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We consider the temperature distribution in an infinite plate composed of
two dissimilar materials. We suppose that half of the upper surface
(y h,- oc < x < 0) satisfies the general boundary condition of the Neu-
mann type, while the other half (y h,0 < x < oc) satisfies the general
boundary condition of the Dirichlet type. Such a plate is allowed to cool
down on the lower surface with the help of a fluid medium which moves
with a uniform speed v and which cools the plate at rate f. The resulting
mixed boundary value problem is reduced to a functional equation of the
Wiener-Hopf type by use of the Fourier transform. We then seek the solu-
tion using the analytic continuation and an extended form of the Liouville
theorem. The temperature distribution in the two layers can then be
written in a closed form by use of the inversion integral.
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1. Introduction

The problem of heat flow in layered and composite structures has attracted consider-
able attention in the last decades. The simplest problem is that of the one-dimension-
al heat conduction or linear heat flow. Carslaw and Jaeger [3] have discussed differ-
ent aspects of linear heat flow in plates and rods having homogeneous or composite
structures. In such problems, the boundary of the body under consideration is either
assumed to be insulated or kept at a constant temperature. Some problems of practi-
cal interest, however, require imposition of mixed boundary conditions. The classical
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transform or Fourier series techniques are then no longer applicable. An ingenious
method of dealing with such problems is the use of the Wiener-Hopf technique.

One of the early studies in this regard is by Caflisch and Keller [2] who have con-
sidered the problem of steady state heat conduction in a sufficiently hot plate being
cooled by water flowing over half of its upper surface while the other half and its
lower surface are kept insulated. The water adjacent to the hotter part is converted
to steam, while the water adjacent to the cooler part remains in liquid form. This
situation results in mixed boundary conditions as the part which is treated by the
flowing liquid satisfies the cooling condition while the remaining part may be con-
sidered as being insulated. The solution in terms of an infinite product involving the
roots of a certain transcendental equation is then obtained using the Wiener-Hopf
technique. More details about this technique may be found in the treatise by Noble

Levine [7] also considered this problem, but assumed a simpler representation of
the sputtering temperature. In both cases [2] and [7], the authors first obtained
appropriate Green’s functions for the problem. Thus, in each case, the problem was
reduced to a singular integral equation which could then be solved by use of the
Wiener-Hopf technique.

Evans [4] considered the problem of lowering a long circular cylinder at a uniform
temperature into a cooling liquid. This liquid cools the lower half at a constant rate,
while the upper half remains insulated. However, instead of reducing the resulting
mixed boundary value problem to an integral equation, Evans used the modification
due to Jones [6] which yields the so-called Wiener-Hopf functional equation without
the need of a Green’s function. Georgiadis, Barber and Ben Ammar [5], Bera and
Chakrabarti [1] and Zaman [9] have considered mixed boundary value problems
arising from layered media having either mixed interfaces or mixed cooling conditions
using the Jones modified method.

In this paper, we study a more general model of the steady state cooling problem
by assuming general mixed boundary conditions over the upper surface of an infinite
rectangular plate composed of two materials with different thermal properties. We
suppose that half of the upper surface satisfies one general boundary condition. Such
a plate is allowed to cool with the help of a fluid medium which moves with a uni-
form speed v and which affects a constant rate of cooling f on the lower surface of
the plate. Using the Jones modification of the Wiener-Hopf technique, we transform
this problem into the Wiener-Hopf equation and obtain the solution in a closed form.

2. Formulation of the Problem

We consider an infinite rectangular plate of uniform thickness h, composed of two
homogeneous but dissimilar materials. The faces of the plate are represented by the
planes y 0 and y h. We write Kl,k and u(x,y) for the conductivity, the
diffusivity and the steady state temperature distribution in the upper layer 0
and the corresponding quantities in the lower layer i < y < h are denoted by
and u2(x y), respectively.

The partial differential equations satisfied by ui(x y), 1, 2 are

cu2u 2Sl-0--,0 < y < (1)
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2sOn2 5 < y < hV 2U2 "Z OX

where

Ox2 +-y2, sj

(2)

v
2kj’

j 1, 2. (3)

We seek to solve equations (1) and (2) under the following set of conditions:
(i) For the lower surface,

-c < z < c. (4)

(ii)

Ou1
Oy - ul 0 on y 0,

For the interface

(iii)

uI u2 |

K OUl-K On2
1 0y 2-

For the other surface,

ony--6, -oo<x<oo. (5)

(iv)

u2(x,h f(x) on y h, 0_<x<c (6)
Ou2
Oy g(x) n y- h’ -oo<x<0. (7)

In addition, we assume that there is a particular level of temperature
difference between the extremities of the composite plate, i.e.,

UlU2--l as x--oo

t1 zt2--+O as x--+- (8)

and

Moreover,

Ou2
u2,- 0(1)as x-O. (9)

f() < clexp(7._ x) as x---+oo, (10)

Ig(x) <c2exp(7+x) as x- (11)

where Cl, c2, 7" + and 7"_ are constants and -s < 7"_ < 7" + < s where
s min{sl, s2}.

We shall use the Jones method to reduce the above mixed boundary value problem
to the Wiener-Hopf equation. When we set

uj(x, y) exp(sjx)j(x, y),

equations (1) and (2)reduce to

j- 1,2, (12)
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V2j 28jCj O, j 1,2. (13)

The boundary and the interface conditions along the parallel sides now become

0
Oy -fll-0ny-0’ -cx<x< (14)

exp(slx)1 exp(s2x)2

02
ony--5, -c<x<

g
1exp(s1 x)_yl g2exp(s2x)_O__

2(x, y)-/(x)exp(- s2x on y h, - < x < 0,

02
Oy =g(x)exp(-s2x on y- h, -<x<0.

The behavior of the solution of the extremities is governed by

(15)

(16)

(17)

1 exp( SlX)---*O 2
1 exp(- SIX), 2

(18)

where e is an arbitrary small number. Moreover, the temperature should be bounded
at x-0ony-h, sothat

02 0(1) (19)

3. Reduction to the Wiener-Hopf Equation

We define the Fourier transform in x and its inverse as

and

f*(a)- / f(x)exp(icx)dx

x + id

f(x) - / f*(a)exp( iax)da,
o, + d

(20)

(21)

where d is a constant chosen in the domain of analyticity of f*(c) which is the strip
r_ _< Im(c) _< r +.

The half-range Fourier transforms are defined by

f*+ (a) / f(x)exp(iax)dx
0

(22)
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0

f*_ (a) / f(x)exp(iax)dx, (23)

so that

f*(c) f*+ (c)+ f*_ (c). (24)

It may be noted that if f(x)-O(er-x) as xoc and f(x)-O(er+x) as

x-oc, then f*+(c)is an analytic function of c in the upper half-plane
Im(a) > v_, while f*_ (a)is an analytic function of c in the lower half-plane
Im(c) < - +. By virtue of equation (24), f*(c) is then analytic in r_ <_ Im(a) <_ " +
(Nobel [8]).

Applying the Fourier transform to the partial differential equations (13), we get
2(,) 2

dy2 7jCj(c, y) 0, j 1, 2, (25)

where

2
7j ,j(c) V/a2 + sj. (26)

The branches of 7j are chosen such that

(0) + . (27)

The boundary and the interface conditions are transformed into

1 (a, y)+ [2(ct, y) 0 on y 0, (28)

(a,, isl, y) (ct,,-- is2, y) }KI (a- isl,Y K22 (ct- is2, Y
on y--5, (29)

+ (a, y) f*+ (a + is2) on y h,

-(, ) *_ ( + i) on h.

(30)

(31)

h mo. + (=, ) =nd + (=, ) =r =n=yti in the rgion

Im(o) > max(- 81, 82) 8, (32)

and the functions Cj (a, y) and Cj -(c, y) are analytic in the region

Im(a) < min(sl, s2)- s. (33)

Thus the functions (a,y)and Cj(c,y) are analytic in the common strip
-s < Im(c) < s.

The solution to (20) is given by

(c, y) Al(C) cosh3/ly + BI(C) sinh71Y (34)
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and

(, y) B(a) cosh72y + C(a) sinh72Y. (35)

Applying the boundary and interface conditions (28)-(31), we obtain

[ sinh72h]2(*a, h) A(a + i(s2- Sl))P fl(a)cshT2h +/2(a) 72

and

(36)

a h) P[72f1(a)sinh72h + f2(a)cosh72h]A(a + i(s2 Sl)), (37)

where

and

K1f2(a) h----cosh726{esinhP6 acoshP6}

72sinh726)cshP6/, sinhP6, }.
In terms of P and fl(a) and f2(a), we can obtain

(38)

(39)

(40)

B(a) PA{a + i(s2 Sl)}/l(a) (41)

and

C(a) 2A{c + i(s2 Sl)}f2(c). (42)

Eliminating A(c+ i(s2-sl) from equations (36) and (37), we arrive at the
Wiener-Hopf equation

f*+ ( + is2) + 2 (a,h) L(a)[g*_ (a + is2) + (a, h)], (43)

where

fl (c)cosh"/2h -t- f2(ct)sinh3’2h"2
72fl (a)sinhT:h + f2(a)cosh72h

Gl(C, h
(44)

4. Solution of the Wiener-Hopf Problem

The forms of the function fl(a) and f2(a) as given by (39) and (40) suggest that the
numerator and the denominator of L(a) do not have any branch points in the
complex a-plane. Thus L(a) can be written in the form



Cooling of a Layered Plate Under Mixed Conditions 203

where

I 3, > 0L(a)-A a2 32 an,
n=l -- n

[ sinhsh

A nl=l-n s2fl(O)sinhs2h + f2(O)coshsh.

(45)

(46)

We can then write

and

L + (c) A1/2 I (a + ic)+i (47)

2,__ ( c (48)L-() Aa -icon)

where each cn for n- 1,2,... is a simple zero of the function Gl(c,h and each fin,
for n- 1,2,... is a simple zero of G2(c,h). (These c’s and [3’s include all the simple
zeros o (., h) .d :(, h).) L + (.) i r om zo . os i tau h-
plane given by

r- Im(a)> max(- o1,-/1)- 7"1-, (49)

and L- (a) is free from zeros and poles in the lower half-plane given by

r Im(c) < min(cl, fll 7-1 +. (5o)

Thus the Wiener-Hopf equation (43) becomes

f*+ ( + is2) + 2 (a,h) L + (a)L (a)[g*_ (a + is2) + 2 (a,h)]. (51)

Dividing by L- (a) and rearranging, we get

-() ,,
L-(c---- H_ (c) L + (a)2 (a, h) + H + (a),

where we have used the decomposition

H() H + () + H (c) L + (a)g* (c + is2) f*+ (c + is2)
L-(c)

for v_ <c<c’<7"+. Here H+(c) and H
theorem (Noble IS])as

(52)

(53)

_(c) are given by the factorization

o+ ic’
+1 / IL +(o)g*-(O + is2)-H : (c) 2ri
-oo + ic’

f*+ (O + is2) do (54)L-(O) JO-c"
We note that H+ (c) is analytic in r > c and H_ (c) is analytic in r < c’. The

left-hand side of equation (52) is an analytic function on the lower half-plane
Im(c) < d +, while the right-hand side is an analytic function on the upper half-plane
Im(c) > d_ where the strip d_ < Im(c)< d+, is the smallest common strip of
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analyticity between all the + and functions. Due to this strip, both sides define
an entire function of a, say, J(a) by analytic continuation, which has algebraic
behavior as a--+cx. We can use the extended form of the Liouville theorem to
determine the exact form of this analytic function J(a). From (10), (11), (18), (19)
and the abelian theorems on Fourier transforms concerning asymptotic relations
between functions and their Fourier transforms in conjunction with the asymptotic
behavior of infinite products as a-c (see Noble [8], p. 128), it can be proved that
J(a)--0 as a--,oc in any direction in the a-plane. Hence, from the Liouville theorem,
J(a) is identically zero. Thus- (a, h) L- (a)H_ (a) (55)

and

,( U
.,) +____ ()L+()"

By use of residue calculus, the explicit forms of H + (a) and H_ (a) can be obtained
from equation (54) as follows:

oo *g*
H_ () L + (a)g*_ ( + is2)-

aj (- ij + is2)

j=l -ij-a

and

H + (c)

where

and

Z aj
f*+ (ij: / is2)

(57)
3 1

+ a9*_ (-___it3j + is2)
+ Z af*+ (iaj + is2)

(58)
3

--ij--O
3 =1

ioj--O

A1/2a i(Z-.) I (j-an) (59)

aj A1/2i(aj- j) H
n=l,nCj

(j- Z,)j_u (60)

From equation (36), we get

A(a + i(s2 s1)) f*+ (a + is2)+- (a, h)
PGl(a,h)

Similarly, from equation (37), we get

(61)

a:_ ( + i:) + i’ + (., h)
A(a + i(s2 si)) PG2(a,h) (62)

The values of B(a) and C(a) can now be evaluated using equations (41) and (42).
The solution in the transformed plane can thus be written as



Cooling of a Layered Plate Under Mixed Conditions 205

(c y)--If*+ (c + is1)+ -(c-i(s2-sl)’h).l[Gl(a- i(s2 Sl); csh’)’lY- fsinh71y.J1 (63)

and

+ is2) + 2 (a h) (a)cosh72Y + f2(aG1 (a, h) fl 72

If*+ (a + is2) + (a, h)]Gl(a, h)"
It can be verified that (63) and (64) satisfy the boundary and the interface conditions
(28)-(31).

5. Fourier Transform Inversion

Up to this point of analysis, we have determined the solution of the heat problem in
the transformed c-plane. In order to get the solution in the original (x,y)-plane, we

should take the Fourier inverse transforms of equations (63) and (64) as follows:

(1 (X, y) 2-/ [f(c + i81)--- (Ct- i(82 81), h)]

cosh71
fsinh,ly ’1Y----qi-l

exp(-iox)dc (65)

and

(.(h,)expv- i,x)g,. (66)

gtsinh71 yWe note that cosh71Y- 1
and Gl(c,h do not have any branch points in the

complex c-plane. We can use this fact and the residue theorem to obtain an infinite
series representation for each l(x,y) and 2(x,y), once specific forms of boundary
functions of f(x) and g(x) are known. As an example of practical interest, one may
put g(x) 0, which would correspond to the case of a plate which is insulated on the
left half of the upper surface while kept at a prescribed temperature f(x) on the right
half of the upper surface. Other cases of interest can similarly be recovered from
equations (65) and (66).
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