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Haruki and Rassias [1] generalized the Poisson kernel in two dimensions
and discussed integral formulas for each case. They presented an open pro-
blem for an integral formula. In this paper, we give a solution to that pro-
blem.
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1. Introduction

Haruki and Rassias [1] introduced two types of generalizations of the Poisson kernel.
One of them is defined by

Q(O; a, b) A_ 1 ab
(1-aei)(1 -be-i)

where a,b are complex parameters satisfying ]a < 1 and ]b] < 1.
They proved the integral formulas:
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They set the open problem as follows:
"Let
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where a,b are complex parameters satisfying a < 1 and bl < . Compute In for
n 2, 3, 4, "

In the next section, we will give the solution to the problem.

2. Solution of the Problem

Theorem 1" In, defined by (3), satisfies
n

In-- E (2n--j)! ( ab )n-j
j o j!((n- j)!)2 1 ab

for n 0, 1, 2,..., and complex values a, b are such that a < 1 and b[ < 1.
Proof: By the change of variables, with z- eiO, (3) becomes

-1./(1-ab)n+l

In 2ri (1 az)(1 bz 1)
z-ldz

Let

1 / (1-ab)n+l2ri 1 az/ zn(z b) n ldz"

f(z) A__. (--ab) +1

Then f(z) is analytic on {zEC’]zl <l,z-76b} and has a pole at z-b. Therefore,
by the residue theorem, In is the residue of f(z) at z- b.

The Laurent series expansion of f(z) at z b gives:

( 1 )n+lf(z) 1 1,,,ab(Z b) (b + (z b))n(z b) n 1

E n+k a k )k
n

k 0 k 1 ab (z b E bn J(z b)J(z b) n 1

3=0 J

k=O j=O k j 1-ab

Therefore, the residue of f(z) at b, which is In, is given by
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In Z
2n-j n

.i..ab
n-j

3-0 n-j j -ab

n (2n_ j)! ( ab )r_ j

j!((n j)v)2 1-ab
j--o

Note that we obtain (1) and (2) by substituting n 0 and n 1, respectively.
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