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We consider a single server Markovian queue with two types of customers;
positive and negative, where positive customers arrive in batches and arri-
vals of negative customers remove positive customers in batches. Only
positive customers form a queue and negative customers just reduce the
system congestion by removing positive ones upon their arrivals. We de-
rive the LSTs of sojourn time distributions for a single server Markovian
queue with positive customers and negative customers by using the first
passage time arguments for Markov chains.

Key words: Negative Customers, First Passage Times, Batch Arrival,
Batch Removal, Sojourn Times.

AMS subject classifications: 60K25.

1. Introduction

We consider a queue with two types of customers; positive and negative. Positive cus-

tomers are ordinary ones who, upon arrival, join the queue with the intention of
being served. In contrast to the positive customers, the arrival of a negative custom-
er removes some of the positive customers from the system, if any available, and then
disappears; otherwise the negative customer is lost. Only positive customers can form
a queue and negative customers just reduce system congestion. Such queues have
been called G-queue (Harrison and Pitel [12]).

Since Gelenbe [7] introduced the notion of negative customers to represent the inhi-
bitator signal in neural networks and commands to delete some transactions in distri-
buted computer systems or databases, there has been a growing interest not only in
networks of queues ([3-9, 12, 14, 15]) but also in single node queues with negative cus-

tomers ([1, 2, 10, 11, 13, 16]). Interest in time delays in the G-queue has increased re-

cently. Harrison and Pitel [11] derived the LSTs of the sojourn time distributions for
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the M/M/1 G-queue under the combinations of various queueing disciplines and re-
moval strategies. Harrison and Pitel [12] investigated the end-to-end delay in an

open tandem pair of a G-queue with FCFS discipline and RCE removal strategy.
Most papers assume that upon arrival to a queue, a negative customer removes an or-

dinary customer from the queue. Recently, several authors have generalized this con-
cept, allowing a negative arrival to remove a batch of customers (Henderson et al.
[15], Chao and Pinedo [5] and Gelenbe [8]), a random amount of workload (Boucherie
and Boxma [2]), or even all work in the system (Chao [4] and Jain and Sigman [16]).

However, the results about sojourn time distribution even for single node G-queues
with batch arrival or batch removal are few to the author’s best knowledge. In this
paper, we use the first passage time arguments of Markov chains to derive the LST of
the sojourn time distribution in single server Markovian G-queues with a batch
arrival of positive customers and/or batch removal by a negative arrival. The
mathematical accessibility of our model compared with that of Harrison and Pitel
[11] represents a part of the motivation for the study of batch arrivals/ removals.
Furthermore, our model is related to the inventory systems with perishable products
such as fruit, vegetables, and meat, in which arrival and removal occur in batches
and instantaneous removal of inventory usually depends on the length of time that
the products spent in the system.

This paper is organized as follows. We describe the model in detail and derive the
queue length distribution in equilibrium in Section 2. In Section 3, we derive the
LSTs of the first passage times related to the compound Poisson processes. The LSTs
of sojourn time distributions, under combinations of two quede disciplines, FCFS and
LCFS and two removal strategies, RCE and RCH are derived in Sections 4-7.

2. Queue Length Distribution

In this section, we describe the mathematical model in detail and derive the queue
length distribution in equilibrium at the arrival instants of positive customers. We
consider a single server queue in which positive customers arrive in batches according
to a Poisson process with rate , +, and negative customers arrive according to
Poisson process with rate ,-, which is independent of the arrival process of positive
customers. We assume that each arrival of a negative customer removes a random
number B of positive customers in the system. That is, upon a negative arrival, if
there are k positive customers in the system, min(B,k) positive customers are remov-
ed and the negative customer disappears. The service time distribution of all custom-
ers is exponential with mean -. For the notational simplicity, we let -,- + #
and , , + + ,-. We assume that the batch size A of positive customers and the
quota B of a negative customer take finite values to avoid calculations of infinite ma-
trices. However, this assumption is not a strong restriction, since the supports of A
and B may be arbitrarily large and one can apply our model to A and B taking infin-
ite values by truncating the tail parts of the state spaces with sufficiently small tail
probabilities. Let P(A n) an and P(B n) bn, n-l,2,.., with an-O,
n_>l+l and bn-0, n>_m+l for some l_<l, m<oe. We denote the means
-a- E(A) and b- E(B) and generating functions A(z)- _,t n

n= lanz and B(z)
m bnzn.

Note that the stationary distribution of the queue length in this system is invari-
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ant under the service discipline and removal strategies and concern only positive
customers. This model is equivalent to the MAIMB/1 queue where customers arrive
in batches with batch size A according to a Poisson pross with rate A + and the
customers are served in batches of maximum size B with bk P(B k), 1 <_ k <_ m,
where

A-b1+ # k-1

2<_k<_m,

and the service time distribution is exponential with parameter . The necessary
and sufficient condition for this system to be positive recurrent is given (e.g. Miller

[17]) by
A+p- _<1.

#+A-b

We assume that p < 1 throughout.
Now we turn our attention to the queue length distribution at the arrival epochs of

positive customers, which will be imperative in the upcoming sections. Let {Nn} be
the number of positive customers in the system at the epoch immediately before the
arrival of the nth batch of positive customers. Let An be the batch size of the nth
arrival of positive customers with the same distributions as A and Dn + 1, where

Dn + 1 is the number of positive customers departed from the system during the

(n + 1)st interarrival period of the batch of positive customers. Then it can be seen

that

Nn + max(Nn + An- Dn + 1,0)

The probability dn that n positive customers potentially leave the system during the
interarrival time of a batch of positive customers is given by

d -{ P’
n E lb(j, n)pqj,

n--O

n_>l,

where p
,x + +g

q-1-p and b(j n) is the j-fold convolution of the probability

mass function {bk, 0 <_ k <_ m}. Simple calculations yield
m

(z) E b’nzn 1 (#z + A- B(z))
n=l

and hence the probability generating function d(z)- Y= odnzn is given by

d(z)
A + + #(1- z)+ A-(l- B(z))"

Denoting dn -0 for n _< -1 and dn c= ndk, n >_ O, we deduce that the transi-
tion probability matrix P (Pij) of {Nn} is given by
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lk lak-i + k, if j 0

Pij lk lakdk + i- j, if 1 _< j _< +
O, if j>__i+l+l.

Following similar procedures as those in Miller [17], the stationary distribution r-

{ri, i- 0, 1,...} of {Nn} is given by

Kn’-l(dj.. ) 0, (2.1)
i=1 j=O

where ai, 1 <_ <_ K, is the solution of the equation

ozl d(oz)alal- 1 "t- a2oz
l- 2 +... + al

with n being the multiplicity of a (l<_i<_K), such that l_<ni<_l and
K

lni l. cij, 0 <_ j <_ n 1, 1 <_ <_ K are arbitrary constants, which can be
determined by the l- 1 simultaneous equations:

under the constraint

rj E riPij’ J 1,2,...,/- 1, (2.3)
i=0

K hi-1
E E cij- 1,
i=1 j=O

and C, the normalizing constant (in E ,’= ori- 1), is given by

t -1K n 1
J!ci t- E E ci,(1 1

C 1 a-’---- +
i=l i=l =1 -a

(2.4)

After simple but tedious algebra, we have from (2.3) and (2.4) the following linear
system of equations for {Cij 1 <_ <_ K, 0 <_ j <_ n 1}:

He- el,
where

e-- (c10, c11,...,Cl,n1_1,c2,0, c2,1...C2, n2_1,...CK, nK _1)t,

e (0,0,...,0,1) is the /-unit vector and H is the xl matrix with its kth
< < ro.

hk (hlo(k),hll(k),...,hl,nl l(k),h2,0(k),...,h2, n2 l(k),...,hK, nK_ 1(k)

and/throwh (1,1,...,1), and for l <_ k <_ l-1, l <_ <_ K, O j <_ ni-1,
r-k-1

hij(k)- E ar E (k-r+n)(k-r+n-1) (k-r+n-j+l)ck-r+n-j
r=k+l n=O

Special Cases
(1) Let l- 1, that is, A- 1.
In this case, (2.2) becomes a (a)- (, + )a + , + 0 and it has a unique
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solution in 0 < a < 1, say a0, and the stationary distribution is given by

r- (1- c0)c, n >_ 0. (2.6)
(2) Let l- 1 and rn- 1, that is, A- 1 and B- 1.
In this case, (2.2) becomes c2- (1 + p)c + p- 0 and the stationary distribution is

given by
p)p , n >_ o.

3. The First Passage Times

The sojourn times, which will be treated in the upcoming sections, can be considered
as the first passage times of the corresponding Markov chains. So we need to investi-
gate the first passage times for some Markov chains related to compound Poisson pro-
cesses.

First, we consider the compound Poisson process
N(t)

x(t)
i=1

where {N(t), t _> 0} is a Poisson process with rate and {Xi} is a sequence of indepen-
dent and identically distributed (i.i.d.) random variables, which are independent of
{N(t),t >_ 0} and have probability mass function xk P(X1 k), k 1,2,... and
probability generating function E(z)- ] n

=lXaz zl <1. LetUx(n be the first
passage of time of X(t) to the state n, that is

Ux(n --inf{t > 0:X(t) > n),
and let Ux(n,t -P(Ux(n < t) be the probability distribution function of Ux(N).
By conditioning the first transition of the process {X(t)}, we have the following pro-
position.

Proposition 1" The LST U*x(n,s of Ux(n,t) is given recursively by

U(1, s)u+s’

U..n,s.*() u+sU -, + xiU*x(n i, s) n _> 2, (3.1)
i=1

where -given by
*(z Ec_iXk, > l. The double transform UX n=

z u(1 E(z))U*x(Z’S) 1 z s + u(1
Now we consider the difference of two independent compound Poisson processes

Nl(t) N2(t)
Xl(t)- E Xl,i and X2(t E X2, i’

:1 =1

where {Nl(t)} and {N2(t)} are independent Poisson processes with rates "1 and
respectively, and {XI,i} and {X2,i} are independent sequences of i.i.d, random vari-
ables with P(X1, k) Xl,k, k >_ 1 and P(X2, ]) X2,k, 1 < k < m. We
assume that the random variable X2, is bound by m. Define a Markov chain



344 Y.W. SHIN

z(t) t > o,

with Z(0)- 0. Let Zn be the state at the instant immediately after the nth transi-
tion of the process {Z(t), t >_ 0} and rn the time interval between the nth and n + 1st
transitions Then {(Zn, rn),n >_ 0} is a Markov renewal process with the transition
probability matrix Qz(t) of the form

Qg(t)

-2

-1

-2 -1 0 1 2

C1 C2 C3 C4 C5

CO C1 C2 C3 C4

CO C1 C2 C3

CO C1 C2

O CO C1

]

(1 e (’kl -t- ,k2)t),

where each level i-((i, 1), (1,2),. (i, rn)), i-0, +/- 1, +/-2,... is the set of m states,
the state (i,k) in level i means the state (i,k)- mi 4-k- 1, CO is the upper triangu-
lar matrix

and

where

C-m C-m+1 C-m+2 C_ 1

C-rn C-m+1 C_ 2

C_ m C_ 3

c

Ca+ 1

Cmn Cmn+l Cmn+ m--1

Cmn--1 Cmn Cmn+ m--2

Cmn m + 1 Cmn m + 2 Cmn

/1
Xl,i if i_> 1

’ +

1 4- "2x2’ -i if -m < _< 1

0 ifi- 0.

n>_0,

(3.3)

Define the first passage time as
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Gz(n -inf{t _> 0:Z(t) <_ n},

and denote its distribution function by Gz(n t)- P(Gz(n <_ t). Now we derive the
LST G’z(- n,s) of Gz(- n, t), n >_ 1.

Proposition 2: The LSTs G’z(- n, s) for 1 <_ k <_ m, are recursively given by

m-k+1
a’z(-

j=l

m

G)(- 1,s)- E [H*(S)]lj’
j (3.4a)
m

[H*(s)]lj + E [H*(s)]ljG*z(m k + 1 j,s),
j=m-k+2

and for n > 2 and k m, m- 1,..., 1, by
k m

G’Z(- mn+ k 1,s) E [(H*(s))nllj + E
j=l j=k+l

[(H*(s))n]ljG*Z(k- j,s), (3.4b)

where H*(s) is an m x m matrix, which is the minimal nonnegative solution of the
matrix equation

H*(s) 11 -- 2 -t- s E Cn[H*(s)]n’ (3.5)
n--O

while [H*(s)]ij denotes the (i, j) entry of the matrix H*(s).
Proof: Let T(i + r,j;i,j’) be the first hitting time of {Z(t),t > 0} from state

(i + r,j) rn(i + r) + j-1, r >_ l, l <_ j <_ m, to state (i,j’) rni + j’- l, l <_ j’ <_
rn, with the additional requirement that (i, j’) is the first state at level i to be visited
and ri(j,k is the first passage time from state (i, j) to state (i,k), 1 <_ j, k <_ rn,
j-k > 0. When the process {Zn} starting at (0, 1), that is, Z0 -0, hits the level
-n, and visits state (-n,j) e{(-n, 1),...,(-n,k)}, then Gz(-mn+k-1)-
T(O, 1; n, j); and if the state visited is (-n,j) E{(-n,k+l),...,(-n,m)), then
Gz(-mn+k-1 is the sum of T(0,1; n, j) and r_,(j,k). Thus we have for
n>_l, l <k<m,

k

P(Gz(rnn-k+ 1)_< t)- E P(T(O, 1;-n,j) <_ t)
j=l (3.6)

m

j=k+l
P(T(O, 1; n, j) + v ,(j, k) < t).

Let H[.r!,(t) P(T(i + r, j; i, j’) < t) be the distribution function of T(i + r j; i, j’)
33

and Hr.),*(s)’" be the LST of HL.r!,(t)’- 1 < j, j’< m. Let H[r](t)and HLrJ*(s)" denote

the mm matrices with (j,f)entry H,(t)and H,*(s), respectively. By the

spatial homogenuity for levels of Qz(t) the distribution of T(i + r,j;i,j’) does not
depend on level i but only on r and (j, j’) and hence we get

H[r]*(s) -[H*(s)]r, r >_ 1.
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From the spatial homogeneity of the transition probability Qz(t) for states ’i(j,k),
j > k, depends only on the difference of the states j- k and its distribution function
is the same as that the Gz(k-j). Note that, by the Markovian property,
T(0,1; n, j) and r_n(j,k), n >_ 1 are independent. By taking LST in (3.6), we

have (3.4). By using the same arguments as in Chapter 2 of Neuts [18] we have that
H*(s) is the minimal nonnegative solution of

g*(s)- "1 + "2 -t- s E Cn[g*(s)]n"
n--O

Remarks: 1. The m m matrix H*(s)in (3.5) can be calculated recursively by
setting H(s) 0 in

* (1+2) Ck[H:(s)]k.Hn+l(8)-- "1+’2 +8 k=O

For more details in calculation of H*(s), see Neuts [18].
2. Gz(- n,t) in Proposition 2 can be considered as a busy period distribution in

X1 1/ 1the M Mx2’ /1 queue with arrival rate "1 and service rate "2 starting with n
customers.

Special Cases

Ifm>l andl_<m-1, thenCn-O, n >_ 2 and hence we have

H,(8) (1+ 2 _.1_ 8 )-1)1 + "2
I C1 Co,

where I is the m x m identity matrix.
2. If rn- 1, that is, X2, 1, then G*z(n,s is obtained from (3.4) and (3.5)

as

G’z(- n,s) [H*(s)]n, n >_ 1 (3.7)

and H*(s) is the solution of the equation

1 (’2 -" lZl(Z)) (3.8)

with z < 1, where l(Z) Ei lX, izi.
3. If l-m- 1, that is, X1, 1 and X2, 1, then letting (z) z in (3.8)

and solving equation (3.8), we have

H*(8)- 91@((,1 -t- 2 -- s)- (1 -- "2 -t- 8)2 4,1,2). (3.9)
""1"

4. RCE With FCFS Discipline

Under the FCFS queueing discipline with RCE removal strategy, upon arrival of a

negative customer, if the number of positive customers is fewer than B, then all the
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positive customers are removed; otherwise, B customers from the end of the queue are
removed. Let W denote the time period during which the tagged customer spends in
the system from the epoch of arrival to the epoch of its service completion. We
assume that W is infinite if the tagged customer is removed from the system before
its service completion. Let Na and Nb be the numbers of customers ahead of and
behind the tagged customer, respectively, immediately after its arrival instant, and
let N be the number of customers in the system at ,L_. tagged customer’s arrival. Let
A* and A*_ be the batch size to which the tagged customer belongs and the number
of customers in the preceding batch. Note that the probability mass functions of A*
and A*__ are given by

, 1P(A* k) kak and P(A j lA* k) --, j O, k- 1

Thus the distribution function W(x)- P(W <_ z)in equilibrium is

W(x) E rnP(W <- x N n)
rt O

n=0 k=l

o kak

n=0 k=l
Ip(w < x N n,A* k,A*_ j)
j=0

cx k-1

Ern E a_ Ep(W<_x]Na
n=0 k=l j=O

--n+j, Nb--k-j-1 ).

(4.1)

To calculate the conditional distributionP(W _< x lNa n,Nb k), we define the
Markov chain

x(t) x + (t) x- (t), t >_ o,

with X(0) 0, where X + (t) and X-(t) are the numbers of positive customers
having arrived and potential removals by negative customers up to time t, respective-
ly. Then the LST Gc -n, s) of the first passage time distribution function

Gx( n) inf{t >_ 0"X(t) <_ n}, n >_ 1,

can be obtained from (3.4) by replacing c in (3.3) by

+
A ai’ if 1 _< :=_

ci- A-b if -re<i< -1A -i’

0, otherwise.

Let Sn be the time needed to serve n consecutive customers. Since the service time
distribution is exponential with parameter #, the probability density function sn(t of
Sn is given by

 n(t) (n- 1)’
t O. (4.2)
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Under the FCFS service discipline with RCE removal strategy, when Na -n, Nb k
for the tagged customer to complete its service without being removed, it must hold
true that Gx(- k- 1)> Sn + 1" Hence, the conditional distribution of W given that
Na n and Nb k, is represented by

Letting

and

P(W <_ x Na n,Nb k) P(Gx( k- 1) > Sn + l,Sn + <_ x)

x

/ P(Gx(- k 1) > t)sn + l(t)dt.
0

Kj(a,s,t) E ane-Stsn + J + i(t)
n-’O

j[#e-(s+.(1-a)) -.2--,-- i! #e
-’0

(s+.)t], j >_ O,

(4.3)

W(a,x)- E anP(W <- x IN n),
n-’0

w*(.. f d.).
0

we have from (2.1) and (4.1)-(4.3) the following proposition.
Proposition 3: The LST W*(s) of W(x) is given by

where
i=1 j=O a=a

ak
k-1

W*(c,s)- E - E jKj(a’s’t)(1-Gx(j-k’t))dt
k=l j=O 0

#(s + #)(1
s(s + #(1 a))

k-1

s + #(1 -a) -- a JG*x(j k,s + #(1 -a)
j=0

(4.4)

(4.5)

-t- E -3- E a-j #(_l)id___/ (j-k,s+#

k= 3=o i=o ds s-t-#

Special Cases
1. If/- 1, that is, A- 1, then we have from (2.6), (3.4) and (4.5) that

W*(s) (1 a0)W*(a0, s)
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s / #(1 -ao)

tt(1 a)
1 [H*(s + #(1 c0))]l, js + #(1- 0) j 1

If m- 1, that is, B- 1, then G’X(- n,s)- [H*(s)]n and (4.5) becomes

#(s + p)(1 A(s +
: s(s + #(i a))

afl(a,s)[A((a,s))- A(1/a)]

(4.6)

(4.7)

k=l i=0
#(-1) di. I(aT-(-s)-)k -!.-- --7 )td’L ( + u)(()- i

where (, s)- H*(s + #(1- c)) and 7(s)- H*(s + p).
If l- m 1, then we have from (2.7) and (4.6) that

it(1 P)W*(s) #(1 p)+ s[1 H*(#(i p)+ s)],

1 A+where H*(s) 2,x+ +A +s- (A++ +s)2-4+
Note that (4.8) coincides with the known result in Harrison and Pitel [11].

(4.8)

5. RCH With the FCFS Discipline

Under the RCH removal strategy, when a negative customer finds n positive
customers upon its arrival and n _< B, then he removes all the positive customers. If
n > B, then B customers from the head containing the customer in service are

removed, and hence the customers behind the tagged customer do not affect the
sojourn time of the tagged customer. Thus, using the same argument as in (4.1), we
have

k-1akP(W_x]N-n)- E- EP(W<-x]Na-n+j’Nb -k-j-l)
k=l j=0

k-1

W P(W<-xIN -n+j)"
k=l 3=0

Letting Vn(x P(W <_xlN-n), n-0,1,2,.., and V(s) be the LST of
Yn(x), the LST W*(s) of W(x)is given by

oc
ak

k-1

: +
n--0 k-1 j--0
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Now we derive V(s), n >_ O. Taking the conditional probability on the first
departure of positive customers due to service completion or negative arrival and then
using the total probability law, we have the following recursive relation"

v;() (),
V(s) (s) --Vn_l(S)-[- ,, k_= l

k n-k(s) rt

_
1,

where (s) + s

function V*(a, s) n
o V.()

p(s)
[c[ <1 s>0.v*(, ) ( +

_
B())()’

We have from (2.1), (5.1) and (5.3) the following proposition.
Proposition 4: The LST W*(s) of W(x) is given by

’.w*(,)w*()-c ,C,o,
i=1 j=O

where

and bk -0, k >_ n + 1. Simple calculation yields the generating

(5.3)

(5.4)

(5.5)

Special Cases. f A- , tn hv fom (.) tt W*(,)- V*(,)nd n,o
(2.6) and (5.3) that

(1 ao)(s (5.6)w*() (0 +- B(0))()"

If B- 1, then it is easy to see from (5.3) that

1-() ()+1

It n+land hence V(s) ---(s) ,n >_ O. Thus we have

(s) ) (1 A((s))).W*(a,s)-() (1 c(s) 1- (s)
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If A-1 and B- 1, then since c0 -p and B(c)- a, we have from (5.6)
that

W*(s) + +

which is identical to the formula in Harrison and Pitel 11].

6. RCE With Preemptive LCFS Discipline

Here, the batch to which the tagged customer belongs goes immediately to the front
of the queue and the removal of customers by a negative arrival is done at the end of
the queue. Thus, when Na --n, Nb --k, for the tagged customer to complete its
service without being removed, the tagged customer must complete its service before
the negative arrivals remove k + 1 positive customers. Note that when Na n, the
time period that the tagged customer completes its service is the same as the busy
period n+l in an ordinary MAIM/1 queue starting with n+ 1 customers. Let
X- (t) be the numbers of potential removals by negative customers up to time t and

Ux (n) -inf{t _> 0, X-(t) _> n},

and (n, t)- P(n < t). Then we have

P(W x N -n, Nb- k)- P(Ux-(k + l) > qn+l,n+ 1

X

f P(Ux-(
0

k + 1) > t)(n + 1, dt).

The double transform UX (z, s) of Ux- (n, x) P(Ux (n) < x) is obtained
from (3.2) as A-(1 B(z))ZUx-(Z’S) 1 z s + A-(1 B(z))"

Denoting by *(n,s) the LST of (n,t) and *(s)- *(1,s), we have from (3.7)
and (3.8) that

where *(s) is the unique solution of the equation

Z
#+A+zA(z)
s+#+A +

with z < 1. Following the same procedure as (4.1), we have from (6.1) that

X

ak 1/ [1-Ux (n+k-i,t)](i+l dt). (6.2)
n=O k=l i-O 0

Now, we have from (2.1) and (6.2) the following proposition.
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Proposition 5: The LST W*(s) of W(x) is given by

where

w*() c c w*(.,)
i=1 j----O c

1 *(s)[1-A(*(s))]W*(a, s) 1 a (1 *(s))

ak
k-1

/ _StUxE an E - e -(n + k- i,t)gt(i + l dt).
n=O k=l i=0 0

(6.3)

(6.4)

Special Cases
1. If A- 1, then we have

W*(s)- (1- ao)W*(%, s)

= *()
1 ao/ stYXao e (ao, t)gt(dt),

0

where Ux-(z,t En= lZnUx-(n,t) and

(6.5)

If B 1, then
n-1

Ux-(n,t)-l-Ee
3--0

and hence we have

+ -+- # + s-- V/(A +

_-(a-)
j! n_>l,

oo akk-1 n+k-i-1 (A-)jrE. E E E-- j! j e
n=0 k=l i=0 3=0 0

oo k-1 n+k-i-1

=E cnE ak
n=O k=l i=0

(s + )ttJ( + 1, dt)

j=O

(-)
j! (- 1)J*(J)(i + 1,A- +s),

(6.6)

where gl*(J)(n, s) dJ gt*(n, s).
If A- 1 and B- 1, then we have from (6.6) that

1 *(s + A-(1 -c))W (c, s) 1 c

and hence from (2.7) that
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W*(s)-*(s+A-(1-p))

-2A + s +,\ + #-,\-p- (s+A+#-A-p)2-4A +

which is the same as that in Harrison and Pitel [11].

(6.7)

7. RCH With Preemptive LCFS Discipline

Let {X + (t),t >_ O) and {r(/),/>_ 0) be independent compound Poisson processes
with their one-dimensional distributions as those of the number of the arrived posi-
tive customers and the number of positive customers potentially leaving the system
due to service completion or negative arrivals up to time t, respectively. We define a
Markov chain {Z(t), t _> 0} by

z(t) x + (t)- Y(t).

Here the queue left behind the tagged customer is irrelevant throughout its sojourn
time. Thus, using the same argument as (4.1), we have

k-1akW(x) E -- E P(W <- x Na j)" (7.1)
k=l j=O

Define Vn(x P(W <_ x N
tional simplicity, we let

-n) and denote its LST by V(s).

A++#
A + + +s’

A++#

For the nota-

A+ak
~, ifl <k<l

qk-- A+ +#
O, otherwise,

#+A-bI

A + +#
A-bk

+

if k-1

if k>l

0, otherwise.

Taking the conditional probability on an arrival of positive customers or departure
of positive customers due to service completion or negative arrival and then applying
the total probability law, we have the following relations:

V;(s) q(s) w + E qkVZ(s)
k 1 (7.2)
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Let--...J.[H[]*(s)]ij(u l, 2, l <- i, j -< m) be the LST f the distributin functin f
the first hitting time of {Z(t), t > 0} from state mu + i- 1 to state j- 1 and H[]*(s)

m m matrix with (i,j)-enty [H[]*(s)]ij. Following the same arguments asthe in
Proposition 2, we have that

H["]*(s) -[H*(s)]’, , 1,2,..., (7.3)

where m m matrix H*(s) is the minimal nonnegative solution of the matrix equa-
tion o

H*(s) rl(s E Cn[H*(s)ln’
n--O

where the matrices Cn’s are of the same form as those in Section 3 with

qk, if 1 _< k _<

ck- rk, if -m_<k< -1

0, otherwise.

Let V*(8, rt)-(Vnn(8),Vnn+l(S),...,V*m(n_t_l)_l(s))t n-0,1,2,.., be m-vec-
tors. Then it is easy to see that

V*(s, n) [H*(s)]nV*(s, 0), n O, 1, 2,..., (7.4)

with [H*(s)]- I being the m x m identity matrix.
yield

Rewriting (7.2)and using (7.4)

+ 0).
k=0

where

V(s) rl(s) E 7n(k)[H*(s)lkV*(s’ 0), 1 <_ n <_ m- 1,
k=0

(7.5)

n(k)- (Crnk_n, Cmk_n+l,...,Cm(k4rl)_n_l) 0 <_ n <_ m-- 1, k >_ O.

Hence we get the following matrix form representation of V*(s, 0)"

V*(s, O) I (s) rk[H*(s)]k rl(s)wel,
k=0

(7.6)

where rk is the m xm matrix whose jth row is 7j(k), 0_<j_<m-1 and e1=
(1,0,...,0) is m-vector. The existence of the matrix inversion in (7.6) is obvious,
since the matrix is strictly diagonally dominant. The infinite sum of matrices in
(7.6) is in fact a finite sum, since rk O for k _> u + 2, where mu _< < m(u + 1).

Proposition 6: The LST W*(s) of W(x) is given by



Sojourn Time Distributions in a Markovian G-Queue 355

k-1ak

k=l j=0

where V(s), 0 <_ n <_ l- 1 are obtained from (7.4) and (7.6).

Special Cases
1. If A- 1, then we have from (7.7) that

and
V*(s, 0) [I- (s)(F0 + FIH*(s))

where

( 0 ql 0 0

rI 0 ql 0

rm_ 2 rI 0 ql

\ rm-1 rm-2 rl 0 ql

0

(7.7)

(7.8)

If B- 1, then we have from (3.8) that H*(s)is the unique solution of the
equation

1z .(fi + + zA(z))+ + +s
with z < 1. (7.6) leads to

, q(s)w P--H*(s)Vo(s) +
1 A(H*(s))+ +fi + s

Thus, _[H:(s)]k__W*(s) -V(s).l
k-1 (7.9)

p_ H*(s)(1 A(H*(s)))
# (1 H*(s))

If A- 1 and B- 1, then by letting A(z)- z in (7.9) we have from (3.9)
that

W*(s) # 1 ((A + -t- + s) v/(A + + +s)2-rA-t-))
which is the same as that in Harrison and Pitel [11].

(7.10)

Acknowledgement

The author wishes to acknowledge the financial support of the Korean Research Foun-



356 Y.W. SHIN

dation made in the program year of 1997. The author is grateful to the anonymous
referee for his/her suggestions that improved the presentation of the paper.

References

[1]

[2]

[3]

[4]

[6]

[7]

IS]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Bayer, N. and Boxma, O.J., Wiener-Hopf analysis of an M/G/1 queue with
negative customers and of a related class of random walks, Queueing Systems 23
(1996), 301-316.
Boucherie, R.J. and Boxma, O.J., The workload in the M/G/1 queue with work
removal, Prob. Engin. Into. Sci. 10 (1996), 261-277.
Boucherie, R.J. and van Dijk, N.M., Local balance in queueing networks with
positive and negative customers, Ann. Oper. Res. 48 (1994), 463-492.
Chao, X., A queueing network model with catastrophes and product form solu-
tion, Oper. Res. Letters 18 (1995), 75-79.
Chao, X. and Pinedo, M., Generalized networks of queues with positive and
negative arrivals, Prob. Engin. Into. Sci. 7 (1993), 301-334.
Fourneau, J.M., Gelenbe, E. and Suros, R., G-networks with multiple classes of
negative and positive customers, Theoret. Comput. Sci. 155 (1996), 141-156.
Gelenbe, E., Product form network with negative and positive customers, J.
Appl. Prob. 28 (1991), 656-663..
Gelenbe, E., G-networks with triggered customer movement, J. Appl. Prob. 30
(1993), 742-748.
Gelenbe, E., G-networks: a unifying model for neural and queueing networks,
Ann. Oper. Res. 48 (1994), 433-461.
Gelenbe, E., Glynn, P.G. and Sigman, K., Queues with negative arrivals, J.
Appl. Prob. 28 (1991), 245-250.
Harrison, P.G. and Pitel, E., Sojourn times in single server queues with negative
customers, J. Appl. Prob. 30 (1993), 943-963.
Harrison, P.G. and Pitel, E., Response time distributions in tandem G-net-
works, J. Appl. Prob. 32 (1995), 224-246.
Harrison, P.G. and Pitel, E., The M/G/1 queue with negative customers, Adv.
Appl. Prob. 28 (1996), 540-556.
Henderson, W., Queueing networks with negative customers and negative queue
lengths, J. Appl. Prob. 30:4 (1993), 931-942.
Henderson, W., Northcote, B.S. and Taylor, P.G., Geometric equilibrium distri-
bution for queue with interactive batch departures, Ann. Oper. Res. 48 (1994),
493-511.
Jain, G. and Sigman, K.A., Pollaczek-Khinchine formulation for M/G/1 queues
with disasters, J. Appl. Prob. 33 (1996), 1191-1200.
Miller, R.G., A contribution to the theory of bulk queues, J. Royal Star. Soc.
Set. B21 (1959), 320-337.
Neuts, M.F., Structured Stochastic Matrices of M/G/1 Type and Their Applica-
tions, Marcel Dekker, New York 1989.


