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In the present paper we study nonlocal problems for ordinary differential
equations with a discontinuous coefficient for the high order derivative.
We establish sufficient conditions, known as regularity conditions, which
guarantee the coerciveness for both the space variable and the spectral
parameter, as well as guarantee the completeness of the system of root
functions. The results obtained are then applied to the study of a nonlocal
parabolic transmission problem.
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1. Introduction

Many physical problems, the problem of heat and mass diffusion in anisotropic
media, diffraction problems, and others lead to the study of equations with a discon-
tinuous coefficient for the high order derivative [13]. In the present paper, we start
with the study of boundary value problems for ordinary differential equations with a

discontinuous coefficient for the high order derivative and with boundary conditions
containing abstract functionals. We establish sufficient conditions of regularity type
which guarantee the coerciveness for both the space variable and the spectral para-
meter, and which also guarantee the completeness of root functions. Regular pro-
blems for differential operators are studied in [3, 9, 10]. Completeness of the system
of root functions for differential operators with functional boundary conditions is
analyzed in [4, 6, 11, 14]. The coefficient of the high order derivative is assumed to
be constant in [6, 11], whereas it is assumed to be continuous in [14]. The results ob-
tained are used to show the existence and uniqueness of the solution, of a mixed
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problem for a parabolic partial differential equation with a discontinuous coefficient
for the high order derivative, and multipoint boundary values and transmission condi-
tions containing abstract functionals. They are also used to show the completeness of
elementary solutions of this given mixed problem. Thus, the study is reduced to a

Cauchy problem for a parabolic abstract differential equation, where the analysis of
the operator coefficient is given in detail in this paper.

2. Prehminaries

Let W’(a, b) denote a Sobolev space, defined so that

wr(a,b) {u e Lq(a,b):Dau e Lq(a,b);a <_ m}, q e (1, cx).

Lemma 1" For u e Wr(a,b), we have the following inequality [2]"

max u(k)(x) < c(\h1 x II u(m) 11 Lq(a b) + h- x II u I1 Lq(a b) ’ze[a,b] ]

where 0 <_ 1 < m; 0 < h < ho; X lm-(k -+- 1); q G (1, oo).
Lemma 2: For y e wk2(a, b) ana}/ E "(f., we have

II II < II II + II II
lmark 1" Lemma 2 is a particular case of a result given in [1].

O<s<k.

3. Nonlocal Problem for an Ordinary Differential Equation

In [0, 1]\b, we consider the equation

L()u a(x)u"(x) + (Bu)(x) .u(x) f(x),

where , is a complex parameter. To equation (1) we add the boundary conditions:

N
u(K1 pU(K1LlU Ctlltt(K1)(0) q- fill (1)-t- E (51 (xlp) q- ZlU fl

p=l

M

L2u a21u(K2)(0) + 21u(K2)(1) + E 2pu(K2 (X2p) + T2u f2,
p=l

and we include the transmission conditions:

L3u o31u(b 0) +/331u(b + O) + Tau f3
L4u o41u’(b 0) q-/41u’(b -4- O) -4- T4u f4,

(1)

(2)

(3)
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where a(x) aO for x E (0, b]
[,alfor xe (b,1]’ ao’al 7 O, Xlp, X2p E (0, b). B is a linear operator and

each Tu is a linear functional (u 1,4). Ctjl,fljl,Sip C; K 0,1; 1,2; j 1,4;
p-l,N. Let

" --max{arg ao, arg al} _w" --min{ arg ao, arg al}

and

Se" {A C:+ < argA < 2r- +_}.

3.1 Coerciveness of a Principal Boundary Value Problem

Consider, in [0, 1]\b the simplified problem"

Lo(A)u a(x)u"(x) Au(x) f(x), (4)

with

L10u Ctllu(K1)(0) + flllu(K1)(1) fl
u(g)(1)--fL20tt z21u(K2)(0) + 21

and with

Laou %1u(b O) +/3alU(b + O) fa
L40u oz41u’(b O) q- f141u’(b q- O) f4.

(6)

Theorem 1: Suppose that

(-- 1)K20ilf121 (-- 1)Klct21/ll
(V)

K1(/r)K2 (/)K2(V/-)K1
and ct31/41 /31 Ct41

Then for each > 0 there exists Re > O, such that for any complex number
with [A[ >Re, the operator

0()" u-+(Lou, LloU, L20u, L30u, L40u),

lq l- 2(0 b) x Wl- 2(b, 1) x C4 is an isomorphism.from Wq/(O,b) xW (b, 1) onto Wq q
Furthermore, for any such A and any solution of problem (4)-(6), the following
estimate holds.

1/2(_)E [[ [I tt I[ Wqk(0, b) xWqk(b,1)k-0

_< c()( II f II W 2(0 /9) X W 2(/9,1)q q

4 1/2(l_kul )+ lal -)I/.I (7)
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Proof: Clearly, operator 0(A) acts linearly and continuously from Wlq(O,b)x
l- 2(0 b) Wlq 2(b, 1) x C4. Let us show that, for every fWlq(b, 1) into Wq

solutionWql-2(0 ,belOngingb)x Wlq 2(b,toWlq(O,1)andb)forxWq(b,everyl1 .(" E C, u 1 ,4, problem (4)-(6) has a unique

We seek the solution y of problem (4)-(6) in the form y-Yl+Y2, with

Yl (ul, u2) and Y2 (u3, u4), so that y will be a restriction on [0, 1] of the solution

1 to the equation

Lo(A)l-f (x), xE[,

where
[

(x)
f(x), x [0, 1]

0, x [0,1],

and Y2 will be the solution of the problem:

Lo()y2 0

L,oy2 -L,oy + f,, u- 1,4.

(9)

(10)

By applying a Fourier transform, denoted by if, to equation (8) and by making the
change of variable - -aoP

2 and - -alfl2, we obtain

ao[(i(r)2 p2]ffu V71
al[(ir)2- p2]Vu2 zJ72.

As + c < arg p < -- c and cr G R, using geometrical arguments, we have

(io)2- p2l c()( o" 12 -t-- (11)

Then u(.k) ff luk) (5 l(i(7)kuj zj- l(ir)ka 11[(ir)2 p2] fj. Now,
let. T(a,A) p2- k(ia)ka221[(ia)2_ p2]-I j ; add k ;. Clearly, each
T(a,) is continuously differentiable with respect to a in R and, from inequality
(11), we get

Tg( 

Then, by virtue of the Mikhlin theorem [3], the function T(a,)is a Fourier
multiplier of type (q,q). Hence, if f Lo(N x Lq(N), then a function y is a solution
to equation (8) belonging to W2q(N)x W2q(N), and so we have

2

k o Lq(N) x Lq(N) x Lq(N)"
Using (12) and Lemma 2 with a recursive argument, we can easily show that if f
Wql-2(N) x Wql-2(N), then Wlq(N) x Wlq(N) and the following estimate is valid



Noulocal Problems 283

1/2(_)
k

k-0 (13)

Wq Wq

Thus, equation (8) possesses a unique solution i E W2q() W2q() and for Yl we get

1/2(_ ).,’, II Yl II a(o, b) x W(b,1)k=0 Wq

(11 f - (o,) - 2(b,1)
\

Wq Wq
+ [,X 1/2(t-u) IlfllLq(O,b) XLq(b,1))"

Now, let us establish that for any complex number fu E C, u 1,4, problem (9)-(10)
has a unique solution Y2 belonging to Wlq(O,b)x Wlq(b, 1); and for an estimate of the
solution, we have L0(,)y2 0, which is equivalent to

-_ aou’3’- Aua 0 in [0, b)
(14)

alu ,u
4 0 in (b, 1].

Setting Po- V/-o and fll- V/-@I, we get that the general solutions of the equations

of (14) are, respectively, u3 -clexppox + cexp[- po(x-b)] and u4 -c3exppl(X-b
+c4exp[-pl(x-1)]. Substituting these expressions into the conditions of (10), we

obtain a system for c/c k- 1,4. By a straightforward computation, it is easy to see

that the determinant of this system is of the form:

zx 0 + (0, p),
kI k k2where 0- [a11/21/90 /91) 2--oz2111/90 /91)kl] (ct31/41/91 -31ct41f10) and

R(po, pl)--O for Pol, Pll --*ec, in Se. According to the assumption, we have

00.
Again, by straightforward computation, we find that each c is of the form: c
0 4- Ri(p0, Pl
+ R(;o-] where 0 is obtained from 0 by replacing the column with the column

formed by right-hand sides of the boundary conditions of (10) such that Ri(Po, Pl)-
0, i- 1,2 for Pol, Pll oo, in Se. Substituting these values in the expressions of
ua and u4, we find that problem (9)-(10) has a unique solution, given by

02 + R2(P0, Pl)01 -- /1 (/90’/91)
exp -t- exp flo(X b)]U3 0 -t- R(/90,/91) POX 0 -t- R(/90,/91)

03 +/3(f10’ ill)
tt4-- 0-/i(fl0, fll)

exp Pl(X-b)+ 04 -/-/i4(/90, ill)
0 -1- /(/90, /91)

exp [-- /91(X- 1)].

In the sector oce, for p01, I,o_ Ioo we have II expP0x II Lq(O,b) - c(,)lp01
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1

II exp[- Po(X-b)] II Lq(O,b) < c(g) lPol q, I[ expPl(X-b)[I Lq(b,1) < c(g) Pl

and I[ exp[- Pl(X- 1)] 1[ Lq(b,1) <-- C(E) Pl q. Hence, for k >_ 0 and A G Se, we get

To evaluate ..IL.oYll we apply Lemma 1 for X J + and h A[ -1, since

(15)

c [0, b)

1/90 211 -1/2(j -t-)] II u’ II Lq(O,b) + Po
2[(y +-)] II 1 II Lq(O,b)

This, from (13), gives

c [0, b)
k

< c(e) E Po
j + -l ( [I f IIW1-2

3 =0 q(O,b)
+ Pol t- II fl II Lq(O,b))"

By an analogous argument for u2, we obtain

c t(b, 1]
k r, 1

__< C(g)3=0E /91
j A- ( II f2 II wq,b)xwq2 2(b 11

d- Pl
l- 2 II f2 II Lq(b, 1))"

As L,oy < c II Yl II k ,so
[o,b) x (b,]

k

LtoYl <-- C(g)E I)tl1/2( -l+ j 4-)( II f II
3=0 l-2(O,b) xw-2(b,1)Wq

+ , i-}(l- 2)II f II Lq(O,b)X Lq(b,1))

< c()I x 11/2( -+ +-)( II f II - 2(b,1)Wq
+ I1 -( )II f II Lq(o, b) Lq(b, 1)),

(16)

Applying (16), we get that inequality (15) gives estimate (7). The uniqueness of the
solution of problem (4)-(6) follows from estimate (7).
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3.2 Coerciveness of the General Problem

First, consider the following definition.
Definition 1: Boundary value and transmission conditions (2)-(3) are said to be

regular if the following hold.

1.
(- 1)K2c11f121 (- 1)K1a21/511

0 and 1m41 3141
(V)Kl(k/)K2 (r)K2(k/)K1 k/

v

0.

2. For some q E (1,c), each functional Tv is continuous in Wqv(O,b)
Wv(b, 1), where v 1,4, 0 < kv < 1 for v 1,2 and k3 0 and k4 1.

Remark 2: The above definition coincides with the Yakubov definition ([14], p.
86) in the case where Ct31 Ct41 f131 f141 0.

Theorem 2: Suppose the following hold.
1. Boundary and transmission conditions (2)-(3) are regular.

I-2 l-2(b, 1) isWa
compact, where >_ 2 and q (1,

Then, for all A Se, the operator

(A): u--(Lou LloU L20u L30u, L40u),
I-2 I-2from Wlq(O, b) Wlq(b, 1) into Wq (0, b) Wq (b, 1) C4, is a fredhotm operator.

Proof: The operator (A) can be represented in the form (A)= 0(A)+
where

o(A) a(x)u"(x) At(x), u(O), u’(1), u(b 0), u’(b 4- 0))

and

"1 (A) (Bu, LIOU u(0), L20u u’(1), L30u u(b 0), L40u u’(b 4- 0)).

From Theorem 1, it follows that 0(A) is an isomorphism for A Se. Hence, it is a

l(b, 1)Fredholm operator. By virtue of hypotheses 1 and 2, 1(A), from Wlq(O,b) Wq
into Wql- 2(0, b) x Wql- 2(b 1) x C4, is compact. Then, by a theorem on perturbation
of Fredholm operators (see [7]), (A) 0(A)+ "1(’) is & Fredholm operator.

Theorem 3: Suppose that conditions 1 and 2 of Theorem 2 are satisfied. Then,
for any > O, there is Re > 0 such that for any complex number A where A Se and
A[ > Re, the operator

Z(A): u---(L()u, L (A)u, L2(A)u L3(A)u L4()u),
t- 2(0 b) x Wl- 2(b, 1) x C4 is an isomorphism.from Wlq(O,b) x Wlq(b, 1) into Wq q

fo, a of (1)-(3).
Proof: By displacing the perturbed terms of problem (1)-(3) to the right-hand

side members, and by applying Theorem 1 to the obtained problem, we find that

(_ )

=o (o,
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Wq/- 2(O. b) x Wq/- 2(b.1) + i 1/2(l- 2)II f II Lq(0. b)X Lq(b. 1)

11/2(l-k,--q)
f, + II Bu II W1-2(0 b) xWl-2(b 1)q q

4 1/2(l-k,-) )-" , 1/2(1- 2)II Bit II Lq(O. b)x Lq(b.1) + E "1 IT.u
u=l

The above inequality, Lemma 2.7 from [14] and the continuity of Tu give

1/2(_ )E ]l II tt II Wkq(O,b)x Wkq(b,1)k=0
/

( II f II l- 2(0 b)x l- 2(5 1)
C(e)

\
Wq Wq

+ i.11/2(l- 2)II f II Lq(O.b)x Lq(b.1)

+ +
1 1/2(l-k)
k=O k(O.b) X Wkq(b.1))"Wq

1

Choosing 5 such that c()(5 + c() I1 1, we get inequality (7), which implies
2that (,) is injective Since operator B, from W (0, b) x W (b, 1)into W (0, b) xq q q

2W- (b, 1), is compact, and since according to Theorem 2 (,)’W (0, b) xq/ 2 2 4Wq(b, 1)--- Wq- (O,b) XWq- (b, 1)xC is a Fredholm operator, then by a Fredholm
alternative () is surjective. Therefore, it is an isomorphism.

4. Completeness of Root Functions

In the space L2(0 b)x L2(b 1), consider the operator L defined as follows.

Lu a(x)u"(x) -4- (Bu)(x)

D() (W22(0, b)x W22(b, 1),L,u 0,, 1,4).

The root functions of operator L are root functions of the following problem:

LL ,X u 0

,,,(,,k)u O, , 1,4.
(17)

To establish the completeness of the root functions of L, we shall use a theorem given
in [14] (Theorem 3.6, with n- 1). This theorem is actually a variation of the well-
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known theorem of N. Danford ad J.T. Schwartz [3]. Consider the following.
Theorem 4: Suppose that the conditions given below are satisfied.
1. There exist two Hilbert spaces, H and Ha, with the compact embedding

H C H1, and H H- H.
2. The embedding operator } belongs to rp(H1,H for some p > O.
3. The linear operator A from H1 and H is bounded.
4. There exists a set of rays k, in the complex plane such that angles between

the neighboring rays are less than -g, and there exists a number m E N such

that II R(/, A)II B(H, H1) <-- c TM, with . G k and with

Then the spectrum of operator A is discrete and the system of root vectors of
operator A is complete in the space Ha

Applying the method used in proving Theorem 2.1 in [14] and Theorem 3, we can

prove the following lemma.
Lemma 3:

(W(0, b) W(b, 1),Lvu O,u 1,4) lL2(O,b)L2(b,1 L2(0, b L2(b, 1 ).

Theorem 5: Suppose that the conditions below hold.
1. Boundary and transmission conditions of problem (17) are regular.
2. Operator B, from W22(0, b) W2(b, 1) into L2(0 b) L2(b 1) is compact.

Then the spectrum of problem (17) is discrete, and the system of root functions of
2bproblem (17)is complete in (W22(O,b)W2( ,1) Luu O,u 1 4) and, therefore, in

L2(0 b) L2(b 1).
Proof: Set H=L2(0,b)L2(b,1) and Ha=(W22(0,b)w(b,1), Luu-O,

u-:). Since embeddings W(O,b)C L2(0, b and W22(b, 1)C L2(b, 1 are compact
[12], then embeddings W(O,b) W22(b.1) C L2(0, b L2(b, 1) is compact. Using

1hypothesis 1 and Lemma 3, we find Hl H -H. take p-+ 5, where is an

arbitrary positive number. From [12], we get Sj(},W22(O,b),L2(O,b)) j-2 and

Sj(},W(b, 1),L2(b, 1)) j-2, and so, } G cr I (W(O,b),L2(O,b)) and G r1

(W(b, 1),L2(b, 1)). It is easy to see that cr1 (W2(O,b)W(b, 1),L2(O,b)
L2(b 1)). Since H is a closed subspace in W(O,b+W(b, 1), applying [5], we have

G cr12 +5(H1, H). It is obvious that operator is bounded from H1 into H. From

Theorem 3, we see that in the sector S, we have ]1R(A,)]1B(H, H1)<--c(e), for

I[cxz. From this sector S,, take two rays 11 and 12 centered at the origin and
choose a number 5 > 0 such that the angle between the two rays is less than 1

+6Since all conditions of Theorem 4 are satisfied we get the desired result.

5. A Nonlocal Parabolic Transmission Problem

5.1 Correct Solvability

In [0, T] x ([0, 1]\b), consider the equation
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o:(t,)Ou(t,x) a(x) + (Bu(t ))(x) 0 (18)

with the functional boundary conditions:

N

LlOu 11u(K1)(t’O) + 11u(K1)(t’l) + E 5lpu(K1)(t’Xlp + Tlu(t’ 0
p=l

M
(19)

L2ou 21u(K2)(t’O) + f121 u(K2)(t’l) + E 52pu(K2)(t’X2p + T2u(t’ O,
p--1

with the functional transmission conditions"

L30u o31lt(t, b 0) + 31u(t, b + O) + T3u(t 0

L40u c41tt’(t, b 0) +/341t’(t, b + 0) + T4u(t O,
(20)

and with the initial condition:

u(O,x) o(X), (21)

where a(x) { ao for x e [O,b)
aI for x E (b,1]. Xlp, X2p E (0, b); B is a linear operator; each Tu

is a linear functional (u 1,4);aj,j,ip C; K 0,1; 1,2; j 1,4; p 1, N.
Theorem 6: Let the following conditions be satisfied.
1. a 7 0 and ]argai] > -.
2.

(- 1)K2a11321 (- 1)Klo21311 c3141 #31c41
(V/)KI(vflh_.)K2 (V/_)K2()K1

0 and # O

3. The operator B, from W(O,b)W(b, 1) into r2(O,b) xL2(b, 1 is com-
pact.

4. Each functional T, u- 1,4, is coninuous in W. o e ((o, (,, o, .
Then problem (18)-(21) has unique solulion u in

C([0, T], L2(0 b) x L2(b 1)) V CI([0, T], W22(0, b) x W(b, 1), L2(0 b) x L2(b 1));

and we have the following inequalities:

II (t)II L2(O,b) xL2(b,1 c ll o ll w(o,b)W2(b,1), t (0,T]

and

II ’(t)II L2(O,b L2(b,1 + II (t)II w(o,b) w22(b,1)

c. t- II o [I w(o, b) W(b, 1)’ e (0, T].
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Proof: Let A denote the operator defined on L2(O,b)L2(b, 1 by Au(x)=
-a(x)u"(x) with D(A)- (W(O,b) W(b, 1),Lu- 0,,- 1,4). When problem (18)-
(21), in L3(O,b L2(b, 1), can be rewritten as follows.

u’(t) Au(t)- Bu(t) (22)

(23)

where u(t)= u(t,. and f(t)= f(t,. are functions with values in L2(0, b L2(b 1),
o o’) E L2(O,b L2(b, 1 ). Using Theorem 3 in sector Se, we get II R(A,A)]]

_
c AI Alc. From hypothesis 1, the number > 0 can be chosen sufficiently
small so that for some a > 0 we have

We know that operator B is compact, from W22(O,b) xW22(b, 1), into L2(0, b)
L2(b, 1), and operator R(A,A)is bounded, from L2(O,b)L2(b, 1) into W(O,b)
W(b, 1) (by Theorem 3). Consequently, operator T BR(.,A)is compact, from
L2(O,b)L2(b, 1 into L2(O,b) xL2(b, 1 ). Now, by Lemma 3, D(A) is dense in
L2(0, b L2(b, 1); and since the space L2(O,b) L2(b, 1 has a basis and is reflexive,
then, by Lemma 2.7 from [14] we have that for arbitrary > 0 and for arbitrary
u D(A)

[I Bu II L2(0 b) x L2(b 1)- II (A AI)u II L2(0, b L2(b, 1 - C(g)II u II L2(0, b L2(b,1 )"

Since 0 D(A), then Lemma 2.7 from [14] can be applied to problem (22)-(23),
which gives the desired result.

5.2 Completeness of Elementary Solutions

It is not difficult to show (see Lemma 0.1 from [14]) that a function Uj, given by the
formula

Uj( e)’t( tk tk ).u0 4- (k 1)!ul +"" + uk + Uk (24)

where j 0, k, becomes a solution to equation (22) if and only if u0, u,..., uk is a

chain of root functions of the operator A + B corresponding to eigenvalue A0" A solu-
tion of form (24)is called an elementary solution to equation (22).

Theorem 7: Suppose that all conditions of Theorem 6 are satisfied. Then
problem (18)-(21)has a unique solution:

u e C([0, T], L2(0 b) x L2(b 1)) fl cl((0, T], W(O, b) W(b, 1), L2(0 b) x L2(b 1));

and there exists a set of numbers, cjn such that

lim sup u(t, )- cjnuj(t
e [0,] =1

L2(O,b) xL2(b,1 --0
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and

lim sup t (t .)r (0 T]
ut(t’ cj’ujt

3--1 n2(O,b)n2(b,1

+ ,(t,. )- , c,,,(t,. o,
j 1 w22(o, ) w(, 1)

where u is a solution of problem (18)-(21) and each uj is an elementary solution of
problem (18)-(20).

Proof: By Theorem 6, we get the existence and uniqueness of the solution to
problem (18)-(21); and by Theorem 5, the completeness of root functions of problem
(17) is guaranteed. Therefore, if we denote by ,j, j- 1,o, the eigenvalues of pro-
blem (17), taking into consideration their order of algebraic multiplicity, there exists
a set of numbers cjn such that

nlim 0- CjnUjkj O,

w(0, ) w(, )
where Ujo uj,..., ujkj

form some chain of root functions of problem (17) correspond-

ing to the eigenvalues Aj. On the other hand, using Theorem 6, we find that problem

(18)-(20), with the initial condition u(O,x)- o(X)- cjnujk.(x), has a unique
solution J

n

(t, x)v(t, x) (t, ) , c,(t, )
j=l

in the space

C([0, T], L2(0 b) x L2(b 1)) N cl((0, T], W22(0, b) X W22(b, 1), L2(0 b) x L2(b 1)).

We also have the following inequalities:

and

,(t,. )- c,.(t,. <_ c
j L2(O,b x L2(b,

0-- E CjnUjkj
j=l W22(O,b)

CjnUjt(t, ")
j L2(O,b x L2(b,1

X W(b,1)

+ (t,.)- c,(t, .)
? W(O, b) X W(b, 1)
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0- E CjnUjkj
2 1 W(O, b) X W(b, 1)

Therefore, the proof of the theorem is complete.
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