EXISTENCE AND UNIQUENESS OF SOLUTIONS OF A SEMILINEAR FUNCTIONAL-DIFFERENTIAL EVOLUTION NONLOCAL CAUCHY PROBLEM

KATARZYNA KOŁODZIEJ

Cracow University of Technology Institute of Mathematics Warszawska 24 31-155 Cracow, Poland

(Received December, 1998; Revised April, 1999)

Two theorems about the existence and uniqueness of mild and classical solutions of a semilinear functional-differential evolution nonlocal Cauchy problem in a general Banach space are proved. Methods of semigroups and the Banach contraction theorem are applied.

Key words: Abstract Cauchy Problem, Evolution Equation, Functional-Differential Equation, Nonlocal Condition, Existence and Uniqueness of the Solutions, Mild and Classical Solutions, Banach Contraction Theorem.

AMS subject classifications: 34G20, 34K30, 34K99, 47D03, 47H10.

1. Introduction

In this paper we study the existence and uniqueness of mild and classical solutions of a semilinear functional-differential evolution nonlocal Cauchy problem in a general Banach space. Methods of C_0 semigroups and the Banach theorem about the fixed point are applied. The functional-differential evolution nonlocal Cauchy problem considered here is of the form

$$\begin{aligned} u'(t) + Au(t) &= F_1(t, u(t), u(\sigma_1(t)), \dots, u(\sigma_m(t))) \\ &+ \int_{t_0}^t F_2(t, s, u(s)), \int_{t_0}^s f(s, \tau, u(\tau)) d\tau ds, \ t \in (t_0, t_0 + a] \end{aligned} \tag{1.1}$$

and

$$u(t_0) + G(u) = u_0, (1.2)$$

where $t_0 \ge 0$, a > 0, -A is the infinitesimal generator of a C_0 semigroup of operators

Printed in the U.S.A. ©2000 by North Atlantic Science Publishing Company 171

on a Banach space, F_i (i = 1, 2), G, f, σ_i (i = 1, ..., m) are given functions satisfying some assumptions and u_0 is an element of the Banach space.

The results obtained pertaining to the nonlocal evolution problem are generalizations of those given by Byszewski [2, 4, 5], and by Balasubramaniam and Chandrasekaran [1]. Moreover, the results obtained concerning the evolution problem (1.1)-(1.2), where $F_2 = 0$ and G = 0, are generalizations of those given by Winiarska [10] and Pazy [9].

Nonlocal semilinear and nonlinear functional-differential evolution Cauchy problems in general Banach spaces have also been studied by Byszewski [3, 6, 7] and by Lin, Liu [8].

2. Notation and Definitions

Let E be a Banach space with norm $\|\cdot\|$ and let $\{T(t)\}_{t\geq 0}$ be a C_0 semigroup of operators on E.

In this paper we assume that -A is the infinitesimal generator of a C_0 semigroup of operators on E, D(A) is the domain of A, $t_0 \ge 0$, a > 0,

$$I: = [t_0, t_0 + a], \quad \Delta: = \{(t, s): t_0 \le s \le t \le t_0 + a\}$$
$$M: = \sup_{t \in [0, a]} || T(t) ||_{BL(E, E)}, \tag{2.1}$$

and

+

$$\begin{split} F_1 : I \times E^{m+1} &\rightarrow E, \quad F_2 : \Delta \times E^2 \rightarrow E, \quad G : X \rightarrow E, \\ f : \Delta \times E \rightarrow E, \quad \sigma_i : I \rightarrow I \quad (i = 1, \ldots, m) \end{split}$$

X: = C(I, E)

are given functions satisfying some assumptions.

In the sequel, the operator norm $\|\cdot\|_{BL(E,E)}$ will be denoted by $\|\cdot\|$.

We will need the following two definitions of mild and classical solutions of the nonlocal Cauchy problem (1.1)-(1.2):

Definition 2.1: A function $u \in X$ satisfying the integral equation

$$u(t) = T(t - t_0)u_0 - T(t - t_0)G(u) + \int_{t_0}^t T(t - s)F_1(s, u(s), u(\sigma_1(s)), \dots, u(\sigma_m(s)))ds$$

$$\int_{t_0}^t T(t - s) \left(\int_{t_0}^s F_2(s, \tau, u(\tau)), \int_{t_0}^\tau f(\tau, \mu, u(\mu))d\mu)d\tau\right) ds, \ t \in I,$$
(2.2)

is said to be a mild solution of the nonlocal Cauchy problem (1.1)-(1.2) on I.

Definition 2.2: A function $u: I \to E$ is said to be a *classical solution* of the nonlocal Cauchy problem (1.1)-(1.2) on I if:

- (i) u is continuous on I and continuously differentiable on $I \setminus \{t_0\}$,
- $(ii) \qquad u'(t) + Au(t) = F_1(t, u(t), u(\sigma_1(t)), \dots, u(\sigma_m(t)))$

$$+ \int\limits_{t_0}^t F_2\left(t,s,u(s),\int\limits_{t_0}^s f(s,\tau,u(\tau))d\tau\right)ds, \quad t\in I\backslash\{t_0\},$$

 $(iii) \quad u(t_0+G(u)=u_0.$

3. Theorem about a Mild Solution

Theorem 3.1: Assume that

- (i) for all $z_i \in E$ (i = 0, 1, ..., m), the function $I \ni t \to F_1(t, z_0, z_1, ..., z_m) \in E$ is continuous on I, for all $z_i \in E$ (i = 1, 2) the function $\Delta \ni (t, s) \to F_2(t, s, z_1, z_2) \in E$ is continuous on Δ , for all $z \in E$ the function $\Delta \ni (t, s) \to f(t, s, z) \in E$ is continuous on Δ , $G: X \to E$, $\sigma_i \in C(I, I)$ (i = 1, ..., m) and $u_0 \in E$;
- (ii) there are constants $L_i > 0$ (i = 1, 2, 3, 4) such that

$$||F_1(t, z_0, z_1, ..., z_m) - F_1(t, \tilde{z}_0, \tilde{z}_1, ..., \tilde{z}_m)|| \le L_1 \sum_{i=0}^m ||z_i - \tilde{z}_i||$$

for
$$t \in I$$
, $z_i, \widetilde{z}_i \in E$ $(i = 0, 1, \dots, m);$ (3.1)

$$\|F_{2}(t,s,z_{1},z_{2}) - F_{2}(t,s,\widetilde{z}_{1},\widetilde{z}_{2})\| \leq L_{2}\sum_{i=1}^{2} \|z_{i} - \widetilde{z}_{i}\|$$

for $(t,s) \in \Delta, \ z_{i}, \widetilde{z}_{i} \in E \ (i = 1,2);$ (3.2)

$$\|f(t,s,z) - f(t,s,\tilde{z})\| \le L_3 \|z - \tilde{z}\|$$

for $(t,s) \in \Delta$, $z, \tilde{z} \in E$; (3.3)

$$\|G(w) - G(\widetilde{w})\| \le L_4 \|w - \widetilde{w}\|_X \text{ for } w, \widetilde{w} \in X;$$

$$(3.4)$$

(iii) $M[L_1a(m+1) + L_2a^2(1+L_3a) + L_4] < 1$. Then the nonlocal Cauchy problem (1.1)-(1.2) has a unique mild solution on I. **Proof:** Introduce an operator \mathfrak{F} on X by the formula

$$(\mathfrak{F}w)(t) := T(t-t_0)u_0 - T(t-t_0)G(w)$$

+
$$\int_{t_0}^t T(t-s)F_1(s, w(s), w(\sigma_1(s)), \dots, w(\sigma_m(s)))ds$$

$$+ \int_{t_0}^t T(t-s) \left(\int_{t_0}^s F_2(s,\tau,w(\tau),\int_{t_0}^\tau f(\tau,\mu,w(\mu))d\mu)d\tau \right) ds$$

for $w \in X$ and $t \in I$.

It is easy to see that

$$\mathfrak{F}: X \to X. \tag{3.5}$$

Now, we shall show that ${\mathfrak T}$ is a contraction on X. For this purpose, consider the difference

$$(\mathfrak{F}w)(t) - (\mathfrak{F}\widetilde{w})(t) = -T(t-t_0)[G(w) - G(\widetilde{w})] + \int_{t_0}^t T(t-s)[F_1(s,w(s),w(\sigma_1(s)),\dots,w(\sigma_m(s)))) - F_1(s,\widetilde{w}(s),\widetilde{w}(\sigma_1(s)),\dots,\widetilde{w}(\sigma_m(s)))]ds + \int_{t_0}^t T(t-s) \left(\int_{t_0}^s \left[F_2(s,\tau,w(\tau),\int_{t_0}^\tau f(\tau,\mu,w(\mu))d\mu) - F_2(s,\tau,\widetilde{w}(\tau),\int_{t_0}^\tau f(\tau,\mu,\widetilde{w}(\mu))d\mu)\right]d\tau\right)ds$$
(3.6)

for $w, \widetilde{w} \in X$ and $t \in I$.

From (3.6), (2.1) and (3.1)-(3.4),

$$\| (\mathfrak{F}w)(t) - (\mathfrak{F}\widetilde{w})(t) \| \leq \| T(t-t_0) \| \| G(w) - G(\widetilde{w}) \|$$

$$+ \int_{t_0}^t \| T(t-s) \| \| F_1(s,w(s),w(\sigma_1(s)),\ldots,w(\sigma_m(s)))$$

$$- F_1(s,\widetilde{w}(s),\widetilde{w}(\sigma_1(s)),\ldots,\widetilde{w}(\sigma_m(s))) \| ds$$

$$+ \int_{t_0}^t \| T(t-s) \| \left(\int_{t_0}^s \| F_2(s,\tau,w(\tau),\int_{t_0}^\tau f(\tau,\mu,w(\mu))d\mu) \right)$$

$$- F_2(s,\tau,\widetilde{w}(t),\int_{t_0}^\tau f(\tau,\mu,\widetilde{w}(\mu))d\mu) \| d\tau \right) ds$$

$$\leq ML_4 \| w - \widetilde{w} \|_X + ML_1 \int_{t_0}^t \left(\| w(s) - w(\widetilde{s}) \| + \sum_{i=1}^m \| w(\sigma_i(s)) - \widetilde{w}(\sigma_i(s)) \| \right) ds$$

$$+ ML_2 \int_{t_0}^t \left(\int_{t_0}^{s} \left[\parallel w(\tau) - \widetilde{w}\left(\tau\right) \parallel + \int_{t_0}^{\tau} \parallel f(\tau, \mu, w(\mu)) - f(\tau, \mu, \widetilde{w}\left(\mu\right)) \parallel d\mu \right] d\tau \right) ds$$

$$\leq ML_{4} \parallel w - \widetilde{w} \parallel_{X} + ML_{1}a(m+1) \parallel w - \widetilde{w} \parallel_{X}$$

$$+ ML_{2} \int_{t_{0}}^{t} \left(\int_{t_{0}}^{s} \left[\| w(\tau) - \widetilde{w}(\tau) \| + L_{3} \int_{t_{0}}^{\tau} \| w(\mu) - \widetilde{w}(\mu) \| d\mu \right] d\tau \right) ds$$

$$= M \Big[L_1 a(m+1) + L_2 a^2 (1 + L_3 a) + L_4 \Big] \| w - \widetilde{w} \|_X$$

for $w, \widetilde{w} \in X$ and $t \in I$.

Let

$$q := M \Big[L_1 a(m+1) + L_2 a^2 (1+L_3 a) + L_4 \Big].$$

Then, by (3.7) and by assumption (iii),

$$\| \mathfrak{F}w - \mathfrak{F}\widetilde{w} \|_X \le q \| w - \widetilde{w} \|_X \text{ for } w, \widetilde{w} \in X$$

$$(3.8)$$

with 0 < q < 1. This shows that operator \mathfrak{F} is a contraction on X.

Consequently, from (3.5) and (3.8), operator \mathfrak{F} satisfies all the assumptions of the Banach contraction theorem. Therefore, in space X there is only one fixed point of \mathfrak{F} and this point is the mild solution of the nonlocal Cauchy problem (1.1)-(1.2). So the proof of Theorem 3.1 is complete.

4. Theorem about a Classical Solution

Theorem 4.1: Suppose that assumptions (i)-(iii) of Theorem 3.1 are satisfied. Then the nonlocal Cauchy problem (1.1)-(1.2) has a unique mild solution on I. Assume, additionally, that:

- (i) E is a reflexive Banach space, $u_0 \in D(A)$ and $G(u) \in D(A)$, where u denotes the unique mild solution of problem (1.1)-(1.2);
- (ii) there are constants $C_i > 0$ (i = 1, 2) such that

$$\| F_{1}(t, z_{0}, z_{1}, \dots, z_{m}) - F_{1}(\widetilde{t}, z_{0}, z_{1}, \dots, z_{m}) \| \leq C_{1} | t - \widetilde{t} |$$

$$for \ t, \widetilde{t} \in I, \ z_{i} \in E \ (i = 0, 1, \dots, m)$$

$$(4.1)$$

and

$$\|F_2(t,s,z_1,z_2) - F_2(\widetilde{t},s,z_1,z_2)\| \le C_2 |t-\widetilde{t}|$$

$$for (t,s) \in \Delta, \ (\widetilde{t},s) \in \Delta, \ z_i \in E \quad (i=1,2);$$

$$(4.2)$$

(iii) there is a constant c > 0 such that

$$\| u(\sigma_i(t)) - u(\sigma_i(\widetilde{t})) \| \le c \| u(t) - u(\widetilde{t}) \|$$

for $t, \widetilde{t} \in I$ $(i = 0, 1, ..., m).$ (4.3)

Then u is the unique classical solution of the nonlocal Cauchy problem (1.1)-(1.2) $on \ I.$

Proof: Since all the assumptions of Theorem 3.1 are satisfied, then the nonlocal Cauchy problem (1.1)-(1.2) possesses a unique mild solution which, according to assumption (i), is denoted by u.

Now, we shall show that u is the unique classical solution of problem (1.1)-(1.2) on I. To this end, introduce

$$N_1: = \max_{s \in I} \| F_1(s, u(s), u(\sigma_1(s)), \dots, u(\sigma_m(s))) \|$$
(4.4)

and

$$N_{2} := \max_{(\xi,\eta) \in \Delta} \| F_{2}(\xi,\eta,u(\eta), \int_{t_{0}}^{\eta} f(\eta,\mu,u(\mu))d\mu) \|, \qquad (4.5)$$

and observe that

+

+

$$\begin{aligned} u(t+h) - u(t) &= \left[T(t+h-t_0)u_0 - T(t-t_0)u_0 \right] \end{aligned} \tag{4.6} \\ &- \left[T(t+h-t_0)G(u) - T(t-t_0)G(u) \right] \\ &+ \int_{t_0}^{t_0+h} T(t+h-s)F_1(s,u(s),u(\sigma_1(s)),\ldots,u(\sigma_m(s)))ds \\ &+ \int_{t_0+h}^{t+h} T(t+h-s)F_1(s,u(s),u(\sigma_1(s)),\ldots,u(\sigma_m(s)))ds \\ &- \int_{t_0}^{t} T(t-s)F_1(s,u(s),u(\sigma_1(s)),\ldots,u(\sigma_m(s)))ds \\ &+ \int_{t_0+h}^{t_0+h} T(t+h-s) \left(\int_{t_0}^{s} F_2(s,\tau,u(\tau),\int_{t_0}^{\tau} f(\tau,\mu,u(\mu))d\mu)d\tau \right) ds \\ &+ \int_{t_0+h}^{t+h} T(t+h-s) \left(\int_{t_0}^{s} F_2(s,\tau,u(\tau),\int_{t_0}^{\tau} f(\tau,\mu,u(\mu))d\mu)d\tau \right) ds \end{aligned}$$

$$\begin{split} &-\int_{t_0}^{t} T(t-s) \left(\int_{t_0}^{s} F_2(s,\tau,u(\tau),\int_{t_0}^{\tau} f(\tau,\mu,u(\mu))d\mu)d\tau\right) ds \\ &= T(t-t_0)[T(h)-I]u_0 - T(t-t_0)[T(h)-I]G(u) \\ &+\int_{t_0}^{t_0+h} T(t+h-s)F_1(s,u(s),u(\sigma_1(s)),\ldots,u(\sigma_m(s)))ds \\ &+\int_{t_0}^{t} T(t-s)[F_1(s+h,u(s+h),u(\sigma_1(s+h)),\ldots,u(\sigma_m(s+h))) \\ &-F_1(s,u(s),u(\sigma_1(s)),\ldots,u(\sigma_m(s)))]ds \\ &+\int_{t_0}^{t_0+h} T(t+h-s) \left(\int_{t_0}^{s} F_2(s,\tau,u(\tau),\int_{t_0}^{\tau} f(\tau,\mu,u(\mu))d\mu)d\tau\right) ds \\ &+\int_{t_0}^{t} T(t-s) \left(\int_{t_0}^{s} \left[F_2(s+h,\tau,u(\tau),\int_{t_0}^{\tau} f(\tau,\mu,u(\mu))d\mu\right)d\tau\right] ds \\ &-F_2(s,\tau,u(\tau),\int_{t_0}^{\tau} f(\tau,\mu,u(\mu))d\mu\right) d\tau \right) ds \\ &+\int_{t_0}^{t} T(t-s) \left(\int_{s}^{s+h} F_2(s+h,\tau,u(\tau),\int_{t_0}^{\tau} f(\tau,\mu,u(\mu))d\mu)d\tau\right) ds \end{split}$$

for $t \in [t_0, t_0 + a), h > 0$ and $t + h \in (t_0, t_0 + a]$. Consequently, by (4.6), (2.1) and (4.1)-(4.5),

$$\| u(t+h) - u(t) \| \le hM \| Au_0 \| + hM \| AG(u) \| + hMN_1 + ahML_1$$

$$+ ML_1 \int_{t_0}^{t} \left(\| u(s+h) - u(s) \| + \sum_{i=1}^{m} \| u(\sigma_i(s+h)) - u(\sigma_i(s)) \| \right) ds$$

$$+ a^2 ML_2 h + 2aMN_2 h \le Ch + ML_1(1+mc) \int_{t_0}^{t} \| u(s+h) - u(s) \| ds$$

$$(4.7)$$

for $t \in [t_0, t_0 + a)$, h > 0 and $t + h \in (t_0, t_0 + a]$, where

$$C: = M \Big[\| Au_0 \| + \| AG(u) \| + N_1 + aL_1 + a^2L_2 + 2aN_2 \Big].$$

From (4.7) and Gronwall's inequality,

$$|| u(t+h) - u(t) || \le Ce^{aML_1(1+mc)}h$$

for $t \in [t_0, t_0 + a)$, h > 0 and $t + h \in (t_0, t_0 + a]$. Hence u is Lipschitz continuous on I.

The Lipschitz continuity of u on I and inequalities (4.1), (3.1), (4.2) imply that the function

$$\begin{split} I \ni t &\rightarrow k(t) := F_1(t, u(t), u(\sigma_1(t)), \dots, u(\sigma_m(t))) \\ &+ \int_{t_0}^t F_2\left(t, s, u(s), \int_{t_0}^s f(s, \tau, u(\tau)) d\tau\right) ds \in E \end{split}$$

is Lipschitz continuous on I. This property of $t \rightarrow k(t)$ together with assumptions of Theorem 4.1 imply by Theorem 1 from [10], by Theorem 3.1 from this paper and by (2.2), that the linear Cauchy problem

$$\begin{split} v'(t) + Av(t) &= k(t), \ t \in I \backslash \{t_0\}, \\ v(t_0) &= u_0 - G(u) \end{split}$$

has a unique classical solution v such that

Consequently, u is the unique classical solution of the nonlocal Cauchy problem (1.1)-(1.2) on I. Therefore, the proof of Theorem 4.1 is complete.

References

 Balasubramaniam, P. and Chandrasekaran, M., Existence of solutions of nonlinear integrodifferential equation with nonlocal boundary conditions in Banach space, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), 1-13.

- [2] Byszewski, L., Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162:2 (1991), 494-505.
- [3] Byszewski, L., Uniqueness criterion for solution of abstract nonlocal Cauchy problem, J. Appl. Math. Stoch. Anal. 6 (1993), 49-54.
- [4] Byszewski, L., Differential and Functional-Differential Problems with Nonlocal Conditions, Cracow University of Technology, Monograph 184, Cracow 1995.
- [5] Byszewski, L., Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal Cauchy problem, *Selected Probl. in Math.*, Cracow Univ. of Tech., Anniversary Issue 6 (1995), 25-33.
- [6] Byszewski, L., On weak solutions of functional-differential abstract nonlocal Cauchy problem, Annales Polonici Math. 65 (1997), 163-170.
- Byszewski, L., Application of properties of the right-hand sides of evolution equations to an investigation of nonlocal evolution problems, *Nonlinear Anal.* 33 (1998), 413-426.
- [8] Lin, Y. and Liu, J.H., Semilinear integrodifferential equations with nonlocal Cauchy problem, *Nonlinear Anal.* 26 (1996), 1023-1033.
- [9] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, Berlin, Tokyo 1983.
- [10] Winiarska, T., Nonlinear evolution equation with a parameter, Bull. Polon. Acad. Sci. Math Ser. 37 (1989), 157-162.