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This paper deals with multi-dimensional quasitoeplitz Markov chains. We
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1. Introduction

It is common to model many processes in communication in terms of two-dimension-
al Markov chains of special structure. These chains are valued in {0,1,...} x
{0,...,W} and we assume that the one-step transition probabilities P{i,+ 1- i’,

u’ u} possess two properties:Un + 1 in i, un

1. They are homogeneous with respect to n.

2. There exists such J0, that for all _> J0,

P{in+l Pn+l ,’ i, -i, un u} Qi’-i(u, u’),

i’>i-1.
(1.1)

Such Markov chains were studied by M. Neuts [21, 22] and his followers, V.
Ramaswami [24] and D. Lucantoni [16, 17]. Their studies were motivated by various
applications to queueing, in particular, a class of arrival processes (in single-server
systems) known as a versatile Markov point process. The component n is interpreted
as the queue length at the nth "embedded epoch." The component un is interpreted
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as the state of some internal process, which governs the arrival process. Nests called
these chains M/G/1 type chains.

The same class of chains encountered in queueing systems operating in synchro-
nous random environment (see Dudin and Slimenok [4, 6]). Here the component Un
is interpreted as the state of some external random process (random environment),
which governs the system’s behavior. By analogy with Dukhovny [7], who investiga-
ted one-dimensional quasitoeplitz Markov chains, Dudin and Klimenok called these
chains quasitoeplitz two-dimensional Markov chains. This term stems from matrix
theory. The matrix (aij)i,j 1,N

is said to be Toeplitz, if aij- aj_ i. Dukhovny [7]
called the chain quasitoeplitz if its transition probabilities Pij possess the property
Pij Pj-i for all >_ J0, where J0 is some fixed integer. Because Property 2o is the
two-dimensional analog of Dukhovny’s definition, the term "two-dimensional quasito-
eplitz Markov chain" was introduced.

We prefer to use term "two- (three-, multi-) dimensional quasitoeplitz Markov
chain" instead of the traditional term "M/G/1 type Markov chain," because our
paper is devoted merely to quasitoeplitz Markov chains of different dimensionality.

As a natural generalization of two-dimensional quasitoeplitz Markov chains,
Lucantoni and Nests [18] introduced a three-dimensional quasitoeplitz Markov chain.
In [18], one finite component of the chain represented the state of a BMAP-directing
process. The second finite component represented a current state of a semi-Marko-
vian process, which governed the service time distributions of consecutive customers.
When analyzing such a Markov chain, Lucantoni and Nests [18] offered a unified
mathematical treatment and generalization of many classical results. Later on, F.
Machihara [19] generalized the system in [18] to the case with the removable server
and semi-Markovian control of vacations.

In this paper, we generalize the three-dimensional chains studied by Lucantoni
and Nests [18] and Machihara [19] in two different ways.

The first one is the following. Lucantoni and Nests [18] introduced a three-di-
mensional quasitoeplitz Markov chain, mainly for investigating the BMAP/SM/1
queue. They rigorously described the finite components as it is indicated above and
the finite components were supposed to be mutually independent. Also, the compon-
ent describing the service process, was independent of the queue length. In our

model, we do not make any assumptions on independence of finite components. In
addition, we allow both of them to depend on the queue length. This generalization
is essential. E.g., the queueing models which we consider in Sections 6 and 7, illus-
trate the power of generalized Markov chains, but they cannot be embedded in the
model of Lucantoni and Nests [18]. However, they are successfully investigated in
terms of multi-dimensional Markov chains, which are introduced in Section 2.

The second way to generalize the chains in [18, 19] consists of increasing the di-
mensionality of the quasitoeplitz Markov chain. We consider an M-dimensional
quasitoeplitz Markov chain, which has one of denumerable and M- 1 finite compon-
ents. In Section 6, we see that the chains of dimensionality M > 3 describe the behav-
ior of quite practical queueing systems. A pertinent queueing system, previously stud-
ied by Dudin and Klimenok [4], operates in synchronous random environment. It im-
plements the performance evaluation of an ISDN (Integrated Service Digital Net-
works) channel with package switching/circuit switching hybrid adaptive communica-
tion protocol. The authors in [4] used quasitoeplitz Markov chains for the analysis of
the system. The introduction of the additional finite component in Section 6 is moti
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vated by the presence of non-Poisson flows in the ISDN (see, e.g., Comb [2]). The
third finite component reflects the possibility of exploiting the ISDN channel for trans-
mitting the non-priority flows of data, when the channel becomes idle.

It should be mentioned that F. Machihara [19] exploited the three-dimensional
Markov chain for studying an PH/SM/1 model with vacations. He assumes that the
durations of vacations are controlled by some auxiliary semi-Markov process. In addi-
tion, he assumes that the state of this semi-Markov process upon the completion of
each busy period equals the state of the semi-Markov process, which governs service
time distributions. Normally, one should have considered a four-dimensional quasito-
eplitz Markov chain. One finite component of this chain controls the BMAP-input,
the second component runs service, and the third one governs the vacations. Such a
model can be investigated by using Markov chains introduced in Section 2.

Note that multi-dimensional Markov chains can be investigated by reducing them
to two-dimensional Markov chains. But in our opinion, it is more preferable to study
the chains of actual dimensionality. When each finite component has some physical
sense, such approach allows one to obtain results in a closed analytical form (see, e.g.,
Sections 6 and 7).

The rest of the paper is organized as follows. In Section 2, we introduce the
notion of a multi-dimensional quasitoeplitz Markov chain. In Section 3, a sufficient
condition for the existence of the stationary distribution is established and its physi-
cal sense is explained. In Section 4, we derive a matrix functional equation for a vec-

tor generating function. In Section 5, we outline the algorithm for solving this equa-
tion. In Section 6, we apply the results for multi-dimensional Markov chains to an
unreliable model of a BMAP/G/1 type, which operates in a synchronous Markovian
random environment. In Section 7, we generalize the model of Dudin and Klimenok
[5] (the system with passive servers) to the case of a BMAP-input and removable ser-

ver.

2. Definition of Multi-Dimensional Quasitoeplitz Markov Chain

(1) r(2), (M)}, n > 1 n 0 1, 2, r(m)We consider the Markov chain {in, rn n "",rn n

O, 1,2,...,Win, m 1, M.
Describe the behavior of this chain in terms of random walk.
Let n be greater than zero. Then

in+ 1 =in--l+n, n>_ 1, (2.1)
where the random variable n-((1) r(m) is defined by the following conditional
probabilities: rn n

P{n- l’r(nl; 1 --/,,(1),...,

Yl(r(1) r(M);/,(1) u(M)) > 0 r(m) 1
(m) O, Wm m 1, M

Let n be equal to zero. Then

in + tin, rt

_
1, (2.2)

where the random variable ln l]r(1) r(M)h is defined by the conditional probabili-
ties:
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(1)+ /(1) p(M) /](M) (1)P n 1, rn 1 ’" n + rn rn

Vl(r(1),..., r(M); v(1),..., v(M)), >_ 0, r(m), v(m) O, Wm, m 1, M.

Introduce the sequence of matrices

yl(r(1),..., r(M- 1); v(1 ),..., v(M- 1))

(Yl(r(1)’"" "’ r(M); v(1)’ v(M)))r(M), v(M) O, WM

Vl(r(1),...,r(M- 1); v(1),..., v(M 1))

(Vl(r(1),...,r(i);(1),...,(i)))r(i),v(i) O,Wi

Yl(r(1);l(1)) (Yl(r(1),r(2);p(1) v(2)))r(21,(1-o,w
Ul(r(i);12(1) (Ul(r(1),r(2);l(1) /](2)))r(1,(1 -o,w

Yl- (Yl(r(1);v(1)))r(1), v(1) O,W1

Vl- (Vl(r(1);v(1)))r(l),v(1) 0, W1

and the matrix generating functions:

Y(z) zlrl, v(z) zlVl, z < 1.
I=0 1=0

()The matrices Y(z)and V(z)define the behavior of Markov chain {in, rn ,...,
r(nM)} completely.

We suppose that the latter is irreducible. Note that it does not imply the irreduc-
ibility of both matrices Y(z), V(z).

(1), (M)) is aperiodic.Suppose also that the chain {in, rn rn
Because the dynamics of component n is described by equations (2.1) and (2.2),

(1) r(nM)} is indeed quasitoeplitzit is evident that the chain {zn, rn
Since this definition of quasitoeplitz multi-dimensional Markov chain is rather

general and formal, to make easier an application of these chains to the queueing
models we should give some physical interpretation to the components of the chain

(1){in, rn
Among other things, the one-dimensional quasitoeplitz Markov chain {in} n

_
1,

describes the queue length in the ordinary M/G/1 queue, the M/G/1 queue with
start-ups, and in M/G/1 vacation models.

(1)}, n

_
1, describes the queueing process of theThe two-dimensional chain {in, rn

BMAP/G/1 queue [6], the M/G/ queue in synchronous random environment [4],
and the system with passive servers [5].

Let M- 2 and n be a sequence of embedded epochs for some queueing model,
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e.g., service completion epochs, n >_ 1.
The component n could be interpreted as a queue length at the moment n. We

call n the principal component of the Markov chain.
The component r(n1) could be interpreted as a system operation mode after the

epoch tn. It controls the distance between the epochs n + 1 and tn and the behavior
of the component r(n2).

The component r(n2) could be interpreted as a state of directing process of BMAP-
input into the system.

So, the triple {in, r (1),n rn(2)} represents the queue length, the system operation
mode, and the state of directing process at the nth embedded epoch, n > 1.

(1), (2)} with mutually indepen-dent compon-The three-dimensional chain {in, rn rn(1) and r(n2) describes the BMAP/SM/1-type model of Lucantoni and Neuts [18]ents rn
and the model of Machihara [19].

For M > 2, the additional finite components could be interpreted as a directing
process of BMAP-streams of breakdowns, negative customers, high priority custom-
ers; a semi-Markovian process, which governs vacation times, repair times, service
times of negative, high priority, low priority customers; the number or customers serv-

ed in succession under the K-limited discipline of service or vacations, and so on.

Rmark: All results of this paper could be easily extended to the case when the
principal component n has a special behavior not only in state 0 but also in states
1,...,j0, J0-> 1.

Denote

7r(i, r(1) ., r(M)) -nlirnP{in -i,r(n1) r(1), r(nM) r(M)},

>_ O, r(m) O,Wm, m l,M,

ff(i,r(1),...,r(M-1)) (Tr(i,r(1),...,r(M-1),O),

r(i,r(1) r(/-1),l) 7r(i r(1) r(M-l) WM)

(2.3)

(i,r(1)) ((i,r(1),O),(i,r(),l),...,(i,r(1),W2)),

f(i) ((i, 0), Y(i, 1),..., Y(i, W1)),

I(z) E (i)zi’ z < 1,
--0 M

E is an identity matrix of dimension K1 I-[ (Wl-t- 1), 1 is a Kl-dimension column-
I-1

vector (1,..., 1)T; T is the symbol of transposition.
At first we examine a condition of existence of limits (2.3).

3. Condition for Stationary Distribution Existence

r(1)In this section, we derive sufficient conditions for the Markov chain {z,
(Mrn )}, n _> 1, to have a stationary distribution. Theorems 1 and 2 give these condi-
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tions in terms of a matrix-valued generating function determined by the transitions of
the Markov chains. The analogous conditions have been obtained in Gail et al. [8, 9]
and Dudin and Klimenok [5] for the two-dimensional chains (the case M 1 in the
above notations). To obtain necessary and sufficient steady-state conditions, in [8, 9]
a system of linear algebraic equations for boundary probabilities were examined. The
coefficients of the system depend not only on the transition probabilities of the chain
but also on the singularities of matrix zE-Y(z) in the unit disk. The method [9]
allows us to get the general mathematical result for the two-dimensional chains, but
it is rather complicated.

The alternative approach is applied in [5] to obtain a sufficient condition for the
steady-state probabilities of a specific chain. This approach exploits the
generalization of Moustafa’s theorem [20] and the properties of the transition
probabilities of the chain. To prove Theorems 1 and 2 that follow, we use an

approach of [5]. In principle, it is possible to derive the statements of Theorems 1
and 2 from the results of Gail et al. [9]. Nevertheless, we present our proof because of
its simplicity and applicability to the analysis of a more general class of chains than
quasitoeplitz.

In Corollaries 1 and 2 we interpret abstract-form conditions (3.1), (3.2) in terms
of real physical values.

Let us first assume that the matrix Y(z) is irreducible. Then the following
assertion is valid.

(1)Theorem 1: The steady state distribution of the Markov chains {in, rnr(nM)}, n >_ 1, exists if
(det(zE- Y(z))))’lz > 0 (3.1)

and
1TV’(z) lz 1 < oc. (3.2)

To prove Theorem 1, we will apply Moustafa’s theorem [20]. We state an analog
of this theorem for our case.

Sufficient conditions for the Markov chain {in, rn n

_
1 to have a

stationary distribution are formulated as follows:
the chain is irreducible and aperiodic;
there exist an > 0, a positive integer J0, and a set of nonnegative K1-
dimensional column vectors Xi, >_ 0 such that the following inequalities
hold true:

PjiXi- Xj <_ 1, j > Jo, (3.3)
--0

PjiXi < oc, j <_ Jo" (3.4)
i=0

Here Pji,

_
O, is a K1 x K1 matrix defined as follows. The entries of matrix

(riM (1) (M)) orderedPji are the transition probabilities P(j,rn(1), ,r )),(i ’n ",’n
() ,(M) () (M)according to the lexicographic order of their indices rn ;n

Let
Xi-(i/l)l/, i_>0, (3.5)
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where is some K1-dimensional real column vector.
We show that there is a set of vectors Xi, > 0 of form (3.5) for which conditions

(3.3) of Moustafa’s theorem are valid. Taking into account the definition of the
chain given in Section 2, we can see that, for j > 0,

J O, if < j- 1,
Pji

Yi-j+l, ifi>_j-1.
(3.6)

Substituting X from (3.5) into (3.3) and taking into account (3.6), we obtain
equalities

EPjiXi-Xj- 1YI-E 1+ YI -E , J>Jo" (3.7)
=0 I=0 I--0

With the notation of Section 2,

E PjiXi- xj (Y(z)- zE)’lz 11 q-(Y(1)- E)G,
i=0

J > J0" (3.8)

Using (3.8), we obtain the following inequalities, which are equivalent to (3.3)"

(E Y(1)) > (Y(z)- zE)’l 11 + el. (3.9)

Let us verify that there exist an > 0 and a vector such that inequalities (3.9)
hold when condition (3.1) of Theorem 1 is satisfied. Consider the system of linear
algebraic equations

(E- Y(1)) (Y(z)- zE)’l 11 + g. (3.10)

System (3.10) is obtained from (3.9) when the inequality sign is replaced by
equality and vector 1 is replaced with some vector g- (1,2,...,g)T n > 0,
n [1" Find the condition under which system (3.10) has a solution. 1

Since the matrix Y(1) is irreducible and stochastic, the rank of matrix E- Y(1)
is equal to K1 1 (see, e.g. [1, 11]). Let Dn(’g ), n 1,K1, be the determinant of the
matrix obtained by replacing the nth column of matrix E- Y(1) with the column of
the system (3.10) constant terms. System (3.10) has a solution if and only if
Dn(g) 0, n 1,K1. Expanding determinants D,(g) along the entries of the nth
column we get the system of linear algebraic equations for entries of the vector g:

/XTg AT(zE- Y(z))’ --11’ rt 1, 2("
1. (3.11)

Here A
n is the column vector of the cofactors of the entries of nth column of the

determinant det(E-Y(1)). It is easy to see that the matrix of coefficients at un-

knowns in (3.11) is the adjoint of matrix E- Y(1). It can be shown that all columns
of matrix Adj(E-Y(1)) are right null vectors (vector x is the right null vector of
matrix A iff Ax 0) of matrix E-Y(1). 1 is the right null vector of this matrix
also. Since 1 is an eigenvalue of the matrix Y(1) of multiplicity one, according to
[13], the dimension of the right null space of E-Y(1) is 1. It implies that vector 1
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and all columns (Adj(E-Y(1))(m), m- 1,K1, of matrix Adj(E-Y(1)) are collin-
ear, i.e.,

(Adj(E- Y(1))(,)- c,, m- ,K1. (3.12)
It is known (see, e.g., [1]) that all cofactors of det(E-Y(1)) are nonnegative.

Then cm >_ 0 in (3.12). It can be shown that there is at least one positive cofactor (co-
inciding with the principal (K1 1) x (K1 1) minor of det(E Y(1))). Then there
is at least one positive coefficient cm in (3.12).

The right-hand side of each equation (3.11) is equal to (det(zE-Y(z)))’ z 1"
To verify this fact, we add columns from 1 to n-1, and from n + 1 to K1 of
det(zE- Y(z)) to the nth column, expand the obtained determinant along the entries
of the nth column and differentiate it at point z 1.

Consequently, system (3.11) becomes equivalent to one equation

K1

E Cmm -(det(zE- Y(z)))’lz 1"
m=l

If the right-hand side of the last equation is greater than zero, i.e.,

det(zE- Y(z))’ I, 1 > 0, (3.13)
then there are positive roots ), m 1, K1, that satisfy this equation. If g is equal

0to (1 (01 01 (1g (1 ,..., system (3.10)has an infinite set {} of solutions. Then
,’" , (o) o) , , (o)subst,tut,ng = 01< <m,n{1

,..., }, and = {} ,,n (3.9) we. 1 , _,
validate the corresponding Inequality. When X (z + 1)1 +a _> 0, then
inequalities (3.3), which are equivalent to (3.9), hold also true for any j > 0. Since
under the conditions of Moustafa’s theorem, vectors Xi, >_ O, should be nonnegative,
we can take the required set of vectors X, _> 0, in the form

0

(i+1)1+*, i>_ 30,’*

*"* * I}.where 30 > max{It’ll,..., laK1In such a way we have demonstrated that there are a positive s- e and a set of
nonnegative vectors X Xi, >_ O, such that, for any j > 30, inequalities (3.3) are
valid. It can be easily proven that having inequalities (3.2) hold true and X -X],

_> 0, J0 J;, implies the versity of conditions (3.4) of Moustafa’s theorem. V1
The conditions (3.1), (3.2) can be interpreted in terms of the one-step increment

of the denumerable component of the chain under consideration. Such interpretation
is given by the following statement.

Corollary 1: Inequality (3.1) is equivalent to the inequality

E[(n] < 1

and inequality (3.2) is equivalent to the inequality

It would also be noteworthy to interpret the steady state condition (3.1) in terms
of traffic of a q.ueueing .system whose evaluation at embedded epochs is described by

r(1), r(M), n > 1. In Section 2, one such queueing model for thethe chain {i,,, n n J,

case M 2 has already been presented. In the general case, we can use the chain {in,
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() (Mrn ,...,rn )}, n_> 1, for modeling the behavior of a queue operating in a multi-di-
mensional random environment. Here n can be interpreted as the queue length and

(1) r(nM)) as the state of the random environment upon the nth set-the vector (rn
vice completion. The queue length process is described by equations (2.1) and (2.2).
The random environment process {r(nl),..., r(m)}, n >_ 1, depends on the queue length.
The environment transition matrix is V(1) or Y(1)dependent on whether or not the
queue is empty.

Now we consider a queueing system that differs from the above one by its

(1) ,r(nM)) Namely, the queue length process in such abehavior at state (O,rn
queueing system is described by equations (2.1) and (2.2), where r/n (n" The
random environment process does not depend on the queue length. Its transition
matrix is Y(1). It appears that inequality (3.1) means that the intensity traffic of
the system under consideration is less than 1. More formally, let P and p be K1-
dimensional column vectors. The entries of vector P are steady state probabilities

{Pr(1) r(m)} of the random environment {r),...,r(m)}, n > 1, which are listed

according to lexicographic order of their indices r(1),..., r(m). The entries of vector p

are conditional traffic intensities {Pr(1) r(M) } ordered in the same way. The entry

P (1) r(M) of vector p is the expected number of customers arriving during the

service period, which follows a service completion epoch, when environment is in state
(r(1),...,r(m)). Then the traffic intensity of the system under consideration is pTp
and the following statement is valid.

Corollary 2: Inequality (3.1) is equivalent to the inequality

pTp<I. (3.14)
Note that the stability condition (3.14) coincides with the stability condition,

which is presented in [18, 19] for the special three-dimensional Markov chain describ-
ing a BMAP/SM/1 queue. In this special case, traffic intensity pTp coincides with
the classical notion of the traffic intensity as a ratio A/# of average arrival and ser-
vice intensities. In general, the intensities A and # can not be separated in stability
condition (3.14).

Now we suppose that matrix Y(z)is reducible. In this case, Y(z) can be reprec
sented in the normal form of the reducible matrix (see, e.g., [11])

Y(z)

Y(z)
o

o

Y + 1,1(z) Y

Y()

0

Y2(z)

o

+ ,()

Y(z)

o 0

o o

() o

m+l,m(z) Vm+l(z)

Y(z) z,+(z)

o
o

Y(z)

(3.15)
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where Yl(z),...,Ys(z) are irreducible matrices of sizes rl,...,rs, respectively, and in
each row Yn, l(Z),...,Yn, n_l(Z), n-m+l,...,s, there is at least one nonzero
matrix.

The sufficient steady state conditions in this case are specified by the following
theorem.

Theorem 2: /f matrix Y(z) has form (3.15), the sufficient conditions for exist-
(1) r(nM)}, n > l areence of the stationary distribution of the Markov chain {in, rn ,...,

as follows:
(det(zEn- Yn(z)))’ z > O, n 1,m, (3.16)

where En is the identity matrix of dimension rn rn and

1TV’(z) z 11 <

The proof of the theorem does not differ from that of Theorem 1 up to
examination of system (3.10). From then on, consider the system of linear algebraic
equations (3.10) when matrix Y(z) has form (3.15). Represent vectors c,, 1 in the
form

(IT,.. -T -T T, 1T "’,gm,m+l))m’(m 4- 1)) - (- -T T,

1--(llT,...,1Tm, lm+l))T,

where the dimension of each of the vectors n, n, and 1n is equal to rn, n- 1,m
and the dimension of vectors (m + 1)’ (m + 1)’ and l(m 4-1) is equal to rm 4- 1 +
rm 4- 2 -... / rs.

Define

Y(,+)(z)

z.+,,(z)
Y, + .(z)

Y.,(z)

Ym + ,rn(z) Ym + 1(z) 0 0

Y. + ,.(z) Y. + ,. + (z)Y. + :(z) o

Y s, m(z) Y s, m+l(z) Vs, m+2(z) Ys(z)

E(m+l

Em+ 0 0

0 Em+ 2 0

0 0 Es

Under these notations, system (3.10) can be rewritten as

(En Yn(1))n (Yn(z)- zE,)’ z 11 + En, n 1,m,

(E(m 4-1)- Y(m + 1)(1)) (Y(, + 1)(z)- zE(m 4-1))’1 z 11 -- g(m 4-1)"

(3.17)

(3.18)
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The analysis of the nth system (3.17), n- 1,m, does not differ from that of system
(3.10). As a result of this analysis we get the following proposition.

-(0) n-1 msuchIf inequalities (3.16) are valid, then there are positive vectors cn
that system (3.17) has an infinite set of solutions. Let ), n- 1, rn be one of this
solutions.

Substituting -(0) n 1,rn into (3 18) we obtain the system of linear algebraic
equations for entries of vector (m + 1)"

(E(m + 1)- Y(m + 1)(1))(O)T"’"(Om)T’m + 1))T

)’ l+g(m--(Y(m+l)(z) ZE(m+l) z=l +1)" (3.19)

The determinant of system (3.19) is

A(m + 1)(1)

Em+l-Ym+l(1 0

-Ym+2, m+l(1) Em+2-Ym+2(1)

-Ys, m+l(1) -Ys, m+2(1) Es-Ys(1)

and it can be represented in the form

A(m + 1) (1)
r--m+1

det(Er-Yr(1)). (3.20)

It can be seen from (3.15) that all matrices Yr(1), r= rn+ 1,s, are sub-
stochastic. So, each determinant in the right side of (3.20) is positive (see e.g., [1,
11]) and therefore A(m + 1)(1)> 0. Since the determinant of system (3.19) is not
equal to zero, this system has a unique solution. In particular, it has a solution, say

+ 1), if g(m + 1) is equal to some positive vector g
m + 1)" In such a way we have

shown that having inequalities (3.16) valid and g equal to g(0)_ (-O)T,...,)T,
-(O)T
im+ 1))T, system (3.17), (3.18), and equivalent system (3.10) has an infinite set of

solutions.
The rest of the theorem proof is rendered analogously to the proof of Theorem 1

for the case of irreducible matrix Y(z).

4. Stationary Distribution of Markov Chain

Let conditions (3.1), (3.2), (3.15) be met.
Theorem 3: The vector generating function II(z) satisfies the following equation:

II(z)(l/(z)- zE) II(0)(Y(z)- zV(z)). (4.1)
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Proof: Using the formula of total probability we derive the following system of
linear algebraic equations for the stationary probabilities of the Markov chain:

7r(/, p(1),..., p(M))
W1 WM

E E 7(0, r(1),...,r(M))vl(r(1),...,r(M);](1),...,](M))
r(1)=Or(M)-0

/+1 W1 WM
(r(1). r(M);(1). (M)),-- E E E 7r(i,r (1) r(M))Yl-i+l

1 r(1) or(M) 0

r(m)-O Wm m-1 M.l>_O,

It can be shown that (4.2) is equivalent to
/+1

(1) (O)V + E (i)Yl + 1’ O. (4.3)
i=1

Applying to (4.3) the z-transform we get (4.1). Theorem 3 is proved. E!
It is easy to see that equation (4.1) is a blocking matrix analog of the famous

Pollaczek-Khinchin formula for the stationary distribution generating function of the
M/G/ 1 queueing system.

Equation (4.1) is the matrix linear functional equation for the unknown vector-
function II(z).

5. Solving the Matrix Equation

The blocking structure of matrices Y(z) and V(z) allows us to derive tractable
analytical formulas for the vector generating function I(z) in many special case; see,
e.g., Sections 6 and 7. But the algorithm for solving equation (4.1) is practically the
same as the algorithm for studying a two-dimensional quasitoeplitz Markov chain
(see, e.g., Dudin and Klimenok [4], Gaff et al. [9]) from the computational point of
view.

So, we describe this algorithm rather briefly. At first, we need some preliminary
derivation.

We are interested in calculation of first N factorial moments, 1(i) of the Markov
chain stationary distribution:

dz z-- 1

In this case, we should require the existence of derivatives

y(i)_ d
dz- i\y(z)][z__ l,

d_(. i- O,N+I.V() dz"V(z))lz 1’
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The problem of calculating matrices y(i) and V(i), >_ 0 is rather complicated.
Corresponding results for =0,1,2 with some additional assumptions could be
obtained following Nishimura and Sato [23].

By sequential differentiating equation (4.1) at the point z 1, we have the
following relations:

1-]()(Y(1)- E)I I(0)(Y(1)- V(1)- V())I, (5.1)

I(m)(Y(1)- E)I I(0)((Y(m + 1)_ V(m + 1))/(m + 1) v(m))l

m-1

E m+lCm+11i(i)y(m + --i)1, m 1, N.
-----0

Following Klimenok [14], we can verify that the equation

det(Y(z)- zE) 0 (5.3)

has a simple root z- 1 and K1- 1 roots inside the unit disk when the matrix Y(z) is
(1) (M)irreducible, conditions (3.1), (3.2) are satisfied, and there exist such l, r r

(1) (M) that y [r(1) r(M).p(1) p(M) y Jr(l) r(M).(1)
(M’))0. Let these

l ,’", l+1 ,’",

conditions be fulfilled. Denote the roots in the unit disk by zk
K

with the corresponding multiplicities nk, nl >_ 1, k 1, K, nl- K1 1.
k=l

From (4.1) and (5.3), it follows that the vector generating function I(z)is
analytic in the unit disk if and only if the entries of vector II(0) satisfy the following
system of linear algebraic equations:

dnII(0)--azn {(Y(zk)- ZkV(Zk))Adj(Y(zk)- ZkE))T1 0, (5.4)

n O,nk- 1,k 1,K,’1 (1,0,...,0).

System (5.4) is a system of K1 -1 equations for K1 entries of the unknown vector
I(0); the rank of the system is K1 -1. The additional inhomogeneous equation for
the entries of vector l(0) follows from the normalization condition. To derive this

equation, we perform the following. System (4.1) at point z- 1 has the form"

l()(Y()- E) I(0)(Y()- V()). (5.5)

Replace any equation of system (5.5(0b equation (5.1)... It is easy to verify that the
matrix under the unknown vector has the rank nl" Solving this system, we

obtain the expression
l() I(0)H, (5.6)

where H is a known matrix.
Now, from the normalization condition we have

1 I()l I(O)H1. (5.7)

Solving system (5.4), (5.7), we get the value of vector 1(0.
From (5.6), we obtain the value of the vector 1()= II(1). To calculate the
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value of vector I’(1) we substitute vector I](0) into equation (4.1), differentiate this
equation, and let z 1. We g the system of linear algebraic equations for the
components of the vector 1(1) II’(1). The rank of the matrix of the system is equal
to K1 -1. Replace one equation of this system by equation (5.2) for m- 1. Now
the matrix of the system has rank K1 and the system has the unique solution 1’(1).
The mean value L of the principal component of Markov chain is defined as

L- II’(1)l. (5.8)

To find the values of variance and the moments of higher order of the principal
component we solve sequentially the systems oi" linear algebraic equations for the
entries of vectors l(m), m > 2, which are obtained by sequential differentiating (4.1)
at point z- 1 and replacing one equation by a corresponding equation from (5.2).

Unrehable Queueing System BMAP/G/1 in Synchronous tLdom
Environment

We consider a single server queueing system with an infinite buffer. We assume that
the system operates in a synchronous random environment. The random
environment is the process r1), which is described as follows. The state space of this
process is {0,...,W1}. The process r1) sojourns at the state r during a service of r
customers. Suppose that the random variable r has the geometric distribution with
parameter .qr, 0 < qr < 1, r 0, W1. After the sojourn time at the state r expires, the
process r1) jum-s to a state r’ with probability

w

Pr, r" Pr, r’ >- 0, E Pr, r’ 1, r, r’ O, W1.

When the process r1) arrives at state r, the service time is characterized by the
distribution function Br(t with the Laplace-Stieltjes transform fir(S). The arrival
process is the BMAP with the state space {0, 1,..., W2} of directing process r2) and
matrix generating function Dr(z), r- 0, W1. For the description of BMAP input,
the reader is referred to Lucantoni [16, 17]. Note that

Dr(z)- EDr)zk’ [zl <1,
k=0

where the (u,u’)-th entry of the matrix Dr), k > 1, is the transition rate of the pro-
cess r2) from state u to state u’ inducing a batch arrival of size k, when the random
environment r1) sojourns at the state r., Non-diagonal entries of the matrix D(or) cor-
respond to the transitions of process r2) from one state into another one without
generating customers. The diagonal entries of the matrix D(or) are the intensities of
the process r2)’s sojourn times at the corresponding states multiplied by 1.

Let the server be unreliable. When the process r1) enters the state r, the MAP-
input of breakdowns takes place. This input is characterized by the directing process

rl3) with state space {0,1,. W3} and matrix generating function Hr(z)=
() ()H0 + H1 z. The system s not affected by the breakdowns, ff t s busy wth the ser-

vice of a customer or the repairing the server. So, the server can fail only when he is
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idle. The broken server is being repaired during the time characterized by the
distribution function Gr(t), r 0, W1.

Note that the breakdowns of the server can also be interpreted as a flow of low-
priority customers. The customers from this low-priority stream would enter service
only if the server is idle upon arrival epochs. Consequently, Gr(t is interpreted as

the service time of low-priority customers.
In the case when the corresponding arrival processes are just Poisson processes

and the server is reliable, this model was investigated by Dudin and Klimenok [4].
They found the stationary queue distribution for arbitrary and embedded epochs and
the sojourn time distribution. The partial case of this model was early investigated
by Gelenbe and Rosenberg [12] by approximate methods.

So, this model is the generalization of model [4] to the case of an unreliable

BMAP/G/1. At the same time, it is the generalization of the BMAP/G/1 model [16]
to the case of the randomly varying service and input rate and an unreliable server.

Both models, [4] and [16], were analyzed by exploiting the two-dimensional quasito-
eplitz Markov chains. To investigate the generalized model, we are compelled to use
the results for the four-dimensional quasitoeplitz Markov chains, which were intro-
duced in previous sections.

For this model, the principal component of the Markov chain is the queue length
in the queueing system at the epo.ch tn + O, where tn is the nth customer service com-

pletion epoch. The component r1) at the epoch tn is the state of the random environ-
(2) is the state of the directing process of thement at tn-O. The component rn

BMAP-input at the epoch n. The component r(n3) is the state of the directing pro-
cess of the MAP-input of breakdowns at the epoch n. We suppose that the processesr2) and r3) remain their current states at the moment of the transition of process

rl).
() r()Analyzing the behavior of Markov chain {in, rn n rn )}, we see that this chain

satisfies the definition of a multi-dimensional quasitoeplitz Markov chain (dimensiona-
lity is equal to four). So, the vector generating function l(z) of this chain satisfies
equation (4.1). Our problem now is just to reduce matrices Y(z) and V(z)for this
chain, to a tractable form.

According to description of the queueing system, it is easy to verify that the tran-

sition probabilities Yl(r(1), r(2), r(3); v(1), v(2), u(a)) are defined as follows:

Yl(r(1 ), r(2), r(3); (1), b,(2), b,(3))

(qr(1)r(1),v(1)-[-(1--qr(1))Pr(1),u(1))(tlu(1)))(r(2),u(2)),(r(3),u(3)), (6.1)

where 5 is Kronecker’s symbol, p are the entries of the transition probability

matrix P of the random environment rl1), and /lu(1)))(r(2),u(2)),(r(3),u(3))is the

(r(3),u(3))-th entry of the (r(2),u(2))-th block of K2xK2 matrix Ru(1)), with
3

K2 nII= 2(Win -- 1). The matrix R}u(1)) is the coefficient in the following matrix ex-

pansion ffE RIv(1))zl eDv(1)(z)t H
( e (1) dB(l)(t)

l=0 0 (6.2)
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defv(1)(z v(i) Dv(1)(z H.(1)).
Here (R) stands for the Kronecker product, (R) is the symbol of the Kronecker sum [1],
and Uu(1 Hu(1)(1).

Rewriting formula (6.1) in the block matrix form we arrive at the following
expression for the matrix generating function Y(z)"

Here
Y(z)- Sdiag{3r(z),r-O, W1}. (6.3)

where
S {diag{qr, r 0, Wl} + diag{1-qr, r 0, W1}P} (R) EK2

and

diag{ar, r- 0, W1) denotes the diagonal matrix with diagonal entries ar,
diag{Ar, r- O, W1} denotes the blocking diagonal matrix with diagonal blocks
Ar

EK is an identity matrix of dimension K2 K2.2

To obtain an explicit formula for matrix V(z) we will go over some preliminaries.
The beginning of a busy period is either a moment of a batch arrival to the idle

system with the server in good working order or a moment of repair comp)etion if cu.s-
tomers arrive during the repair time. So, to find the probabilities Vl(r(1),r(2),r(3);
v(1),u(2),v(3)), we have to calculate the joint distrib,tion of the number of customers
and the states of the processes r(1), r (2), r (3) upon the beginning of a busy period..

r)Introduce the K2 x K2 matrix generating functions (I)((z), whose (r(3),v(3))-th
element of the (r(2),(2))-th block has the following probabilistic sense. Let the ran-

dom environment rt(1 stays at the state r during the time interval between some
busy period completion and the beginning of the next busy period. We target the
generating function of the number of customers in the system at the end of this inter-
val, given that the processes rj) make transitions from state r(j) to state (J) during
this interval, j- 2, 3.

Lemma 1" The matrix generating functions 4P(r)(z),
formula

0 0

r O, W1, satisfy the

(R)eHrtdGr(t)l-
(R)eHr)tdt (6.4)

+
0 0

r-0, W1.
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The proof of (6.4) is based on the matrix analog of the well-known method of
catastrophes (method of collective marks) (see, e.g., Klimov [15]).

In the case of the Poisson input of breakdowns, this assertion follows from the
lemma in Dudin [3].

Taking into account that system’s behavior during the busy period starting with
k customers present in the system is the same as the system behavior after the usual
service completion epoch, when k customers are present in the system, it can be
shown that

where
V(z) 1-2S((z)diag{ r(z), r O, Wl}

(I)(z) diag{(I)(r)(z), r 0, W1 }. (6.6)

So, we found the explicit form of matrices Y(z) and V(z). Theorem 3 yields the
following.

Theorem 4: The vector qenerating function I(z) of the stationary distribution of
(1Markov chain {in, rn ), r(2)n r(-3)’nJ, n _> 1, which describes the behavior of an unreliable

BMAP/G/1 system in synchronous random environment, satisfies the equation

I(z)(Y(z) zE) I(O)S(E Op(z))diag{r(Z),r 0, W1} (6.7)

where the matrices Y..(z), O(z) are defined by formulas (6.3), (6.4), (6.6).
The matrices Y(), V(i), which are used in the algorithm for solving (6.7), are de-

fined here as follows:

y(i) Sdiag{ B!i),r O, W1},i >_ O, (6.8)

where matrices B!i) are the corresponding K2 x K2 matrices in the expansion of the
matrix Laplace-Stieltjes transform r(Z) at the point z 1,

V(i) Ediag{(!i-l+l)B!l), r 0, W1} i_> 0, (6.9)
/=0

and the matrices (I)i) are the K2 x K2 matrices in the expansion of the matrices
(I)(r)(z) at the point z- 1.

Thus, we reduced the problem of calculating the stationary distribution of the
given queueing system to solving equation (6.7). To solve it we should implement
the algorithm described in Section 5.

7. A Queueing System with Passive Servers and a BMAP

A queueing system with passive servers was introduced in Dudin and Klimenok [5] as

an adequate mathematical model for many processes in telecommunications, data
bases, etc., when the service of customers is performed by an active server and a

group of passive servers. As mentioned above, the real traffic in communication
networks is not Poisson, as it is supposed in [5], but it is well described by a BMAP;
see [2]. So it is interesting to generalize the results of [5] to the case of a BMAP-
input. We consider the following model.
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Customers arrive to the system acco’ding to a BMAP. The service of customers
is performed by one active and W1 passive servers. At first, a customer is served by
an active server. If this server is busy upon a batch arrival, the customers from this
batch line up. The waiting room is of infinite capacity. Customers are picked from
the queue according to the first-in-first-out discipline. The service of a customer by
an active server consists of two phases. The durations of each of the rth phases are
independent, identically distributed random variables with a distribution function

Br(x), the Laplace-Stieltjes transform r(S)= f exp(-sx)dBr(x), and finite
0

moments br) xdB,(), k >_ 1, r- 1,2.
0

Upon the completion of the first phase, the passive servers are engaged in service.
Let be the number of passive servers required to process a given customer. Here (
is an integer-valued random variable distributed as qm P{ m}, where

qm >- 0, m 0, W1,
W1

Some passive servers can become idle upon completion of the first phase by the
active server. At this moment, other passive servers may have been processing
customers arrived earlier. If the number of free passive servers is not less than the
number of servers required to process a given customer (this number is a realization
of random variable (), the passive servers begin to process this customer. At the
same time, the second phase of service of this customer by the active server begins. If
the number of available passive servers is insufficient, there are two possible scenarios
of system’s behavior. In the first one, the active server interrupts the service of a
customer and the customer leaves the system unprocessed. The second one is as
follows. The active server waits until the necessary number of passive servers become
free. After that, the second phase of service by the active server is activated. For the
sake of generality, we suppose that the system selects the first variant of behavior
with probability 0 and the second one with probability 1- 0, whenever there is a lack
of passive servers. A passive server, which is switched to a busy state by the active
server, remains at this state during the random time having an expor/ential
distribution with intensity 7. The passive server transfers into a free state without
interference by the active server after this random time expires. We distinguish two
different ways of employment of passive servers. For case a, the period of passive
service begins upon completion of the second phase of service by the active server,
while the case b it begins at the beginning of the second phase of service by the active
server.

In addition to model [5], we suppose that the active server begins vacationing
whenever the queue becomes empty. The server repeats vacations until it finds at
least one customer in the queue at the end of a vacation trip. The successive
vacation trips are i.i.d, random variables with the common distribution W(t) and
finite first moment.

Consider the process {in, r(nl),r(n2)}, where n is the queue length at the epoch
tn +0, tn is the service completion epoch of the nth customer, n >_ O, r(n) is a
number of busy passive servers at n+O, r(n1) =0-W1, and r(n2) is the state of

directing process of the BMAP at tn, r(n2) -O, W2.
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rn,lrY(nZ21}g, the system’s behavior, we can verify that this Markov chain

{in, n _>1 is quasitoeplitz. The matrices Y(z) and V(z) are specified in
accordance with the following lemmas.

Lemma 2: The blocks Y(z,r,r’) of block matrix Y(z) in the above cases a and b
are given as follows"

Case a"

{ I/VI k

Y(z,r,r’) (I)l(Z, r, ] X qm2(Z,] + m,r’)
k 0 rn max{O, r- k}

w1 }+ (1-0) qmgk, Wl_m(Z)2(Z, Wl,r (8.1)
m=W1 +l-k

Case b"

W1

rm=W1 +1

r

Y(z, r, r’) E 01(Z’ , ])
k=O

rain{W1 k, r’}

max{0, r’ k }
qmO2(z,k,r’-m)

+(1-0)
r’

qmtk, W1 rn, }E m(Z)2(Z’ Wl r’-- m)
m=W1 -t-l-k

W

’[- Ol (z’ r’ r’) E qm’ r’ r’ O’ Wl
m W r + 1

where

dPm(Z r, r’) / eD(z)tbr, r’(t)dBm(t)’ rn 1, 2,
0

-/t -r r r’--O Wr,r’ (1--e r

_
r, 1’

k,W1
m(z)

k

i--Wl-m+l
iT(i/E- D(z)) -1

W1-m

_
k

_
Wl, m-O,W1.

The probabilistic nature of function 5 r,(t) and matrices (Pm(Z,r,r’),r,
tk 14@}1. m Z is as follows.

function (r,r,(t) is the probability that a death process with intensity 7
makes a transition from state r to state r’ in t units of time.

The (v, v’)-th entry of matrix apm(Z r, r’) is the generating function of the number
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of customers arriving during a period of time having the distribution function Bm(t),
under the condition that the process {r),r(n2)} makes transition from state {u,r} to
the state {u’, r’} during this period.

The (u,#)-th entry of matrix k, Wl_m(Z is the generating function of the

number of arriving customers while a death process with intensity 7 crosses from the
state k into the state W -m, under the condition that the BMAP directing processr2) goes from state u to state ’.

The validity of Lemma 2 is due to Theorem 3 of [5].
Lemma 3: The matrices Y(z) and Y(z) are related as follows:

V(z) zl-v(z)y(z),

where the block matrix V(z)- (V(z,r,1))r,l=o, W1
i8:

V(z) (E Do) 1( D(z)) Do)), (8.4)

with
(A)- / A(t)(R)e

0

Atdv(t),

A(t)--(Sr, l(t))r,l=O, Wl"
Proof: The blocks V(z, r, r’) of the blocking matrix V(z) are defined as follows:

V(z, r, r’) . V(z, r, 1)Y(z, l, r’), (8.5)
l=r

where the matrices V(z,r,l) have the following probabilistic sense. The (u,u’)-th
entry of the matrix V(z,r,/) is the generating function of the queue length upon the
beginning of a busy period given that the process r1) goes from state r to state and
the process r2) goes from state u to state u’ during a vacation time.

The proof of (8.5) is rendered by using the method of collective marks (see
Klimov [15]). By the same method, expression (8.4) for the matrix V(z) can be
established. I"i

Theorem 6: The vector generating function II(z) of the stationary distribution
for Markov chain i ,r(1),r(2)} satisfies the equation:

fi(z)(Y(z)- V(z))y(z), (8.6)

where the block matrices Y(z), V(z) are defined by formulas (8.1), (8.2), and (8.4).
The proof follows from (4.1).
To solve equation (8.6), we have to implement the general algorithm which is des-

cribed in Section 5.
If we find the factorial moments of distribution with the generating function

II(z), we can calculate various characteristics of the queueing system; e.g., the proba-
bility of the system being empty,

an average queue length L,
P0 II(0)l,
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and so on.
L-II’(1)I,

8. Conclusion

We introduced a class of multi-dimensional quasitoeplitz Markov chains. Such a

chain has one denumerable and several finite components. It is quasitoeplitz with
respect to its denumerable component. Such chains generalize the well-known two-
dimensional M/G/1 type chains introduced by M. Neuts. They also generalize the
three-dimensional Markov chains investigated by M. Neuts and D. Lucantoni [18] and
F. Machihara [19]: in contrast to [18, 19] we allow the finite components to be
dependent.

As a natural extension of results of Neuts [21], Gail et al. [8-10], Dudin and
Klimenok [4-6], in this paper we apply the following results for the multi-dimensional
Markov chains: a sufficient condition (3.1) for the existence of the stationary distribu-
tion, physical interpretation of this condition, matrix linear functional equation (4.1)
for the vector generating function of the stationary distribution of the chain, and an

algorithm for solving equation (4.1). To demonstrate the power of the introduced
and investigated Markov chains we interpret our results in terms of two queueing sys-
tems with BMAP input, which operate in a synchronous random environment. The
results are the straight block-matrix analogs of the corresponding results for a system
with Poisson inputs.
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