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In this paper we study a class of integrodifferential and functional integro-
differential equations with infinite delay. These problems are reformulated
as abstract integrodifferential and functional integrodifferential equations.
We use Nagumo type conditions to establish the uniqueness of solutions to
these abstract equations.

Key words: Integrodifferential Equation, Mild Solution, Nagumo Con-
dition, Finite and Infinite Delays.

AMS subject classifications: 34G20, 24K15.

1. Introduction

In the present work we are concerned with the following integrodifferential and func-
tional integrodifferential equations considered in a real Banach space X"

du(t) /dt I[t’ it(t), ]l(S’ u(s))ds], t > o (1.1)
o

(to) x

du(t) g[t’ ut’ / k2(s’ us)ds], > to,
o

(1.2)
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where in (1.1) the nonlinear map f is defined fromJ x X x X into X, J (to, to + T],
J- [t0, t0 + T], 0 < T < cx, the nonlinear map kI is defined from J x X into X,
x E X, and in (1.2), 9 is defined from J x CX x Cx into X, Cx BUC((- cx,0];X)
(BUC(I;X) denotes the space of bounded uniformly continuous functions from the
interval I into a Banach space X endowed with the supremum norm), for any u E
BUC((- cxz, to + T]; X) and t [to, to + T] the map u Cx is defined by

the nonlinear map k2 is defined from J x Cx into Cx and G Cx.
Particular cases of (1.1) and (1.2), in which kI k2 _= 0, have been considered by

many authors, see for instance, Rogers [10], Kotta [4, 5]. For the case X Rn, we

refer to Kappel and Schappacher [3].
In the present work, we shall be concerned with the uniqueness of solutions only.

Proving the existence of solutions to (1.1) and (1.2) will be our next concern. For the
existence of solutions for the particular cases mentioned above, we refer to Hale [1],
Ladas and Lakshmikantham [6], Martin and Smith [8], and Martin [9].

2. Preliminaries

We shall establish the uniqueness of mild solutions to (1.1) and (1.2), which would
also establish the uniqueness in the case of classical solutions.

By a mild solution to (1.1) we mean a continuous function u C(J ,X) such that

8

o o

to _< t _< to + T, (2.1)

where x E X.
BUC(( oc, to + T], X) such that

(t- to),

(0) + f of[S, us, f 0kl(7", ur)d7]ds,

By a mild solution to (1.2) we mean a continuous function

-c < t <_ to,

to

_
t

_
to + T,

(2.2)

where Cx.
We consider a function h C(J, R + satisfying the following condition

lim / h(t)dt
t-,to+

For, instance, we may take

h(t)- 1 teJ.
(t-to)

Then h satisfies condition (H).
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Remark: If h EC(J,R +) satisfies condition (H), then the function
C(J, R + given by

h (t) h(t) + C, e J

for any positive constant C also satisfies condition (H).
The main tool for proving the uniqueness of solutions is the following lemma due

to Kotta [5]. This result is a generalization of an analogous result of Rogers [10].
For the sake of completeness, we shall give a proof of the lemma here.

Lemma 2.1" Let u C(,R +) and suppose that
(i) <

(ii) u(t)- o(e ’f h(t)dt), as t--to+
where h C(J, R + satisfying condition (H). Then u 0 on .

Proof: Let

F(t)- / h(s)u(s)ds, t e J. (2.3)
o

Using (i) and (2.3) we obtain

tF(t) h(t)u(t) < h(t)F(t).

Therefore,

-t(e- f h(t)dtF(t)) < O. (2.4)

Inequality (2.4)implies that F(t)e- f h(t)dt s a nonincreasing function on J.
From (ii) it follows that for every e > 0, there exists a 5 > 0 such that for E J

with 0 < t-to < 5, we have

e- f h(t)dtF(t) e- f h(t)dt / h(s)u(s)ds
o

Now

<_ ee- f h(t)dt / h(s)e f h(s)dSd8. (2.5)
o

Cte f h(t)dt h(t)e f h(t)dt. (2.6)

Integrating (2.6) over the interval (to, t), we get

e f h(t)dt lt fto h(s)e f h(s)dSds.
o

Using condition (H)in (2.7), we get

(2.7)
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Using (2.8)in (2.5), we get

e fh(t)dt- / h(8)e h(s)dsdS.
o

e- f h(t)dtF(t)
_ .

From (2.9), we have that

lira e- f h(t)dtF(t) O.
t--to+

Hence, F(t) -0 on J, which in turn implies that u-0 on J.

(2.9)

3. Main Result

We first state and prove the following uniqueness theorem for (1.1).
Theorem 3.1" Suppose that f’J XX---,X is a continuous function and

satisfies the conditions

II f(t, Xl, yl)- f(t, x2, Y2)II _< h(t)[ II Xl x2 II - II yl y2 II]

for any t J, xi, Yi X, 1,2; and

II f(t, x(t), y(t)) II o(h(t)e f h(t)dt) as t---to+

for any t G if, x,y @ C(ff;X), where h G C(J,R+ satisfies condition (FI).
suppose that kl: J x X--,X satisfies

(3.1)

(3.2)

Further,

II ]Cl(t, Xl)- ]1(t, x2)II c(t)II Xl X2 II (3.3)

for any t E J,x X, 1,2; where C(t) is a nonnegative integrable function on J.
Then (1.1) has at most one solution.

Proof: Let x(t) and y(t) be solutions of (1.1). Then we have

8

o o

8

f[(s,y(s), / kl(r,y(v))dT" II d.
o

Using (3.1) and (3.3)in (3.4), we get

(a.4)

I1 ,(t)- y(t)II / h()[ II x()- y()II + / II ’1(7,x(7))- ]1(7", Y(7"))II d]d
o o
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where

and

8

f h(s)[ II (s)- y(s)II + / C()II ()- y()II d]d
o o

<-- / (h(s) -+- CT) I sup
t0<r<s

O

II x()- (,)II } d

t0<v<s
o

to+T
CT / C(s)ds

o

h(t)-h(t)+CT.

Now, (3.5) implies that for every to _< r _< t, we have

to<r<s
o

t0<r<s
o

From (3.6) we get

0<r<t 0<v<s
o

Replacing the dummy variable r on the left-hand side of inequality (3.7) by r, we

finally get ,, ,,
O<r<t J tO<-<so

Now, using (3.2) in inequality (3.4) we have that for e > 0, there exists 5 > 0 such
that for 0 < t-to < 5,

Il x(t)- y(t) ll <_ / h(s)e f h(s)dsds
o_

/ (h(s) -t- CT)eCTSe f h(s)dSds
o
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o

(3.9)

Again, for to <_ 7- _< t, we have
7"

o

</ ()f ()d.
o

(3.10)

Taking supremum in (3.10) we get

sup II ()- y()II -/ (s)eJ" (s)dSds eeJh’" (t)dt. (3.11)
to<r<t J

o

We obtained the desired result using Lemma 2.1. This completes the proof of
Theorem 3.1.

Next, we state and prove below a similar uniqueness result for (1.2).
Theorem 3.2: Suppose that g:J x Cx x Cx---Cx is continuous and satisfies the

condition

II g(t,l,l)-g(t, dp2,2)II cx < h(t)[ II- I1 cx / II 1-2 II Cx],
for any t E J i,iGCX, i-1,2; and

(3.12)

o(h(t)ef h(t)dt), as t--,to+ (3.13)I[ g(t, tt, tt) II x
for any t e ,2 e C(-cxz, to-t-7"];X), where h @ C(J,I?. +) satisfies condition
(It). Suppose that k2: J Cx--Cx is continuous and satisfies

< D(t)II 1- 2 II Cx[I k2(t,l) k(t,2) II cX_ (3.14)

where D(t) is a nonnegative inlegrable function on J. Then (1.2) has at most one

solution.
Proof: Suppose that x and y are two solutions to (1.2). Then Xto-Yto

implies that

x- y, on (- cxz, to].

Therefore,

sup [[ x(t + s)- yt + s)[[ max II (0)- y(t)II. (3.5)I[xt Yt [] CX s

_
(-cx,O] 0E[t0, t]

From definition (2.2) of mild solutions to (1.2) and (3.15) we have
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8 8

to to to
(3.16)

Using (3.12)and (3.14)in (3.16), we obtain

where

and

8

II - , il x -< i h(,)[ II .- ’, II cx + i D(’r)II :.- ,.-il x
o o

8

< (h(s) + D(r)dv)[ II .- Y. II cx
o o

< (h(s) 4- DT)II ,. y. II cXds
o

_< h ()II .- . II cxd,
o

to+T
DT / D(s)ds

o

dr]ds

(3.17)

h (t) h(t) + DT, t e J.

Now, using (3.13) in (3.16), we have that for e > 0, there exists > 0 such that for

O<t-to<5,

II ,- a II cx <_ J h() h(s)dSds
o

<--el (h(s) + DT)eDTSe f h(s)dsds
o

<- 1 (") f 7 (")"d.
o

eef (t)dr. (3.18)

Again, we apply Lemma 2.1 to get the desired result.
Theorem 3.2.

This completes the proof of
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