(A) Suppose that X is a non-empty G-
convex subset of E and Q: X--2 is a set-valued map such that

(a6) for each A (X) and each fixed x G-co(A), Q(x)v G-co(A) is open in G-
co(A);

x, a-co v  ;
(c6) for each a (X and each x,y G-co(A) and every net {Yc}c E F in X con-

verging to y such that z Q- l(yc), for all F and for all z G-co({x, y}),
we have x Q-l(y);

(d6) there exist a non-empty closed and compact subset K of X and x0 K such
that xo Q-l(y), for all y X\K;

(e6) for each y K, Q-l(y) 0.
Then there exists a point Yo X such that Yo Q(Yo)"
The following fixed point theorem follows from Theorem 3.6-A.
Theorem 3.7: (Fourth Fixed Point Theorem) Let (E,F) be a G-convex space such

that, for each x E, {x} is G-convex (i.e., F({x})= {x}), and for each A (E), G-
co(A) is compact and r(A) G-co(A). $uppose that X is a non-empty G-convex sub-
set of E and G: X--,2X is a set-valued map such that

(aT) for each A (X) and each fixed x G-co(A), G-I(x) NG-co(A) is open
in G-co(A);

(bT) for each A (X) and each x,y G-co(A) and every net {Ya}c e F in X con-

verging to y such that z . G-co(G(ya)), for all c F and for all z G-

(c7) there exist a non-empty closed and compact subset K of X and xo K such
that x0 G-co(G(y)), for all y X\K;

(dT) for each y K, G(y) 7 O.
Then there exists Yo X such that Yo G-c(G(yo))"

Proof Theorem 3.2 =>Theorem 3.2-A: Let f: X x X-+R be such that

1, if(x,y)N
f(x, y)

O, if (x, y) N.
Then we have the following.

(a) For each A , each A (X) and each fixed x G-co(A), the set

q), if <0

{y G-co(A)" f(x, y) <_ ,} {y G-co(A)" (x, y) N}, if 0 _< < 1

G-co(A), if >_ 1

is closed in G-co(A). Thus for each A (X) and each fixed x G-co(A),
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yf(x, y)is lower semicontinuous on G-co(A).
(b) For each A e (X) and each y e G-co(A), there exists x e A such that

(x, y) N. Thus f(x, y) 0. Hence minx Af(x, y) <_ O.
(c) By hypothesis (Cl) for each A e (X) and each x,y e G-co(A)and every net

{Ya)a e r in X converging to y such that f(z, Ya) <- 0 for all a E F and for all
z G-co({x,y}), we have f(x,y) <_ O.

(d) There exist a non-empty closed and compact subset K of X and x0 K such
that (x0, y) N, i.e., f(xo, y) > 0 for all y X\K.

Hence, all the hypotheses of Theorem 3.2 are satisfied. Therefore, by Theorem 3.2,
there exists g such that f(x,)<_ 0 for all x E X; i.e., there exists g such
that {x X: (x, ) N} }.

Proof Theorem 3.2-A=Wheorem 3.2: Let N {(x, y) X x X: f(x, y) > 0}. Then
we have the following.

(el) For each A E (X) and each fixed x G-co(A), the set {y G-co(A):
f(x,y) > 0} is open in G-co(A). Hence the set {y G-co(A): (x,y) N} is
open in G-co(A).

(bl) For each A E (X) and each y G-co(A), minx Af(x,y)

_
O. Thus there

exists x A such that f(x, y) <_ O, i.e., (x, y) N.
(Cl) By condition (c), for each A G (X} and each x,y G-co(A)and every net

{Ya}a e r in X converging to y such that (z, ya) N for all c E F and for all
z G-co({x,y}), we have (x,y) N.

(dl) By condition (d), there exist a non-empty closed and compact subset K of X
and x0 K such that (x0, y) N for all y X\K.

Hence, all the hypotheses of Theorem 3.2-A are satisfied. Therefore, by Theorem
3.2-A, there exists 9" E g such that {x X:(x,9") N} . Thus (x,) N for all
x X. Hence, f(x, ) <_ 0 for all x

Proof Theorem 3.2-A::Theorem 3.2-B: Let N X x X\M. Then we have the
following.

(el) For each A E (X) and each fixed x G-co(A), the set {y G-co(A):
(x, y) N} is open in G-co(A).

(bl) For each A e IX) and each y e G-co(A), there exists x A such that
(z,y) N.

(el) For each A IX) and each x,y G-co(A)and every net{ya}a e F in X con-
verging to y such that (z, ya). N for all a F and for all z G-co({x,y}),
we have (x,y) . N.

(dl) There exist a non-empty closed and compact subset K of X and x0 K such
that (xo, y N, for all y X\K.

Hence, all the hypotheses of Theorem 3.2-A are satisfied. Therefore, by Theorem
3.2-A, there exists 9" g such that (x,) N for all x E X. Thus (x,) M for all
xX. HenceXx{9"}CM.

Proof Theorem 3.2-B=Theorem 3.2-A: Let M X x X\N. Then the proof is
similar to the above proof and, therefore, by Theorem 3.2-B, there exists G K such
that Xx{}CM. Hence, (x,)
N} =q}.

Proof Theorem 3.2-B=Wheorem 3.2-C: Let M {(x,y) X x X:x G(y)}. Then
we have the following.

(a2) For each A (X) and each fixed x
G(y)} {y G-co(A): (x,y) M} is closed in G-co(A).

(b2) For each A(X and each y
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G(y) so that (x, y)e M.
(c2) By condition (c3) for each A e (X) and each x,y e G-co(A)and every net

(Yc,}c e [’ in X converging to y such that (z, Yc,) E M for all c E F and for all
z e G-co({x,y}), we have (x,y) M.

(d2) By condition (d3) there exist a non-empty closed and compact subset K of
X and x0 G K such that (x0, y) M for all y X\K.

Hence, all the hypotheses of Theorem 3.2-B are satisfied. Therefore, by Theorem
3.2-B, there exists EK such that Xx{’}CM. Thus xG() for all xGX.
Hence G(’) q).

Proof Theorem 3.2-C=Theorem 3.2-B: Let G:X2X be defined by G(y)-
{x X: (x, U) M} for all y G X. Then we have the following.

(a3) For each A (X) and each fixed z G-co(a), the set {y
M} = {y e G-co(a): x G G(y)} is open in G-co(A).

(b3) For each A e (X> and each y eG-co(A), there exists x e A such that
(x, y) M so that x . G(y).

(c3) By condition (c2) for each A (X) and each x,y G-co(A)and every net
{Ya}a e F in X converging to y such that z

_
G(ya) for all c E F and for all

z C G-co({x,y}), we have x . G(y).
(d3) There exist a non-empty closed and compact subset K of X and x0 K such

that (x0, y) M for all y X\K, so that x0 G(y) for all y X\K.
Hence, all the hypotheses of Theorem 3.2-C are satisfied. Therefore, by Theorem

3.2-C, there exists a point " K such that G()= 0. Thus x G() for all x X.
Hence, (x, ) M for all x X, i.e., X x {} C M. [:]

Proof Theorem 3.2-C=Theorem 3.2-D: By Theorem 3.2-C, there exist A E (X)
and Yo G-co(A) such that x G(Yo) for all x A. Thus Yo G-co(A) C G-

Proof Theorem 3.2-D=Theorem 3.2-C: From the hypotheses of Theorem 3.2-C,
we see that the conditions (a4) (b4) and (c4) follow from the conditions.(a3) (c3) and
(d3) respectively. Suppose for each y K, G(y) O. Then condition (d4) of
Theorem 3.2-D is satisfied. Hence, all the hypotheses of Theorem 3.2-D are satisfied.
Therefore, by Theorem 3.2-D, there exists Y0 X such that Yo G-c(G(yo))" Thus,
by Lemma A, there exist A {Xl,...,xn} (G(Yo) such that Yo G-co(A). Now,
A E (X and Yo G-co(A). Hence, by condition (b3) of Theorem 3.2-C, there exists
x A such that x G(y0) which is a contradiction. Hence, there exists K such
that G() 0. E!

Proof Theorem 3.2-D=Theorem 3.6-A: This is obvious, because by Theorem 3.2-
D there exists Y0 X such that Yo G-c(G(Yo))" But by (bh) of Theorem 3.6-A,
G(Yo) is G-convex. Hence Yo G(yo)"

Proof Theorem 3.6-A:Theorem 3.6-B:
(=:) Let G = Q-; then G-1= Q. Therefore, by Theorem 3.6-A, there exists

Y0 X such that Yo G(yo) Q-l(y0)" Hence Yo Q(Yo)"
(=:) Let Q- G-; then Q-1= G. Therefore, by Theorem 3.6-B, there exists

Y0 E X such that Yo Q(Yo) G- l(y0). Hence Yo
Proof Theorem 3.6-A=Theorem 3.7: Let F(y)= G-coG(y). Then we have the

following.
(ah) For each A (X) and each fixed x G-co(A), F- l(x) G-co(A) is open in

G-co(A). Let y (G-coG)-l(x)V1 G-co(A). Then y G-co(A) and x G-
co(G(y)). Thus, by Lemma A, there exists C {Yl,’",Yn} (G(y))such
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that x E G-co(C). Now, for each i-1,...,n, G-l(yi)NG-co(A)is open in
n

G-co(A); and y e G- l(yi) NG_co(A) for all i. Let U (G- l(yi) G-
i=1

co(A)). Then U is an open neighborhood of y in G-co(A). If z e U, then
zeG-co(A) and YieG(z) for all i=l,...,n. So xeG-co(C) cG-
co(G(z)) F(z) and, hence, z e (G-coG)- (x) fl G-co(A) F- l(x) fl G-
co(A) for all z U. Hence y e U C F-l(x)VG-co(A). Therefore,
F l(x) fl G-co(A) is open in G-co(A).

(bb) For each y X, F(y)= G-co(G(y)) is G-convex.
Conditions (c5) and (db) are obvious. But for each.y K, G(y)= O implies

F(y) 7l: O. Thus (eb) holds.
Therefore, by Theorem 3.6-A, there exists Y0 E X such that Yo F(yo)=G-
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