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We consider a Gaussian process {Xt, t E T} with an arbitrary index set T
and study consequences of transformations of the index set on the Skorok-
hod integral and Skorokhod derivative with respect to X. The results appl-
ied to Skorokhod SDEs of diffusion type provide uniqueness of the solution
for the time-reversed equation and, to Ogawa line integral, give an analo-
gue of the fundamental theorem of calculus.
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1. Introduction

The purpose of this article is to prove that, in a general case of Gaussian processes
and under mild assumptions, transformations of a parameter set do not change the
Skorokhod integral and Skorokhod derivative, and to indicate some applications of
this fact.

Let T be any set, C a covariance on T and H(C) H the reproducing kernel Hil-
bert space (RKHS) on C (note that H may not be separable). With covariance C,
we associate a Gaussian process {Xt, t e T} defined on (ft,,P), where r{Xt,

T}. For the details of the constructions above, see [3]. Let H (R) p be the p-fold
tensor product of H. The p-Multiple Wiener Integral (MWI) Ip’H (R) P--.L2(f,,P
was defined in [6] (see also [5]) as a linear mapping satisfying the following

properties. Here f is the symmetrization of f.
a) EIp(f)-O, { 0 ifpyq

for f G H (R)p gG H (R)qb) EIp(f)Iq(g) pI(7 , )H (R) p if p q,

p

c) Ip + l(gh) Ip(g)Ii(h)- Iv_ l(g ? h), for g H (R) P, h E H.
k=l

Above, (g ? h) (tl,...,tk_ 1, tlc + 1," tp) (g(tl,"-,tlc- 1, tlc + 1," ", tp), h( ))H"
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We note that Ip(f)- Ip(’]) and hence Ip(H (R) P)- Ip(H (R) P) where H (R) p is the
p-fold symmetric tensor product.

Let u.:f-H be a Bochner measurable function with II u ll H E L2(f,,P).
Using Wiener chaos decomposition, L2(f p=OOIp(H P), we haveauni-
que representation ut(w p= olp(fp(. ,t)), with fp(. ,,) E U (R) p + 1 and

fp(., t) H (R) P. The Skorokhod derivative and integral of u. with respect to Gauss-
inn processes are defined in [6] (for Skorokhod’s original definition, see [12]). The
Skorokhod derivative {Dsut, s e T} of ut, for a fixed t is an L(a,H)-vaued random
variable,

Dsut-- E plp-l(fp(tl"’"tp-l’S’t))"
p=l

The Skorokhod derivative exists iff E II D. t II p lPP II fp( t)II 2
H(R)p

and {Dsu L2(ft, H(R)2), s,t T}, with H (R)2 identified with the space of Hilbert-
Schmidt operators on H, iff E II D.u, [[2

H (R)2- Eoo 112p=lPP’[[fp H(R)(P+l)
The Skorokhod integral of u. is an L2(ft)-valued random variable,

IS(u’) E Ip + l(fp(’,*))"
p=0

We note that u. is integrable iff EIS(u.)2

Example 1: Skorokhod derivative and integral for Brownian motion. In the case
of standard Brownian motion, the MWI Ip and conseq.uently, the Skorokhod derivate

*, the Malliavin derivative Dand integral defined above coincide with the MWI Ip
and the Skorokhod integral I defined in [7]. With V’L2([O, 1)]--H defined by"
Vf f (f(s)ds,

Iip(fp)- Ip(Y (R) Pf), IS(Y(u))- Ii(u) and Ds(Y(u)(t))- Du
for fp e L2([0,1]P and u G L2(a, L2([0,1]) ). The first two equalities hold in L2(f
and the third holds in L2(f,H for a fixed t.

If u is adapted to the natural (resp. future) filtration of Brownian motion,
5t- r{Bs, s <_ t} (jt r{Bl_Bs,t <_ s <_ 1}), then the Skorokhod and It8
(backward It6")integrals coincide (see [7]).

2. Skorokhod Integral Under Transformation of a Parameter Set

For a Gaussian process {Xt, t T}, let H(X) cl(svan{Xt, t T}), the closure
being taken in L2(ft,5,P). With a transformation R:S--,T we associate a Gaussian
process X/- {X s S} and we call R nondegenerate if it is onto and if
H(Xt:t) H(X).R))r main result on transformations of the Skorokhod derivative
and integral is the following:

Theorem 1: Let {Xt} E T be a Gaussian process and R:S---,T be a nondegener-
ate transformation. Denote by ISx and Is the Skorokhod integrals with respect to

XRX and XR, respectively. Then:
R--f(R(Sl),. R(sp)) is an isometry from H(Cx) (R)p onto1) fp-fp

H(CxR)(R)P.
2) If u e (ISx) then ul- {uR(s),s e S} e (IsXR and lSx(U) Is (uR)

XR
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3)

4)

Moreover, denote by DX and DXt the Skorokhod derivatives with respect
to X and XR respectively

If for t G T u G 2(DX), then uRs G (DXR) for sGR-l{t} and Df
u =D ,u P-ae for s() ().. S. The equali is in H( ), wih
s b’ as lhe vamable.

nXR R 2Also, Dt,u H(Cx)02 (t,t’ G T) implies s’ us G H(CxR
(s,s’ S), and equality of norms 11Dt, 11L2(,H(Cx) @ 2)
XII-, II L(a,H(Cx) ).

If v C L2(a,H(CvR)) then v- uR for some u C L2(a,H(Cx) and

II v II L2
II II L2,

8oov, v e (Ix) impis e (I)) e v e (vx) impis

u(s) e (Dx) wiCh Dv D(,)R()for s,s’ e S.

g DR 2 s’ S), Ih n Dt,utcH(CX) 2vscH(cxR (s, C e

(t, t’ G T), and the H-S norms of those derivatives are equal.
Proof: 1) Let us denote fR(sl,...,Sn) f(R(Sl),...,R(sn) for(sl,...,Sn) E Sp,

(thus fRp(S1....,sp,s) fp(R(Sl),...,R(sp),R(s)) (Sl,...,Sp, S Sp + 1). Let f(t)

H(Cx) then f(t)- E(XtIiX(f)), with IiX(f)e H(X) and, for any s e S,

Xs 11 (f))fR(s) f(R(s))- E(XR(s)IIX(f)) E( R x

X XR(Ip or Ip denotes the pth order Wiener integral with respect to either X or XR).
definition and uniqueness of representation, fRG H(CxR) and IiXR(fR)By

IXl(f). Also, if g E H(CxI=t) then, for s e S, g(s)- E(XR(s)IiXl:t(g)). But,

IlXt:t(g) H(X), thus f(t)-E(XtI1XR(g))-- defines an element of H(Cx) with

g(s) f(R(s)), s S and ]] g ][ H(CxR)-- ]] I1XRg ][ L2(ft, ,p)-- [[ f [[ H(Cx)
proving (1).

2)- 3) Let us first show that I(fp) IPxR(fp), p O, 1,

The above is clear for p 0 and p 1. Let f. H(Cx) (R)p, f(tl,t2,...,tp)-
al’a2 apal’a2 ap%1(t1)ea2(t2)’" .eap(tp), (vith

al,a2 ap
a2 < c and {e, c 1, 2,...} an ONB in H(Cx). For
Cl, c2,...,Cp

fp--eal(tl)ea2(t2).., eap(tp) we have [(fpkgl)X]R(sl,...,Sk_l,Sk+l,...,Sp)=
R RXR(fP k gl (si,... sk_i,sk + 1,...,Sp), where the superscripts X and XR indicate

that the operation "(R)" is taken either with respect to the process X or XR. Thus,
k

x x ) x )x(( )x) ([(f )x] ((f ) w Uow o

the inductive relation (c) for MWI to complete the proof. For fp H(Cx) arbitrary,



108 LESZEK GAWARECKI

we have

Ip(fp)
nl np a1=1 ap laal p--o P apeal’"

XR
P

lim Ip aan1 a1 =1 ap--1

XR
P

XRI lira_ e/.. I (f).p 400 p
a1 1 ap aal ap a "eRa

Now ifue(I)andut- E OIp(fp(tl, tp t)) then forsESp= "’
c XR R

UR(s) E IXp (fp(’’l(s))) E Iv (fp(.,s))
p=O p=O

and 2) and 3) follow.
4) Let v e L(a,II(Cx_n));____ then for s e S, using 1),

., Ip (fp ,s)),
p--0 p=0

because for any g H(CxR (R) (p + ) there exists f H(Cx) (R) (p + 1) with g fR.
X R oo oiXp(fp(, n(s))).Hence, for s S, vs p OIp (fp (’, s)) p

According to 1), u p=olXp(fp(.,t)) L2(f,H(Cx) and equality of norms
claimed in 4) is satisfied. The last part of assertion 4) follows from 1), 2) and 3)
since failure to satisfy any stated condition by u implies violation of this condition by
V. VI

Example 2: Transformations of parameter set and Skorokhod integral.
1) Brownian motion and time reversal. Let {ut, t [0, 1]} be an L2(f L2[0 1])-

valued procs adapted to the natural filtration (t)t [0 1] of Brownian motion.
Note that {B t1 B1 t, t [0, 1} is also a Browniafi ’rhotion and {t u t,

[0, 1]} is adapted to ltration t r{ s, t _< s _< 1}. Denote t B1- t"
We have

f utdB 15 urdr I urrdr (1)
0 0 0

By the same method as in the proof of Theorem 1 we can show that
IL (( f ( urdr ISB( f 0 urdr) with f urdr f urdr f 10 urdr. Hence
B

we get

f utdB I urdr I () -t,dt
B

0 0 0

where "," denotes the backward It8 integral. We have just obtained the relation
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IiB(u)- I () given in [8]. Note also that /t is not a Brownian motion and
B

equation (1) is reversed pathwise in H. In the case of Brownian motion, we also have

(/1_. )l(./.I ussds I usds
0 0

Indeed, 15( f 10 uds) IB( f d ds) I(u) IQB ( I f 1 ds)
I fuds f "uds).B . Ogawa Line Integral. We recall the definition of the Ogawa integral ([4, 9])
with respect to a Gaussian process {Xt, [0, 1]} with the RKHS H. Let .’H be
an H-valued Bochner measurable function. Then, on a set of P-measure one, .()
takes values in a separable subspace of H. Let {en, n N} be an ONB of this
subspace. The (universal) Ogawa integral of is defined as follows"

()- (u, en)HI(en) (limit in probability)
n=l

if it exists with respect to all ONBs and is independent of the choice of basis.
The relation between Skorokhod and Ogawa integrals is explained in [4].
Let 7" ST be a bijective parametrization. Let Y- X(s). Then

(i) CX(V(Sl) (s2) Cy(Sl,S2);

(ii) H(Cx) and H(Cy) are isometric under the mapping ff o ;

(iii) I(f)- I(f o ) for f e H(Cx).
Thus, 5x(U) 5y(V) for vs u(s) provided either of the integrals exists.

Consider Brownian sheet {W(x,t), (x,t) [0,112}. Assume that F C [0, 1]2 is a

curve parametrized by a function 7:[a,b]F, 0 a b 1. We define the Ogawa
line integral, F-5, over F with respect to {Wtx t,(x,t) F} using F as the
parameter set. In addition, let 7(s)=(7l(S)7’2(s))with both coordinates
nondecreasing and such that the map ?-1(71(r),72(r))= 71(r)72(r)is bijective
from F to S- [7l(a)72(a),7l(b)72(b)]. Then ? "SF is a bijective parametrization
and the process Bs W (s) is a Brownian motion. Hence,

5w(U) 5B(V) / (Y lv)(s) o dBs,F
S

where vs -u (s)’ V is the isometry from Example 1, and the last integrM is in the

sense of Fisk and Stratonovich and is assumed to exist. In particular, if u(z,t
f(W(x,t)) and f @ C2, then

5w(Y 2(/’(W))) [ f’(Bs) o dBs f(W(7l(b), 72(b))) f(W(7l(a), 72(a))).F
S

Thus, in this case, the Ogawa line integral satisfies the fundamental theorem of
calculus. We conjecture that a counterpart of Green’s formula for the Ogawa integral
holds (see [2] for initial exposition and [11] for some recent results).
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Example 3: Skorokhod-type stochastic differential equations. The following class
of Skorokhod SDEs was considered by Buckdahn in [1], where, under smoothness
assumptions, the author proved existence and uniqueness results

Z r -- f b(Z(s))ds -F Ii(a(Z(s))l[o, t](s)), 0 _< t _< 1. (2)
0

The initial condition q needs to be bounded. However, this restriction vanishes if
equation (2) is reversed.

Lemma 1: Let {us}s [0,1] be such that usl[0,tl(s) e (I) t e [0, 1] Then for
the time reversed, process -s Ul s, we have slio, t](s) G (I) Vt G [;, 1] and if
we denote X I*B(I[o t](s)us), then

X1 -t- Xl I (1[0 t](S)s).B

Using time reversal and Lemma 1, Buckdahn’s result can be extended to time
reversed SDEs with the initial condition being a terminal value of the solution of the
original equation.

Theorem 2: Assume that coefficients b and r of a Skorokhod SDE (2) satisfy
assumptions for existence and uniqueness of the solution._ If {ZtitE[O, 1 iS the
solution of Equation (2), then the time reversed process Z -ZI_ is thd unique
solution in LI([0 1] x f) of the time reversed equation

X 20 + / -- (Xs)ds + Ii (- l[o,t](s) (X(s)))
B

0

where b (Xt) b(X1 t), (Xt) if(X1 t), and B B1 B1 t"
The above theorem gives a partial answer to a question in [8], Proposition 5.2.
The technique of time reversal has been used in [10] to solve a problem regarding

anticipative stochastic models in finance.
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