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In this paper we consider a Cauchy problem in which is present an evolu-
tion inclusion driven by the Frchet subdifferential O-f of a function

f: R t2 { / c} (f is an open subset of a real separable Hilbert space)
having a p-monotone.subdifferential of order two and a perturbation
F" I x -.P/c(H) with nonempty, closed and convex values.

First we show that the Cauchy problem has a nonempty solution set
which is an R6-set in C(I,H), in particular, compact and acyclic. More-
over, we obtain a Kneser-type theorem. In addition, we establish a contin-
uity result about the solution-multifunction x--S(x). We also produce a

continuous selector for the multifunction x--S(x). As an application of
this result, we obtain the existence of solutions for a periodic problem.
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1. Introduction

The topological property that the solution set of a differential equation is an R-set
in C(I, Rn), I- [0, T], (in particular, nonempty, compact and connected) has been
an object of investigation by many authors. It is known that the solution set of the
Cauchy problem

’() = f(,()).e, on I, (0)= 0,

where f(.,-) is a bounded, continuous function on I xn, is an R-set (see [2]).
This result was extended recently to differential inclusions by C.J. Himmelberg-F.S.
Van Vleck (cf. [13]) for autonomous systems and by F.S. Denlasi-J. Myjak (cf. [10])
for non-autonomous systems. In a recent paper, N.S. Papageorgiou and F. Papalini
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[18] established that the solution set of an evolution inclusion, driven by a time-
dependent subdifferential Op(t,x) and by a convex valued perturbation term F(t,x)
satisfying a continuity hypothesis in the x-variable, is R in C(I,H), where H is a

separable Hilbert space.
The purpose of this paper is to study the mentioned topological property of the

following Cauchy problem for evolution inclusion:

x’ -O-f(x)+ F(t,x), a.e. on I,

x(0)- x0, x0 e dom(f),
(1)

where O-f is the Frfichet subdifferential of a function f:ft-R t2 { + ee} (ft is an

open subset of a real separable Hilbert space) having a p-monotone subdifferential of
order two, while F:IxfPic(H is a multifunction with nonempty, closed and
convex values. About the problem (1), the recent existence theorems obtained in [19]
and in [6] are known. In [19], Papalini also proves that the solution set for the
problem (1) is path-connected. But, we want to observe that a path-connected set
need not be an R set.

In this note, we first prove two existence theorems (cf. Theorem 1 and Theorem 2)
for the problem (1). Moreover, in Section 3, we obtain that the solution set S(Xo) is
a R (cf. Theorem 3) if "f" is a function with the properties:

(i) f has a o-monotone subdifferential of order two;
(ii) r > 0 such that clB(xo, r) C f and the set L(c)= {x E C1B(xo, r):

Ix II 2 + f(x) <_ c} is compt in H, Vc E R,
(iii) k , > 0 such that f(x) <_ k, Vx dom(f)C B(Xo, Y );
(iv) N>0 and r’>0 such that Ilgrad-f(x) ll <-N, VxGdom(O-f) fl

and F: I x ft---PIc(H is a multifunction such that
(j) Vx ft, tF(t,x) is measurable;
(jj)" Vt I, x---,F(t,x) is (u.s.C.)m on ft;
(jjj) 37EL2(I,R+):IIF(t,x)II-sup{llzll’zF(t,x)}<_7(t), a.e. in I,

Vx E f.
As an immediate consequence of Theorem 3, we deduce a Kneser-type theorem (cf.
Corollary 1). In addition, if F: I x ft---,Pic(H is a multifunction satisfying conditions
(j), (jjj) and the following hypothesis:

(jj) for t e I, a r(t,. is s qu nti ny  os d in a x Hm stands for
the Hilbert space H equipped with the weak topology),

we establish a continuity result about the solution-multifunction x---.S(x) (cf. Theor-
em 4). Moreover, in order to generate a continuous selector for this solution-multi-
function, we are forced to strengthen the hypothesis (jj) on the orientor field "F" (cf.
Theorem 5) with the following condition:

(jj)’ K or_ LI(I,R +):h(F(t,x),F(t,y)) <_ k(t)II x- y II, a.e. in I, Vx, y a.
Finally, we present an application of these results in the study of the existence of

periodic solutions for a class of evolution inclusions involving the Frfichet subdifferen-
tiM.
We want to observe that the class of proper, convex and lower semicontinuous

functions is included in the class of lower semicontinuous functions with a -mono-
tone subdifferential of order two (cf. [19]).
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Therefore, we can say that our theorems extend the similar results obtained in
[lS].

2. Mathematical Preliminaries

Let X be a separable Banach space. We will be using the following notations:

P:fic)(X) {A c_ x: A nonempty, closed and convex)},
measurable space, a multifunction F’fP XIf (,P) is a I( )is said to be measur-

able, if for all x e X, the function cod(x, F(co)) inf{ II x z II’z e F(co)} is measur-
able. If F(. is measurable, then GrF {(co, x) e a x X: x e F(co)} e E x B(X), with
B(X) being the Borel c-fidd of X (graph measurability), while the converse is true if
we assume that there exists a complete, r-finite measure # defined on E. By S
(1 _< p _< ec) we will denote the set of all measurable selectors of F(. that belong in
the Lebesgue-Bochner space LP(a,X); i.e., S- {I e LP(f,X)" I(co)e F(co) #-a.e.}.
In general, this set may be empty. It is easy to check using Aumann’s selection theo-
rem (el. [21], Theorem 5.10), that for a graph measurable multifunction F:f2x{q},
S is nonempty if and only if the function coinf{ Ilzll’z e F()} belongs to
LP(,R +). Recall that a subset K of LP(f,X) is decomposable if for every triple
(f,g,A) K x K x E, we have fXA + gXAc K, where XA denotes the characteristic
function of the set A. Clearly, S is decomposable.
A subset A of X is said to be an absolute retract if, given any metric space Y and

a closed B C_ Y and a continuous function f: BA, there exists a continuous exten-
sion f:Y-A of f. Then A is said to be a R-set if A- A, for a decreasing se-

quence of compact absolute retracts An of X (cf. [15]). n e N
Moreover, if (An)n are nonempty subsets of X, we define

s-lim An- {x e x:3(xn)n,xneAn,Vn > l’x s-lim xn}
n---. + c n + o

and
w-lim An {z E X:3(zk)k,zk E A,Vk > l:z w-lim x},n+ k+

(here w-denotes the weak topology). We say that A’s converge to A in the
Kuratowski-Mosco sense (denoted by AnnA if and only if s-lim An -w-lim An.n++m n++
Suppose T is a topological space. A multifunction F:T+P(X) is said to be upper
semicontinuous, (u.s.c.)t if for C g X nonempty closed, we have that F- (C) {z e
X’F(x)C # } is closed in X. Also F is lower semicontinuous, (1.s.c.)t if
F + (C)- {z e X" F(z)C C} is closed in X. This definition of (1.s.c.)t is equivalent
to saying that if *n+* in T then F(*)- s-lim F(*n) {x e X"
lim d(x,F(n))-O}. n++

Recall that on PI(X) we can define a generalized metric, known in the literature
as the "Hausdorff metric", by setting for A,B PI(X),

h(A,B) max{sup{d(a,B)’a A},sup{d(b,A)’b B}}

(where d(a,B) -inf{ [I a-b II’b e B}, similarly for d(b,A)). A multifunction
F: T--, P](X) is said to be Hausdorff continuous (H-continuous) if it is continuous
from T into the metric space (P:f(X),h). Moreover, F is said to be Hausdorff upper
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semicontinuous, (u.s.C.)m if for every t E T and for all c > 0, there exists 5 > 0 such
that t- t’ < 5=F(t’) C_ f(t) + cB1, where B is the unit ball in X.

Let I [0, T] be furnished with the e-finite and complete Lebesgue measure, H a

(real) separable Hilbert space, f is an open subset of H and a function

f" aR U { + oe}, the multifunction 0- H, defined as follows

O- f(x)
c e H: lim inff(y). f(x) -(c, y x} > 0 if f(x) < -4- cx,

where x is a fixed element of , is called the Frchet subdifferential of f. The sets
dom(f)={xea:f(x)< +} and dom(0-f)={xea:0-f(x)O} are the
domains of f and O-f respectively. For every x e dom(0-f), we denote by
grad- f(x) the element of minimal norm of 0-f(x). Recall that the values of 0-f
are closed and convex.

If f:R U { +} is a lower semicontinuous Nnction, we say that f has a -monotone subdifferential of order two if there exists a continuous map
: [dom(f)]2 x R2R + such that

for every x, y e dom(0- f) and for every a 0- f(x) and fle 0- f(y),

we have (a-,x-y) >_ -qa(x,y,f(x),f(y))(1 + Ilall2+ I1 11 ) II -yll
In the following, we consider the multivalued Cauchy problem:

x’(t) e 0- f(x(t)) + F(t, x(t)), a.e. on I,

x0 e dom(f).
(1)

By a "strong solution" of (1), we mean a function x e C(I,a)such that x(. )is
absolutely continuous on any compact subset of (0, T) and with the property

(1) x(t) e dom(f), a.e. on I;
(2) h e L2(I,H) such that

h(t) e F(t, x(t)) and x’(t) 0 f(x(t)) + h(t) a.e. on I;

(3) x(O) xo.
Recall that an absolutely continuous function x:[O,T]H is differentiable almost

everywhere (see [3], Theorem 2.1) and so in problem (1) the derivative x’(.)is a
strong derivative.
We make the following hypothesis on the function f:

H(f)0: f: f.--.R U { + oe} is a function with the properties:
(i) f has a p-monotone subdifferential of order two;
(ii) 3r > 0 such that clB(xo, r)C a and the set L(c)= {x e clB(xo, r):

I II 2 / f(x) <_ c) is compact in tt, Vc e R,
(iii) 3k, >0suchthat f(z)<_k, Vxedom(f) NB(xo,);

(iv) 3N > 0 and r’> 0 such that II grad-f(x)II N,
Vx e dom(0- f)fl B(xo, r’).
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Moreover, we will need the following hypothesis on the orientor field F:
H(F)0: F: I x aPlc(H is a multifunction such that

(j) Vz e a, tF(t,x) is measurable;
(jj) for a.e. E I, GvF(t,.) is sequentially closed in a xHw (here Hw

stands for the Hilbert space H equipped with the weak topology);
(JJJ) TGL2(I,R +): liF(t,x) ll -sup{llzii’zGF(t,x)}<-7(t),

a.e. in I, Vx G f.
H(F)I" F:Ixf---,Pl(H is a multifunction with properties (j), (jjj) and the

following hypothesis
(jj)’ K G LI(I,R +): h(F(t,x),F(t,y)) <_ k(t) ]l x- y I[, a.e. in

I, Vx, y G f.
H(F)2: FI x ftPIc(H is a multifunction with properties (j), (jjj) and the

following hypothesis
(jj)" Vt I, x-F(t,x) is (u.s..), on n.

H(F)3: FI x f---,PI(H is a multifunction with property (jjj) and the following
hypotheses:
(j)’ (t, x)--f(t, x) hs measurable graph,
(jj)’" Vt I, --F(t,) is (1.s..)t on f.

First, if
k max{ II 7 II :,k }, (2.2)

we observe that from our hypotheses on f, it is possible go find the following positive
numbers:

such that f(x) >_ f(xo)- 1, Vx clB(xo,- ),

Sr* > 0 such that is bounded in the set

so, we put
{clB(xo, r*)2 CI dom(f)2) [f(xo) 1, k + k2/2];

r* g r}R*- min{r,,

(2.4)

(2.5)

(cf. H(f), (2.3) and (2.4)). Now, we take the following version of Theorem 3.6 of
Tosques (el. [20], p. 82)into account:

Proposition 1" Let f:f---,R U { + oe} be a function with a p-monotone subdifferen-
tial of order two. Then, Vx0 dora(f), VM >_ 0 ST > 0, S? > 0 with the property:

Vu clB(xo, ?)fl dora(f) with f(u) <_ M,

VT* > 0 and Vh L2([0, T*],H) with II h 112 <_ M, there exists a unique function
Uh:[O,Z]---,dom(f), where T-min{T*,T}, that is a strong solution of the Cauchy
problem

x’ e -O- f(x)+h
(Pu)h

x(O)--u,
with the properties

(i) uh HI’2([O,T],H) is continuous on [0,] and absolutely continuous on the
compact subsets of (0, T);

(ii) uh(t dom(O f) and U’h(t 0 f(uh(t)) + h(t) a.e. in [0, T];
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(iii)
(iv)

(v)

(vi)
(vii)

uh E L2([0, ], H),"

f to II U’h(S)II 2ds <_ 2(f(u)))- (f o Uh)(t + f o II h(s)II 2ds, Vte [0, ];
f o uh is absolutely continuous on [0, T];
(f o uh)’(t (h(t) Uh(t), uh(t)) a.e. in [0, T];

tl(viii) (f o uh)(t2) (f o Uh)(tl) f t2(grad- f(uh(t)) u’h(t))dt Vtl, t2 [0 ].
Remark 1: In [20], the author observed that, if hi, h2 L2([0, T], H) and Ul, u2 are

strong solutions of u -O-f(u)+h (i-1,2 respectively) on [0, T], then Vto,
t [0, T] with to _< t we have

(ix) II ul(t)- u2(t)I[ -- (11 ul(t0)- u2(to) ]1 -- f o II hl(S)- h2(s)II ds)

exp/ (Ul(S),U2(S),(f OUl)(S),(f o u2)(s))(1 + II ui(s)-hl(S)II 2

o

+ II u2(s) h2(s)II 2)ds (where we put 0.c c).

Fixed xo E dom(f), k as in (2.2) and T* T, we can say that there exist

T T(xo, k > 0 and p P(Xo, k > 0

such that Vu clB(xo, p) Ndom(f) with f(u) <_ k, and Vh L2([0, T],H) with

[[ h [I 2 -< k, there exists a unique function Uh: [0, ]dom(f), where min{T, },
that is a strong solution of the Cauchy problem (Pu)h with the properties (i)-(viii) of
Proposition 1.

Therefore, if we fix (cf. (2.5))
F 1R*R min[p, -], (2.7)

we can say that, Vu clB(xo, R) dom() and Vh L([0, T], H) with II h II _<
there exists a unique strong 8olution of the problem (Pu)h, with the properties
mentioned in Proposition 1 and, moreover, we have that the following condition8 are
satisfied:

f(x) >_ f(xo)- 1, Vx clB(xo,2R f3 dom(/), (2.8)

L(c) {x e clB(xo, 2R)" 11 x I] 2 + f(x) <_ c} is compact in H, Vc e R,

L sup{9(Xl, x2, Yl, Y2)" Xl, x2 clB(xo, 2R) n dom(f),

Yl’Y2 [f(x0)- 1,]c + k2/2]},
(2.10)

f(x) <_ k, Vx clB(xo, R Fl dom(f), (2.11)

II grad f(x) II N, Vx E clB(xo, 2R) n dom(0 f), (2.12)

(where a:[dom(f)]2 x R2--,R + is the mentioned continuous map that verifies (2.1)).
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Now, we choose T’ such that T’= R2
2(k+l-f(z0))+k2 and we define T0=

min{T,T’}. Then we can consider the solution of the problem (P,)h, Vu E
clB(xo, R) f3 dom(f), defined in [0, To] (cf. H(f)).

Next let V be the following set:

V {h E L2([0, T0], H): II h(t)II <_ 7(t) a.e. in [0, To]} (2.13)

and, Vu clB(xo, R f3 dom(f), we consider the function"

su:V-C([O, To],a)

h__su(h) uh

where uh is the unique solution of the problem (Pu)h"

(2.14)

3. Topological Structure of the Solution Set

In order to prove the nonemptiness and the topological structure of the solution set
S(x0) C_ C(I, fl) or (1), we will need some auxiliary results. The first is an approxima-
tion lemma which can be proved as Lemma 1 of [9] with some appropriate
modifications (here the multifunction is defined in I x , where is an open subset of
the Hilbert space H).
Lemma 1" Let F:Ix+PIc(H be a multifunction satisfying the hypothesis

H(F)2 then there exists a sequence of multifunction Fn’I x --+PIc(H), n 1, with
the properties:

(i) Vn l and Vx e there exist kn(X)>0 and n- n(x) >0 such that if
Xl, X2 clB(x, en) {y " II * y II e.), ,he h(Fn(t X1), rn(t x2))
,()(t) II Xl- x2 II, a.e. on I (i.e., a.e. on I, Fn(t .) is locally h-Lip-
schitz);

(ii) F(t,x) ... Fn(t,x Fn + l(t, x) ..., V(t, x)G I x ;
(iii) E(t,,) r(t) a.. i , w ;
(iv) Fn(t x)F(t, x) asn for every (t, x) I x

and finally there exist maps Un: I x +H, n 1, measurable in I, locally-Lipschitz in
x (as Fn(t )) and Un(t,x) Fn(t,x) for every (t,x) e I x .

Now, we prove the following result concerning the solution map p: (u, h)p(u, h),
where p(u,h) is the unique strong solution of the above Cauchy problem (Pu)h"
Lemma 2: g hypothesis H(I) holds and is the positive number defined in (2.7),

then the solution map p: [clB(xo, ) dom(f)] x YC([0, T0] ) is sequentially con-

tinuous by considering on L2([0, T0],H the weak topology.
Prf: First, we will show that if u clB(xo, R dom(f), then Yh V, we have

(r. (.la))
(,h)(t) (t) cB(,n), Vt e [0,T0]. (3.1)

Indeed, if [0, To] from (v) of Proposition 1, it follows

0 0 (3.2)
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V/[2(f(u))_ f(uh(t)) + ]2)1/2,

where k is defined as in (2.2).
Let T -sup{t E [0, To]: [I Uh(S)- u I[ -- R, Vs [0, t]}, by the continuity uh we

have that T > 0. Therefore, to obtain (3.1) it is sufficient to prove that T T0.

Indeed, if T < To, by (2.14), (2.8) and by recalling that TO <_
2(k + 1- I(%))+ k2’

it

follows that II Uh()-- u II <- V/-012(k + 1 fXo) + k2]1/2 _< R.
But this inequality, being uh continuous in T, contradicts the definition of T.
Now, by (3.1) and by (ii)of Proposition 1, we deduce that uh(t clB(xo, 2R) f3

dom(f), and therefore, by using (2.8), (3.2) and (2.11), we obtain that

f(uh(t)) [f(x0) 1,M2],Vt [0, T0] Vh V, (3.3)

k2where M2 k- 2"
Moreover, using (3.1), we claim that su(Y (cf. (2.14)) is a subset of the closed and

convex set
g

u {x C([0, To], )" x(t) clB(u, R), Vt [0, To] }. (3.4)

Next, we are able to prove that p is sequentially continuous by considering on

L2([O, To],H) the weak topology. Indeed, we consider a sequence (an, ha)n C_
[clB(zo, R) f3dom(f)]Y such that (un)n converges to u in H (where u
clB(xo, R f3dom(f)) and (ha)n weakly converges to h in L2([O, To],H). In order to
prove that P(Un, hn) converges to p(u, h) in C([0, To],), we set xn P(un, hn)
Vn N, and x p(u,h). Taking Remark 1 into account, we have

II (t)- (t)II (11 (o)- (o)II + J II h(s)- h(s)II d)
0

exp / 7(xn(s), x(s), (f o xn)(s), (f o x)(s)))
0

(3.)

(1 + 11 x’(s)- hn(s [[2[ [[ x’(s)- h(s)II 2)d

and so, being xn(t), x(t)e B(Xo,2R Vdom(0-f), from (vii), (viii)and (2.12), we
can say that

II x’n(t)[I -< ]l grad f(xn(t))II + II hn(t)II _< N + "/(t), a.e. in [0, To], (3.6)

II ’(t)II _< II grad- f(x(t))[[ + [[ h(t)[[ _< N + 7(t), a.e. on [0, To].

Then, we have

II (t) h(t)II 2 N2 + 472(t) + 4NT(t)

and, therefore taking (2.2) and (2.10)into account, we can deduce that

exp/o(xn(s),x(s),(f oxn)(s),(f o x)(s))(1 + II ()-h()II 2

0
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+ II ’(s)- h()II 2)d exp(L(To + 2N2To + 8k2 + 8Nkxo)) C.

Then, it follows that

II ,(t)II II II o +(+vo) M < o, Vt [0, To], (3.7)

taking the properties (3.3) and (3.7) into account, we deduce that

(Xn(t)}n > 1 -- (Y E H: II Y II u / f(Y) <- M + M2 M3} L(M3)

Vt E [0, To].
(3.8)

Also, if s, t G [0, To] s _< t, n G N, we have (cf. (3.6))

II (t)- ()II f II ()I1 d v/t- s(N2To + k2 + 2Nkxo) M4v/t- s

8

from which we can say that (Xr)n is equi-Hhlder continuous in [0, T0]. Moreover, by
(3.8), we have that {Xn(t)}n >1 is included in the compact set L(M3) gt [0, T0].
Thus, by using the Arzelg-AscBli Theorem, it follows that the set {Xn}n > 1 is relative-
ly compact in C([0, T0],f). Therefore, we may assume that, by pass]-ng to a sub-
sequence if it is necessary, Xn+Y in C([0, To] f). Finally, applying the lemma of [7],
we have that y p(u,h), so we can conclude that the solution map p is sequentially
continuous by considering on L2([0, T0], H), the weak topology.
We also need the following two existence theorems for the problem (1).
Theorem 1: Let f be an open subset of a (real) separable Hilbert space H,

f: f R U { + oc} be a function satisfying H(f) and F" I x f--Plc(H) be a multi-
function satisfying the hypothesis H(F)o then we can choose To > 0 and R > 0 as in
Remark 1 such that Vu clB(xo, R dom(f) the set S(u) is nonempty and compact
i c([0, To], ).

Proof: First, we observe that the set

V- {h e L2([O, To],H)" ]] h(t) II <- 7(t) a.e. in [0, T0]}

is bounded, convex, closed and weakly compact in L2([O, To],H). Using analogous
considerations made in the first part of the proof of Lemma 2, we can say"

uh(t e clB(u,R), Vte [0, To] Vh e V, (3.9)

by which we deduce that uh(t clB(xo, 2R N dom(f), Vt E [0, To] Vh V, and so

k2we can write that f(uh(t)) [f(x0)- 1,k +--], Vh V, Vt [0, To].
Now, denoted with

Ku {x E C([O, To], f): x(t) clB(u,R), Vt e [0, To] },

we have that Ku is closed and convex and su(V C_ Ku. Moreover, we claim that
su(U is relatively compact. Indeed, if uh su(V), taking the property (v) of Proposi-
tion 1 into account, we obtain that
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1

II u II 2 -< [2(k + 1- f(xo) + k2].
Therefore, it is possible to write the following inequality

1

II uh(t*)-  h(t) II --< / 1 f(xo) + k2] *
1

-tl :, vt*, tel0, To],

from which it is easy to see that su(V is uniformly equicontinuous. Moreover, for
every t e [0, To], the set W(t)= {uh(t e ft: uh e su(V)} is relatively compact in H.
Therefore, from the Arzelg-Ascoli Theorem, it follows that su(V is relatively com-

pact in C([0, To],
Now, we want to show that function su is continuous from V with the weak topo-

logy on L2([0, T0],H into Ku with the topology of C([0, To],
First we observe that, since s,(V) is relatively compact in the space C([0, T0],a),

it is sufficient to prove that Gr(s,,) is sequentially closed in V,, x s(V). Then let
(hn, Xn) e Gr(Su), (hn, Xn)(h, x) in L2([0, To]H)w x C([0, To] f). By the lemma of
[7] we deduce that x su(h). Therefore, the function s,, is continuous. Then, by
Mazur’s Theorem we can say that the set M clconv s(V) is convex and compact.

[o, H)Now, let L:V-+2
L To]’ be the multifunction defined by

L(h) S2F(.,su(h)(.)), Vh V.

It is possible to prove that the multifunction L has nonempty values. To this end
with fixed h, there exists (vn)n, where vn is a simple function, such that
Vn(t)---su(h)(t a.e. in [0, T0] as noe. Since, for a.e. t e [0, T0], GrF(t,.) is
sequentially closed in x Hw, we have that

w-lim F(t, vn(t))CF(t, su(h)(t)).

Since for every n > 1, Vn(. is a simple function and F(. ,x) is measurable, we can
easily check that t-F(t, vn(t)) is measurable. Applying Aumann’s selection theorem
we can get a measurable selection gn(" of F(., Vn(. )) such that II gn(t) II <- 7(t) a.e.
on [0, To], for n > 1. By passing to a subsequence if necessary, we may assume that
gn-+g weakly in L2([0, To] H).

From Theorem 3 1 of [16] we have that g S( Then we can say that,(h)(. ))"
L has nonempty values. Moreover, it is easy to see that for every h V, we have
L(h) is a closed and convex subset of V. Now, if we consider in V the weak topology,
we claim that L: Vw-+PIc(V) is (u.s.c.)t. Recalling that Vw is compact and metriz-
able, to show the upper semicontinuity of L(. ), it is enough to show that GrL is se-
quentially closed in Vw x Vw. To this end, let (hn, fn)n, (hn, fn) GrL, with the pro-
perty (h., f.)(h, f) in V x V,. Then, for each n > 1, we have s(h,) M and we
know that m is compact in C([0, T0],H). So by passing to a subsequence if neces-
sary, we may assume that su(hn)q in C([0, T0],f). Now taking that hn--,h in Vw
into account, from the proposition of [7], we conclude that q su(h ). Using again
Theorem 3.1 of [16] we have that f(t) G clconvw-lim F(t, su(hn)(t)) C
F(t, su(h)(t)) a.e. on [0, T0]. Therefore, f e S2F(.,su(h)(.)). Then we can conclude
that (h, f) e GrL. So L is (u.s.c.)t as claimed.

By the fixed point theorem (see [11]), we obtain there exists h E V such that
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h E L(h). Clearly, uh is the desired solution of the Cauchy problem (1) (satisfying
the mentioned properties of Proposition 1).

From the above proof, we see that the solution set of (1) is a subset of M, which
we know is a compact subset of C([0, T0],f). So to prove the compactness of the
solution set of (1) in C([0, T0],ft), it is enough to show that it is closed in
C([0, T0],ft ). So let (x,)n where xn is the solution of (1) such that x,-x in
C([0, T0],ft). We have:

x(t) e c9 f(xn(t)) + hn(t .e.

with hn V. By passing to a subsequence if necessary, we may assume that hnh
weakly in V. Again from the lemma in [7], we deduce that x su(h). Now, using
Theorem 3.1 of [16], we have that h S(. ,(. )). Therefore, the solution set S(u) is
compact in C([0, T0] ).
Threm 2: Let be an open subset of a (real) separable Hilbert space H,
f: {+} be a function satisfying H(f) and F:IP](H) be a

multifunction satisfying the hypothesis H(F)3 then we can choose To > 0 and R > 0
as in Remark 1 such that Vu clB(xo, R) dora(f), S(u) is a nonempty subset of
c([0, T0], a).
Prf: Using anMogous considerations made in the first part of the proof of

Theorem 1, we can say that the set

V {h C L2([0, To], H)" ]1 h(t)II <- 7(t) a.e. in [0, To]}

is bounded, convex, closed and weakly compact in L2([0, T0],H). Moreover, if uh is
the unique solution of the problem (Pu)h, we have:

uh(t e clB(u,R), Vt [0, To] Vh V,

uh(t clB(xo, 2R 71 dom(f), Vt G [0, To], Vh G V,

f(uh(t)) e f(Xo)-- l,k + Vh e V, Vt E [O, To]

and additionally, the set su(V is compact in C([0, T0],Q and the set M=
clconvsu(V is convex and compact in C([0, T0],Q). Now, let R:MPI(LI(H)) be

-Sdefined by R(x). F(..,x()), Vx M. From Theorem 4.1 of [16], we have that
R(. )is (1.s.c.)t. bince the alues of R are nonempty (cf. Theorem 4.1 of [21]), closed
and decomposable, we can apply Fryszkowski’s selection theorem [12] and we get a

continuous function r: MLI(H) such that r(x) R(x) for every x M. Then we
can observe that the function r/= Suor:M-M has a fixed point, i.e. there exists
x M such that r/(x) x. Then x is solution for the following problem

x’(t) E c0-f(x) + r(x)

and so, being r(x)(t) F(t,x(t)) a.e. on [0, T0] we can conclude that x e Co(u).
Moreover, we need to prove the following:
Lemma 3: Let f be an open subset of a (real) separable Hilbert space H,

f:f--,RU { +oc} be a function satisfying H(I), xo dora(f), and g:I x f--H be a
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function such that"
(c) x E Ft, t--,g(t,x) is measurable in I;
(cc) 3‘ C L2(I,R /): ]] g(t,x) I[ - 3‘(t), a.e. on I; Vx C f,

t e 0
and Cx >0 such that if Xl,X2 clB(x,gx), then II g(t, xl) g(t, x2) ll <-
](X)3‘(t) [IX1-x2 [[, a.. o I).

Under these assumptions we can say that Yu clB(xo, R) dora(f) the following
Cauchy problem"

x’ O-f(x) + g(t,x)
(Pu)g

,x(O)-u

has a unique strong solution defined on [0, To].
Proof: Fix u clB(xo, R) Ndom(f). From (aaa), we deduce that there exists a

Lebesgue null-set M C_ I such that Vt I\M the function xHg(t,x is locally Lips-
chitz.

Now, we consider the multifunction F" I x Pfc(H), where

t’

) {g(t,x)}, (t,x) G (I M)
F(t,x)

{0}, otherwise.

Using Theorem 2 we have that there exists a solution of the problem (Pu)- defined
9

on [0, To]. Now, we prove that there exists an interval [0, b], where b G ]0, To] such
that the solution of the problem (Pu)g is unique in this interval. In fact, if
Xl:[0, To]---,ft and x2:[0, To]f are two strong solutions of the problem (Pu)9, then
we find two functions/31 and/32 with the properties:

31(t e 0-f(xl(t)) /32(t E 0-f(x2(t)) a.e. on [0, To]

X’l(t -/31(t + g(t, xl(t)) a.e. on [0, To]

x’2(t -/2(t)+ g(t, x2(t)) a.e. on [0, To].

Therefore, taking H(f)(i)into account, we have

(X’l(t) x’2(t),xl(t x2(t)) (/31(t) 132(t),x1(t x2(t))

+ (g(t, xl(t))- g(t, x2(t)),xl(t x2(t))

< L(1 + I[ 1(t) II 2 -4- II/2(t) II 2)II Xl(t)- X2(t)II 2
(3.10)

-4- <g(t, xl(t)) g(t, x2(t)),xl(t x2(t)>.

Now, using analogous considerations made previously in Lemma 2, we can say

II 2 _< N2 +472(t)+4N3‘(t), a.e. on [0, To] i- 1,2,

and so, by (3.10), let 5(. L(1 + 2N2 + 83,2( + 8N3‘(. )) G LI([0, To],R + ), we get
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1(8 X2(8),Xl(8)’ x2(8))d8
0

+ /((,x(
0

_< / 5()II x

0

1(s) X2(S)II 2ds

))- g(, ()),.()- ()/d, Vt e [0, To]. (3.11)

Now, we can observe that xl(t),x2(t E clB(u,R), Vt [0, To] and, recalling the hypo-
thesis (aaa), we can find k(u) > 0 and cu > 0 such that then II g(t, Yl)- g(t, Y2)[I -<
k(u)’),(t) ]] Yl Y2 II, VYl, Y2 e clB(u, u), a.e. on I. By continuity of functions Xl,
in the point 0, we can say that there exists b ]0, To] with the property xl(t),x2(t
clB(u, cu), Yt [0, b]. Therefore, we deduce that

II g(t, xl(t)) g(t, x2(t)) II <- k(u)q/(t) ]1 xl(t)- x2(t) II Vt [O,b]. (3.12)

Then, by (3.11)and (3.12)we obtain

11 xl(t x2(t II 2 2 J [6()+ ()()3 II Xl(S)- x2(s)II 2d, Vt
0

(3.13)

and thus, using Gronwall’s inequality, we deduce that x1 x2 in [0, b]. In order to
prove the uniqueness in the interval [0, To] we set T* sup{t [O, To]:Xl(S x2(s
VsG[0, t]}. Clearly, T*>0 and T*=max{tG[0, To]:xl(S)=x2(s) VsG[O,t]}.
Finally, we can show that T* To. In fact, if by contradiction, T* < To we can say
that the functions Xl: [0, To]f and x2: [0, To]f are solutions of the following pro-
blem

xe -O-f(x)+g(t,x)

x(T*) " (where Xl(T* x2(T*)).

Then, thanks to the analogous argument made in order to obtain (3.13), we can show
that there exists a > 0 such that

]l xl(t)- x2(t)II 2_
2 / [(S) - k(x)7(8)] ]] xl(s) x2(s ]] 2ds /t IT*, T* + a].
T*

(3.14)

Therefore we can deduce that X --X2 in [T*, T*+ c], which is absurd by the defini-
tion of T*. Consequently, we have that T*-T0. Hence the problem (Pu)g has a

unique strong solution defined [0, To].
Now, we are ready for the result on the topological structure of the solution set

S(o).
Theorem 3: Let be an open subset of a (real) separable Hilbert space H,
f:n{+} a fnco afw H(f) ad F:-P](H) b a ,ut-
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function satisfying the hypothesis H(F)2 then we can choose TO > 0 as in Remark 1
such that S(Xo) is nonempty and it is an R6-set in C([0, T0],).

Proof: First, by applying Lemma 1, we can choose a sequence of multifunction

(Fn)n, Fn:I -Plc(H), n >_ 1 be as postulated by Lemma 1. For fixed n >_ 1, we

consider the following multivalued Cauchy problem

x’(t)G -0-f(x(t))+ Fn(t,x(t)) a.e. on I,
(3.15)

(0)-

Moreover, by Lemma 1, we can see that, for every n E N, there exists a selection un:
I fl---H of the multifunction Fn with the properties mentioned in the Lemma 1.
So, using analogous considerations made in the first part of the proof of Lemma 3, we
deduce that the problem, similar to the problem (3.15), which possesses the perturba-
tion un, has a solution (cf. Lemma 3). Hence, we can say that the set of solutions

Sn(xO) of the problem (3.15) is nonempty. Now, we note that Sn(xo)C sz (Y),
where V is defined as in (2.13)

-. 0and sx p(xo,.):YC([O, To],). Easily (cf.
Theorem 1), we can observe that the set s_(Y)is compact in C([0, T0],). Hence,

compact, we consider (Xm)m, xm e Sn(Xo), m > 1,in order to prove that Sn(xo) is
o

and XmX in C([0, T0], as m. We have that x Sx(fm) with fm
SFn(.,Xm(.2 ))" We may assume that fmf* weakly in L(I ,To,H and f*e V,

being Y weakly closed in L2([O, To],H). Moreover, f*G S2Fn(.,x(.)). In fact,

Lemma 2 provides that XmSxo(f* x in C([0, To], gt), so applying the convergence

theorem (cf. [1]), we have that f*(t) Fn(t,x(t)) a.e. in [0, To]. Thus Sn(Xo)is
closed, hence compact in C([0, To] ).
We also claim that, for every n >_ 1, Sn(x0) is contractible. To check this

property, we consider, given r G [0, To) and x e Sn(Xo), the following problem

z’ -O-f(z)+ un(t,z), a.e. on [r,T],

z(,)-
(3.16)

where un is the mentioned selector of Fn. The problem (3.16) has a unique solution.
In fact, by denoting with gn:I x fH the function defined gn(r,z) un (r + r,z)

un(t z)), Vr [0, T- r], Vz G , the problem (3.16) can be rewritten in this way:

z’G -O-f(z)+ gn(r,z), a.e. on [0,T-r],

z(0)- *(0)- *0"
(3.16)’

By Lemma 3, we can deduce that this problem has a unique solution defined in the
interval [0, To], where To min{T r, T, T’}. Therefore, since To- r < To, the
problem (3.16)’ has a unique solution defined in [0, T0- r]. Now setting (t)-
(t-r)- (7), E [r, To] (r G [0, T0- r]), we have that ’[r, To]---, is the unique

solution of the problem (3.16) such that

un(t, (t)) G Fn(t,’ (t)), a.e. in [r, To]; (3.17)
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is continuous on [r, To] and absolutely continuous on the
compact subsets of ]r, To[; (3.18)

(3.19)

(where R is chosen as in Remark 1)

f( (t)) f(xo)- l,k + Vt[r,7"o];

II ’(t)II _< II grad f( (t- r))II + [I ,(t-, (t- ,))II

(.2o)

_< N + 7(t), Vt e It, To]. (3.21)

Now, we denote with z(r,x)(. )e C([r, To],f the unique solution of the problem
(3.16). For r-To, we set z(To, x)-x. So, we can define the function
h:[0, T0] x COn(XO)---Sn(Xo) by

z(t) for 0 < t _< r;
h(r,x)(t)-

z(r,x)(t) for r _< t _< To.

Evidently, h(r,x)(O) x(O) xo. On the other hand, h(O,x) z(O,x) Zo, with
z0 e C([0, To], a) being the unique solution of

z’ G -O-f(z)+ uu(t,z) a.e. on [0, To],
z(0)- x(0)- *o"

Moreover, h(To, x) z(To, x) x.
If we can show that h(., is continuous, we will have established the contractibili-

ty of Sn(Xo) in C([0, T0],f). To this end, let {(rm, Xm)}m C_ [O, To]xSn(Xo), with
(rm, Xm)-(r,x) in [0, T0] x Sn(Xo). We consider two distinct cases:

Case 1: rm > r, for every m >_ 1"
Let

Xm(t for 0 <_ t <_ rmh(rm’Xm)(t)
Z(rm, Xm)(t for rm <_ t <_ To,

we put vm h(rm, Xm). Evidently, vm E Sn(Xo), m _> 1, and so by passing to a sub-
sequence if necessary, ew may assume that v,v in C([0, T0],a). From the defini-
tion of h(.,. ), we see that, for E [0, r], we have v(t) x(t). Let y e C([0, To], f) be
the unique solution of

y’(t) G 0 f(y(t)) + Un(t v(t)), a.e. on It, To]
() () ()).

Let N _> 1, we can say that there exists mN N such that for all rn >_ mN we
have rm < rN. Then, for all m >_ mN we obtain that V’m(t --O--f(Vm(t))+
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Un(t, vm(t)) a.e. on [rN, To] (where [rN, To] C_ [tin, To] ). Then, we find two functions
cm and c with the properties:

am(t O-f(vm(t)), a(t) O-f(y(t)), a.e. on [rN, To]
,(t) v(t) + (t, v(t)), (t) ’(t) + (t, v(t)), .e. on [, 0]"

By (ix) of Remark 1, we deduce

II (t)- v(t)

rN

2)d8.
rN

Now, taking vm(),9() e clB(o, 2R), and I(v()), /(()) e [/(0)- , +],
V [rN, T0] into account, using analogous considerations made previously in Lemma
2, we have

exp g((),v(), (I o )(), (I o v()))(1 + II ()II + II II 2)d8

xp(0( +)+s+s) c,
then, we can say that

Ily(t)-vrn(t)ll

<_ c II ("N) v,(,’N) II + II (, ()) ,(, v,()) II d Vt ["N, To].
rN

Applying the limit m--+oo, we get that

II y(t)- v(t)II c II Y(rN)- v(rN)I], for t E [rN, To].
Note that as N-+oo we have Y(rN)--x(r and V(rN)-+v(r --x(r). Since N > 1

was arbitrary, we conclude that y(t)- v(t) for t E [r, T0]. Hence v- h(r,x) and so

h(rm, Xm)-+h(r x) in C([0, To], f) as m+.
C 2: rm r, for every m 1. Now, for all t [0, r[, there exists a natural

number such that for all m we have rm > t. Keeping the notation introduced
in the analysis of Case 1, we see that v(t)- x(t) for t [0, r].

Moreover, the same arguments as in Case 1 give us that

I (t) v(t) c [[ () v() [ + n(, ()) (,()) I d
r

for e [r, To]
and by applying the limit mcx, we obtain
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II v(t)II _< c II v( )II e T0].
But 9(r)= x(r)= v(r). So 9(t)= v(t) for 6 [r, To]. Hence, v h(r,z) and so again
we have h(rm, Xm)h(r x) in C([0, To], a) as rnoo.

In general, we can always find a subsequence {rm}m > 1 satisfying Case 1 or Case
2. Thus we have proved the continuity of the map h-(.,.). So, for every n_> 1,
Sn(x0) is compact and contractible in C([0, r0] f). To finish the proof we show that
S(x0) [’] Sn(XO). Clearly S(x0)C_ [’1 Sn(Xo). Let x 6 [’] Sn(xo). Then by defini-

sEN sEN sEN
tion x--Sxo(hn) with hn E Sn(.,x(.)),n_> 1. Evidently {hn}n>_l is bounded in

L2([O, To],H). So, by passing to a subsequence if necessary, we may assume that

hn-h weakly in L2([O, To],H). From Theorem 3.1 of [16], we have that

h(t) e cony w-lim Fn(t x(t)) C F(t,x(t)), a.e. on [0, To]

and therefore we can say that h S( ,x Finally, by Lemma 2 we conclude that(.)).
x- P(Xo, h). So x S(x0) and therefore we have S(x0)- Sn(Xo). Using a result

sEN
of [15], we conclude that S(Xo) is a Rc-set in C([0, To], f).

Being the evolution map "e" defined by e(x,t) x(t), V(x,t) C([0, T0],f) x
[0, T0] a continuous function, we have as an immediate consequence of Theorem 3
above, the following Kneser-type theorem for (1).

Corollary 1: If hypotheses H(f) and H(F)2 hold, then for every t [0, To], the set
R(t)- S(Xo)(t -{x(t):x S(x0) } (the reachable set at time G I) is compact and
connected in H.

In what follows we obtain, as a consequence of Theorem 1 and Lemma 2, a contin-
uity result about the solution-multifunction xS(x).

Theorem 4: If hypotheses H(f) and H(F)o hold, then there exist To > 0 and
R > O, chosen as in Remark 1, such that the multifunction S: dom(f)clB(xo, R)--,
Pk(C([O, To] f)) is (u.s.c.)t.

Proof: The set S(x)is nonempty and compact in C([O, T0],f for every
x dom(f) YlclB(xo, R (see, Theorem 1). Now we need to show that given C C_
C([0, T0],a)) nonempty and closed the set, S-(C)-{xedom(f)NclB(xo, R):
S(x) C] C 7! } is closed in dom(/) N clB(xo, R) C_ a. To this end, let u. e S (C),
n _> 1. For each n >_ 1, let xn p(un, hn) hn SF(.,zn(.)). Since {hn}n is bounded

in LZ([O, To],H) (el. hypothesis (jjj)), by passing to a subsequence if necessary, we

may assume that hnh weakly in V C_ Lz([0, To] H). From Lemma 2 we have that

P(Un, hn)--*p(u,h in C([0, T0],a)). Now let x- p(u,h), from hypothesis H(F)o(jj)
and (jjj) and Theorem 3.1 (cf. [16]), we have that h 6 S(. ,x(. ))" So x 6 S(u)A C.

Since u e dom(f)AclB(xo, R), we can conclude that u 6 S-(C). Therefore S(. )is

Next we will generate a continuous selector for the multifunction xHS(x). For
this we will need the hypothesis H(F)I on the orientor field F.

Theorem 5: /f hypotheses H(f) and H(F)I hold and the set dom(f) is a closed sub-
set of f, then, for all r > 0 such that clB(xo, ]) C B(xo, R) there exists
u: dom(f) C3 clB(xo, rl) --C([0, T0],f) a continuous map such that u() e co() for
every G dora(f)C clB(xo, rl).

Proof: Let Xo()(.)GC([O, To],f be the unique solution of the evolution
equation (cf. Proposition 1)
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x’e -O-f(x),

x(0) e dom(f) V1 clB(xo, ).

Let Ro: dom(f Vl clB(xo, rl)--,Pi(Ll([O, To], H)) be defined R0()- SIF( ,Xo(()( )),
for every (E dom(f)CclB(xo, rl). Now we can observe, using analogous considera-
tions made in the first part of Lemma 2, that R0(.) is h-Lipschitz and, moreover,
that its values are nonempty, closed and decomposable. So we can apply Theorem 3
of [4] and we obtain r0:dom(f) fl clB(xo, r/)Ll([0, To] H) a continuous map such
that r0(() E R0() for every dom(f)N clB(xo, rl).

Let Xl() ) C([0, To], f be the unique solution of

x’ e 0 f(x) + ro()
x(0) dom(f) fl clB(xo, rl).

We claim that, for every fixed E dom(f)C clB(xo, ), by induction we can gener-
ate two sequences {xn()(" )}n > o C_ C([0, TO], a) and {rn()(" )}n > o C_
L2([0, To],H satisfying the following p)-operties:

(a) z(()(" e C([0, To], a)is the unique solution of

x’(t) e -O;I(x(t))+rn_l(()(t a.e. in [0, To]
x(0)- (, Vn >_ 1;

(c)

(d)
with

(rn(() is continuous from dom(f) flclB(xo,) into LI([O, To],H), Vn >_ 0;
rn()(t F(t, xn()(t)) a.e. on [0, To] for every dom(f)gl clB(xo, 7),
Vn _> 0;
II rn()(t)- rn- 1()(t) II

_
k(t)fln(t) a.e. on [0, To], Vn _> 1,

in(t C
1)!

ds - TO 2k-t-1 (n- 1)!
0

with s > 0 and O(t)- f tok(s)ds.
Our first purpose is to prove that we are able to find the functions Xl()(.) and

r0() satisfying the properties (a)-(d). Evidently the fixed function xl()(.) has
the property (a). Moreover, we can define the multifunction

__,__.,aLl(J0 TO] H)R1" dom(/) fl clB(xo, r/) z as

RI() {Z S-.( }x1()(. II Z(t) ro()(t II < k(t)fll(t) a.e. on [0, To]

for every c e dom(f) fG clB(xo, 7),

where
l(t) C 7(s)ds + TO --t- Vt [0, To].

0

First, we observe that RI() 0, V dom(f)fl clB(xo, rl). In fact, using hypothesis
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H(F)I(jj)’ and the property (ix)of Remark 1, we have

d(ro()(t),F(t, xl()(t)) <_ k(t)/l(t), a.e. on [0, T0].
Therefore, we can say that the multifunction FI()’[0, To]2H, defined by

Fl()(t {v E F(t, xl()(t)): II v- ro()(t II <- k(t)/31(t)}, Vt E [0, To],
has, for a.e. t [0, To], nonempty values and thus, without any loss of generality, we
can assume that F1 has nonempty values. Moreover, FI() has measurable graph
and so we are ready to apply theorem of [21] and we can deduce that there exists a

measurable selection z: [0, To]H of the multifunction FI()(. ). So, we conclude that
Z e /1()"
On the other hand, with analogous considerations made in order to obtain the

function ro() ), we can get the function rl() ), selection of the multifunction

t-oClRl()(t --{z SIF(., Xe()(.)): II z(t)- ro()(t II <

Easily, we can observe that rl() also satisfies the properties (b), (c) and (d).
Now, we suppose that we were able to produce {xk()} 0 and {rk()}nk-0

satisfying (a)-(d) above.
Let xn + 1()(" ) C([0, T0],fl) be the unique solution of

x’ E -O-f(x)+ rn() a.e. [O, To]
x(O) dom(f) g clB(xo, rl).

Therefore, obviously, this function satisfies the condition (a). As before, we get

II Xn + 1()(t) Xn()(t) I]

<_ C / II rn()(8) rn- l()(8) li d8 <_ c f
o o

s

C k(s) 7(T)Cn(O(S)(n- 1)
.dTds

0 0

+ ts) ) ds

0

(3.22)

f Cn + 11(s) /(7.)(O(s O(7.))n 1

(n- 1)!
0 0

+ TO 2k + 1 (n- 1)[
as

0

dT

< / cn + 17(7)(0(t)--n!O(’r’))n
o

d7 + TO +1
(o(t))"

n! n + l(t)
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a.e. in [0, To].
Therefore, using hypothesis H(F)I(jj)’ we have

d(rn()(t),F(t,xn + l()(t))

_
k(t) [I xn()(t) xn + 1()(t) II

(3.23)
_
k(t)n + l(t), a.e. on [0, To].

LI H)Now ]e Rn + I dom(f)V cIB(o, r/)--+2 ([0’T0]’ be the mu]tifunction defined by

={zESIF(.,xn+I(5)(.)): IIz(t)-rn()(t)11 -k(t)n+l(t) a.e. in [0, To] }.
From (3.23) above, we know that the multifunction Fn + 1(): [0, To]-2H, defined by

Fn + l()(t) {v E F(t,xn + l()(t))" II v- rn()(t II < k(t)n + l(t)}

is such that Fn + l()(t) :/: O a.e. on [0, To].
By modifying the above multifunction on a Lebesgue-null subset of [0, To] we may

assume without any loss of generality that Fn + l()(t) 0 for every t G [0, To]. Also
from Theorem 3.3 of [17], we know that tF(t, xn+ l()(t)) is measurable (hence
graph measurable), while (t, v)- II v rn()(t II k(t)fln + 1(t) 7n + 1()(t, V) is
clearly jointly measurable. So,

Grrn + 1() {(v, t) GrF(.,xn + 1()(" )" 3’n + 1()(t, v) < 0} 2‘([0, To] B(H)

with 2.([0, To] being the Lebesgue a-field of [0, To].
Applying Aumann’s selection theorem, we get a measurable function "[0, To]--,H

such that (t) Fn + l()(t), Vt E [0, T0] so Rn + 1(), for every
dom(f)V clB(xo, rl). Moreover, HRn + 1()is (1.s.c.)t with decomposable values.

Therefore, applying Theorem 3 of [4] to the multifunction clRn + 1(" ), we can get a
continuous map ru + 1" dora(f) V clB(xo, rl)Ll([0, To] H) such that

rn 4- 1() clRn + 1(), for every dom(f) fq clB(xo, rl). Hence,e rn + l()(t) E
F(t,xn + l()(t)) a.e. on [0, T0] and II rn + 1()(t) rn()(t)l[ <- k(t)fln + 1(t) a.e. on
[0, To]. Thus, by induction, we have produced the two sequences

{Xn()}n > 0 C_ C([0, T0], and {rn()}n > 0 C_ L2([O, To],H)
satisfying (a)(d) above.

Then, using (3.22) we have
To To

/ "rn()(t)-rn-l()(t)lldt<- J k(t)fln(t)dt
0 0

T0

< ds + ToC(O(T))n
0

< (O(To))n Cn

n! II 7 Ill +Toni.
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So, from the above inequality, we deduce that {rn()}n >0 is a LI([O, To],H)
Cauchy sequence, uniformly in C dom(f)C1 clB(xo, l). Also om (a) we have

II n + x()- x()II c([0, r0l,a c II n + 1() rn()II LI([O, To],H)
and, therefore, we can say that {Xn()}n > 0 is a Cauchy sequence in C([0, T0],a),
uniformly in ( e dom(/) clB(xo, ).

Let noc we have Xn+l([)x( in C([0, T0]:f), rn()r( in LI([O, To],H)
and both limits are continuous in dom(/)ClclB(xo, r). Now let y()G C([0, T0],a
be the unique solution of the problem

z’G -O-f(z)+ r()a.e, in [0, T0]
z(0) G dom(f) gl clB(xo, r]).

By the property (c), we have r()(t) F(t,x()(t)) a.e. As before, we have

II Xn()(t)-- Y()(t) II -- C / II rn- l()(8) r()(8) ]] d8,
o

Vt C [0, To],

by which we deduce that xn()--y(( in C([0, T0],a). Hence we have x()= y(),
V e dora(f) clB(o, ).

Therefore, the function u:Hx() is the desired selector of the multifunction

s().

4. An Apphcation: Existence of Periodic Solutions

An immediate consequence of Theorem 5 is the following corollary:
Corollary 2: If hypoheses H(f), H(F)I hold, dom(f) is a closed subse of f and

if here eiss a compac and convex subset 4 dom(Z)clB(xo, q) such ha

S(K)(To) K, where is fixed as in Theorem 5, then there exists a solution x(. G
C([O, To] a) for the problem

x’ e cO- f(x) + F(t,x) a.e. on [O, To]
(o) (To).

Proof: Let u:dom(f) N clB(xo, )--C([0, To] a) be the continuous selector of the
multifunction HS() guaranteed by Theorem 5. Let eT0..C([0,T0],a)H be the
evaluation map, i.e. eT (x)= x(To).

Let if-eT o u:dom(/)ClclB(xo,)-H, we observe that the restriction of ff to
0the set K assumes values in the set K, and moreover, :KK is a continuous and

compact map. So Schauder’s fixed point theorem gives us K such that ff().
Then u()(. e C([0, T0],a is the desired periodic trajectory.
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