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1. Introduction

In this paper we study the existence and uniqueness of mild and classical solutions of
a semilinear functional-differential evolution nonlocal Cauchy problem in a general
Banach space. Methods of Co semigroups and the Banach theorem about the fixed
point are applied. The functional-differential evolution nonlocal Cauchy problem con-
sidered here is of the form

u’(t) + Au(t) Fl(t u(t), u((rl(t)),... u(O’m(t))

and

8

+ / r2(t,s u(s),/ f(s, r, u(v))dv)ds, t (to, to + a]
O o

(i.I)

u(to) + G(u) Uo, (1.2)

where to _> 0, a > 0, A is the infinitesimal generator of a CO semigroup of operators
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on a Banach space, F (i 1,2), G, f, ai (i = 1,...,m) are given functions satisfying
some assumptions and u0 is an element of the Banach space.

The results obtained pertaining to the nonlocal evolution problem are generaliza’
tions of those given by Byszewski [2, 4, 5], and by Balasubramaniam and Chandrase-
karan [1]. Moreover, the results obtained concerning the evolution problem (1.1)-
(1.2), where F2 0 and G 0, are generalizations of those given by Winiarska [10]
and eazy [9].

Nonlocal semilinear and nonlinear functional-differential evolution Cauchy
problems in general Banach spaces have also been studied by Byszewski [3, 6, 7] and
by Lin, Liu [8].

2. Notation and Definitions

Let E be a Banach space with norm I1" II and let {T(t)} > 0 be a CO semigroup of
operators on E.

In this paper we assume that -A is the infinitesimal generator of a Co semigroup
of operators on E, D(A) is the domain of A, o >_ 0, a > 0,

I" --[to, to+a], A: --{(t,s)’to<_S<_t <_to+a }
M: sup il T(t)II BL(E,E), (2.1)

e [o,,]

and
X: C(I,E)

FI: I x Em + 1--,E, F2: A x E2---,E, G: X-,E,

f: A x E--,E, ri: I---,I (i 1,..., m)

are given functions satisfying some assumptions.
In the sequel, the operator norm I1" II BL(E, will be denoted by I1" II.
We will need the following two definitions oE mild and classical solutions of the

nonlocal Cauchy problem (1.1)-(1.2):
Definition 2.1: A function u E X satisfying the integral equation

u(t) T(t- to)Uo T(t- to)G(u

+ / T(t S)Fl(S u(s), t(O’l(S)),... u(rm(S)))ds
o

(2.2)

+ / T(t s) F2(s r, u(r), f(r, #, u(#))d#)dr ds, t E I,

o o o

is said to be a mild solution of the nonlocal Cauchy problem (1.1)-(1.2) on I.
Definition 2.2: A function u: I---,E is said to be a classical solution of the nonlocal

Cauchy problem (1.1)-(1.2)on I if:
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(i)
(ii)

u is continuous on I and continuously differentiable on I\{t0)
u’(t) + Au(t) El(t u(t), u(crl(t)),... u(crm(t))

8

o o

(iii) u(to + G(u) uo.

t I\{to}

3. Theorem about a Mild Solution

Theorem 3.1: Assume that
(i) for all z E E (i O, 1,...,m), the function I t-Fi(t, zo, zl,...,zm) E is

continuous on I, for all ziGE (i=1,2) the function A S(t,s)-
F2(t,s, zl, Z2) E is continuous on A, for all z E the function A
(t, s)f(t, s, z) e E is continuous on A, G: XE, r C(I, I) (i : 1,..., m)
and uo E;

(ii) there are constants L > 0 (i 1,2,3,4) such that
m

II Fl(t, zo, zl,’",zm)- Fl(t,zo,l,’",m) II <-- L1E II zi--i II
i=0

for t E I, zi,lEE (i O, 1,...,m); (3.1)

2

II F2(t,s, zl,z2)- F2(t,s,l,2)II _< L2 II z- II
i=1

for (t,s) e A, zi, E E (i-1,2);

for (t,s) A, z,7 E; (3.3)

II G(w)-G( <_ L4 [I w- ) [IX for w,) e X;

(iii) M[Laa(m + 1)+ L2a2(1 + L3a +L4] < 1.
Then the nonlocal Cauchy problem (1.1)-(12) has a unique mild solution on I.
Proof: Introduce an operator on X by the formula

(w)(t)" T(t- to)uo T(t- to)G(w

+ f T(t S)Fl(S w(s), W(Crl(8)),... w((Tm(S)))d8
o

(3.4)
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+ / T(t s) F2(s v, w(v), f(r, #, w(#))d#)dv ds

o o o

for wEXandtE1.
It is easy to see that

" X-X.
Now, we shall show that is a contraction on X. For this purpose, consider the

difference

(w)(t) (; )(t) T(t to)[G(w G( )]

+ f T(t s)[Fl(s w(s), w(rl(s)),..., w(Crm(S))
o

Fl(S o (s), v (rl(s)),... (rm(S)))]ds

+ /,, T(t s) F2(s r, w(v), f(v, #, w(#))d#)
o o

F2(s,v,v (v), : f(r, #, (#))d#) ds

o

for w, Xand tI.
From (3.6), (2.1)and (3.1)-(3.4),

(3.6)

II (Vw)(t) ()(t)II S II T(t to)II II a(w) a( )11

+ f II T(t s)II II Fl(S, w(s), W(ffl(8)),..., W((Ym(8))
o

(3.7)

Fl(S (s), : ((rl(S)),... (O’m(S))) II d

+ /.. II T(t s)II II F2(s, 7", w(7"), f(7", it, w(tt))dtt))
o O O

f2(s 7", (t), / /(7", #, (#))d#)II ds

o

ds
J

to 1
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+ ML2 / II w(r)- (r) ]] + II f(r,#,w(#))- f(r,#, (#))lid# ds

o o o- ML4 II w- I[ X + MLla(m + 1)II w- II x

+ ML2 / I] w(7.)- (7")II + L3 II ()II ds

o o o

M[Lla(m + 1) + L2a2(1 + L3a + L4] II w- [I x

forw,@ EXandtEI.
Let

q: M[Lla(m + 1)+ L2a2(1 + L3a + L4].
Then, by (3.7)and by assumption (iii),

II e II x < q II tv II x for w, e X (3.8)

with 0 < q < 1. This shows that operator is a contraction on X.
Consequently, from (3.5) and (3.8), operator 5 satisfies all the assumptions of the

Banach contraction theorem. Therefore, in space X there is only one fixed point of z5
and this point is the mild solution of the nonlocal Cauchy problem (1.1)-(1.2). So
the proof of Theorem 3.1 is complete.

4. Theorem about a Classical Solution

Theorem 4.1: Suppose that assumptions (i)-(iii) of Theorem 3.1 are satisfied. Then
the nonlocal Cauchy problem (1.1)-(1.2) has a unique mild solution on I. Assume,
additionally, that:

(i) E i a fi Banac vac, o D(A) () D(A), -notes the unique mild solution of problem (1.1)-(1.2);
(ii) there are constants C > 0 (i 1,2) such that

I[ Fl(t, zO, Zl,’",Zm)- Fl(’ ,Zo, Zl,’",Zm) II
_
c1 It-7

for t,7 e I, z E (i O, 1,...,m)
(4.1)

and

II F2(t, s, Zl, Z2) r2( 8, Zl, z2) il < C2 -7

for (t,s) e A, (,s) eA, z e E (i-1,2);
(4.2)
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(iii) there is a constant c > 0 such that

Ior t,7 e I (i O, 1,..., m).
(4.3)

Then u is the unique classical solution of the nonlocal Cauchy problem (1.1)-(1.2)
on Io

Proof: Since all the assumptions of Theorem 3.1 are satisfied, then the nonlocal
Cauchy problem (1.1)-(1.2) possesses a unique mild solution which, according to
assumption (i), is denoted by u.

Now, we shall show that u is the unique classical solution of problem (1.1)-(1.2) on
I. To this end, introduce

and

NI: max [I Fl(S u(s) U(al(S)),.. u(rm(S)) II
s6. I " (4.4)

N2" -(,o)Amax [I F2((, r/, u(r/), / f(r/, #, u(#))dtt)[[ (4.5)
o

and observe that

u(t + h)- u(t) -[T(t + h to)uo T(t to)Uo] (4.6)

+/

-[T(t + h to)G(u T(t to)G(u)]
to+h

+ / T(t + h S)Fl(S u(s),/t(ffl(8)),..., zt(O’m(S)))d8
o

t+h

+ / T(t + h S)Fl(S u(s), u(o’l(S)),... u(rm(S)))ds
to+h

/ T(t- S)Fl(S u(s), zt(rl(8)),... U(am(S)))ds
o

to+h
r(t + h s) F2(s ’, u(v), f(v, #, u(#))d#)dv ds

o o

t+h

to+h
T(t + h s) F2(s r, u(r), f(v, #, u(#))d#)d" ds

o o
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/ T(t s) F2(s r, u(r), f(r, #, u(#))d#)dr ds

o o o

T(t- to)[T(h I]uo T(t- to)[T(h I]G(u)

to+h
+ / T(t + h s)Fl(s, u(s), u(crl(s)), u((rm(S)))ds

o

+ / T(t- )[FI( + h,( + h), (1( + h)),...,(( + h)))
o

Fl(S u(s), u((rl(S)),... U(m(S)))]ds

+ / T(t + s) F2(s r, u(v), f(v, #, u(#))d#)dr ds

o o o

0 tO tO

for tE[to to+a), h>0and t4-hE(to, o 4-a].
Consequently, by (4.6), (2.1)and (4.1)-(4.5),

II u(t + h) u(t) II <_ hM II Auo II + hM I] AG(u) II + hMN + ahML

4- ML1 / II u(s 4- h)- u(s) II 4- E II u((ri(s 4- h))- u(ri(s)) II ds

tO i=1

4- a2ML2h + 2aMN2h <_ Ch + MLl(l + mc) / Il u(s 4- h)- u(s) ll ds
o

for [to, o 4- a), h > 0 and 4- h (to, o 4- a], where

(4.7)
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C" M[ II Auo [I 4- II AG(u) II 4- N1 4- all 4- a2L2 4- 2aN2]"
From (4.7) and Gronwall’s inequality,

II vt(t 4- h)- u(t) II <- ceaMLl(1 + mc)h

for t 6 [t0, to 4- a), h > 0 and t 4- h 6 (to, o 4- hi. Hence u is Lipschitz continuous on I.
The Lipschitz continuity of u on I and inequalities (4.1), (3.1), (4.2) imply that

the function

I t-+k(t): Fl(t u(t), u(’l(t)),... u(trm(t))

o o

is Lipschitz continuous on I. This property of tk(t) together with assumptions of
Theorem 4.1 imply by Theorem 1 from [10], by Theorem 3.1 from this paper and by
(2.2), that the linear Cauchy problem

v’(t) + Av(t)- k(t), I\{to}

V(to) a(u)

has a unique classical solution v such that

v(t) T(t- to)uo T(t- to)G(u + / T(t- s)k(s)ds
o

= T(t- to)uo T(t- to)G(u

4- / T(t S)Fl(S u(s), U(’l(S)),... t(rn(S)))ds
o

+ / T(t- s)
o

F2(s r, u(r), f(r, #, u(#))d#)dr ds u(t), t I.

o o

Consequently, u is the unique classical solution of the nonlocal Cauchy problem (1.1)-
(1.2) on I. Therefore, the proof of Theorem 4.1 is complete.
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