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We consider a stochastic equation of Navier-Stokes type containing a noise
part given by a stochastic integral with respect to a Wiener process. The
purpose of this paper is to approximate the solution of this nonlinear equa-
tion by the Galerkin method. We prove the convergence in mean square.
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1. Introduction

The Navier-Stokes equation has important physical and technical applications. It des-
cribes the behavior of a viscous velocity field of an incompressible liquid.

Important results concerning the theory and numerical analysis of the determinis-
tic Navier-Stokes equation can be found in the book of R. Temam [16]. The author
also presents in this book, the Galerkin method for this equation, which is one of the
well-known methods in the theory of partial differential equations that is used to
prove existence properties and to obtain finite dimensional approximations for the
solutions of the equations. The deterministic Galerkin method was adapted to the
stochastic case, for example, in the papers of W. Grecksch, P.E. Kloeden [5], I.
GySngy [8], and E. Pardoux [13], where the authors investigate evolution equations
with Lipschitz continuous nonlinearities. But the method can also be used for the
stochastic Navier-Stokes equation, which does not have Lipschitz continuous nonlinea-
rities. The Galerkin method for the stochastic Navier-Stokes equation has been inves-
tigated for example from A. Bensoussan [1], M. Capinski, N.J. Outland [2], D.
Gatarek [3], A.I. Komech, M.I. Vishik [10], B. Schmalfug [14], and M. Voit [17].

The stochastic Navier-Stokes equation on the domain of flow G C [n (n _> 2) is
given by
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divu 0, u(O,x) = Uo(X), u(t,)lo 0, > 0, xEG,

where u is the velocity field, u is the viscosity, A is the Laplacian, X7 is the gradient,
f is an external force, p is the pressure, u0 is the initial condition. The term
describes a state dependent random noise. This equation can be written equivalently
in the form of an evolution equation, using certain vector spaces and operators.

In the study of evolution equations of Navier-Stokes type one can consider weak
solutions of martingale type or strong solutions. The above-mentioned papers consid-
er weak (statistical) solutions. The techniques used in the proofs are the construction
of the Galerkin-type approximations of the solutions and some a priori estimates,
that allow one to prove compactness properties of the corresponding probability mea-
sures and finally to obtain a solution of the equation (using Prokhorov’s criterion and
Skorokhod’s theorem).

In this paper we consider strong solutions of the Navier-Stokes equation, i.e., we de-
fine the Navier-Stokes equation in the generalized sense as an evolution equation,
assuming that the stochastic processes are defined on a given complete probability
space and the Wiener process is given in advance. The aim of this paper is to prove
the existence of the strong solution of the Navier-Stokes equation by approximating it
by means of the Galerkin method, i.e., by a sequence of solutions of finite di-
mensional evolution equations (see equations (Pn))" Since we consider the strong
solution of the Navier-Stokes equation, we do not need to use the techniques consider-
ed in the case of weak solutions. The techniques applied in this paper use in particu-
lar, the properties of stopping times and some basic convergence principles from func-
tional analysis. An important result, which cannot be proved in the case of weak
solutions, is that the Galerkin-type approximations converge in mean square to the
solution of the Navier-Stokes equation (see Theorem 2.3).

The structure of the paper is as follows" in Section 2 we formulate the main
results of the paper (Theorem 2.2 and Theorem 2.3) and in Section 3 we give the
proofs for these results, while Section 4 contains some convergence principles from
functional analysis that we use in our proofs.

2. Formulation of the Problem

First we state the assumptions about the stochastic evolution equation to be consider-
ed.

(i)

(ii)

(iii)

(V,H,V*) is an evolution triple (see [19, p. 416]), where (V, I1" I[ v) and
(H, [[. I[) are separable Hilbert spaces, V* is the dual space of V, and the
embedding operator V C H is assumed to be compact. (v*,v) denotes the
application of v* E V* to v G V, while (.,.) denotes the scalar product in
H.
.A’VV* is a linear operator such that (Av, v)>_ullv[[/ for all vV
( > 0 is a constant) and (At, v)- (Av, u) for all u, v e V.
%: V x V---V* is a bilinear operator such that

(%(u, v), v) 0 for all u, v V
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and for which there exists a positive constant b > 0 such that

I/(, v), z>l 2 b II z II II II II II v II v II II v II v.
(iv) C" V---+H is a mapping with CO -0 and

for all u, v E V, where , is a positive constant.
(v) (f, V,P)is a complete probability space and (Vt)t._ rO, T] a right-continuous

filtration such that Vo contains all V-null sets. (w(t)) e [O,T] denotes a real
valued standard Vt-Wiener process.

(vi) f is a progressively measurable H-valued process for which
E f o II f(s)II 4d < .

(’) o is H-ld o msrb]e rndom prote hh E II o II < .
An adapted V-valued process (u(t)) [O,T] with E II (t)II 2< for all t e [0, T]

and E f u(t) dt < is called a strong solution of the stochastic Navier-Stokes
equation if it satisfies the equation"

0 0 ()

0 0

for all v E V, t [0, T] and for a.e. w f, where the stochastic integral is understood
in the It sense. As usual, in the notation of random variables or stochastic processes
we generally omit the dependence on w.

Notation: Let (S, I" I[ S) be a Banach space and denote by () the linear
space of all functions u:S that are q-measurable and E II u II < oc. Further,
denote by (fx[0, T]) the linear space of all processes u:x[O,T]S that are
V x %[0, T]- measurable, adapted to the filtration (Vt)t [0, T] and

E f Z II u(t)[[ 2sdt < oc. Weak convergence is denoted by -Let hl,h2,...,hn,... H be the eigenvectors of the operator A, for which we

consider the domain of definition Dom(A) {v V IAv H}. These eigenvectors
form an orthonormal base in U (see [12, p. 110]). For each natural number n we

consider Hn=sp{hl,h2,...,hn} equipped with the norm induced from H. Let

"An: Hn--+Hn, n: Hn x Hn-+Hn, Cn: Hn-+Hn be defined respectively by

i=1 i=1 i-1

for all u, v e Hn. For every f e @(a [0, r]), w consider the partial sums

nfn(t) E (f(t)’ hi)hi

for all [0, T] and a.e. w .
For each natural number n- 1,2,3 we consider the sequence of finite dimes-
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sional evolution equations

+ f j
0 0 (Pn)

for allvEHn, t E [O,T] and a.e. w G .
Theorem 2.1" For each n >_ 1, equation (Pn) has a solution un

which is unique almost surely and has in H almost surely continuous trajectories.
Sketch of Proof: Let (Xn) be a family of Lipschitz continuous mappings such that

1, if 0 _< x _< n,

Xn(X) O, if x _> n + 1,

n + 1- x, if x (n,n + 1).

For each fixed n we consider the solution un of equation (Pn) approximated by
M (M 1, 2,...), which is a solution of the equation

for all v Ha, t E [0, T] and a.e. w ft. For this equation, we can apply the theory
of finite dimensional ItS" equations with Lipschitz continuous nonlinearities (see .9,

"--">
VITheorem 2.9, p. 289]). Then one can prove that for M oo, the sequence

(M 1,2,...) converges in probability to un; for more details we refer the reader to
[15, Lemma 2.3.1, pp. 21-23]). The uniqueness of the solution can be proved analo-
gously to the case of the stochastic Navier-Stokes equation (see Lemma 3.4).

The purpose of this paper is to prove that the sequence (un) approximates the
solution u of the Navier-Stokes equation in mean square.

The main results of this paper are given in the following two theorems.
Theorem 2.2: Equation (2) has a solution in the space /(f[0, T]). The

solution is unique, almost surely and has in H almost surely continuous trajectories.
This theorem is proved by using Lemma 3.1- Lemma 3.4.
Theorem 2.3: The following convergence.s hold:

T

0
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and for all E [0, T]

This theorem will be proved in the final part of Section 3.
lemarks: 1) The sequence (Un) represents the Galerkin approximation for the

strong solution of the Navier-Stokes equation
2) Since A is a linear and monotone operator, it follows that it is continuous (see

[19, Proposition 26.4, p. 555]), i.e., there exists a constant cA > 0 such that for all
uEV

3) The condition 0 0 is given only to simplify the calculations. It can be
omitted, in which case one can use the estimate II eu II 2 _< 2A II u II 2 + 2 II 0 II 2 that
follows from the Lipschitz condition.n_

4) If we set n 2, Y {u /(G): divu 0}, H L2(G) and

lt V

G =10x
t

ox
v ax J3 t v z

G j =E1 ti--izjax
for u,v,z V, then equation (1) can be transformed into (2); see [16].

3. Proof of the Main Result

We need several lemmas.
Lemma 3.1:

(i) There exists a positive constant C such that for all n 1,2,...

T

E II un(T)II 2 + 2.E f II ,(t)II dt Cl[E ]l XO I[ 2 + E J
0 0

I] f(t) II 2dt]

and each of the following expressions

sup E [I n(t)II 4

e [0, T]
E J II (t)II II (t)II 2dr, E II (t)II /dt

0 0

is less or equal than Cl[E II o II 4 + E f TO I[ f(t) ]] 4dt].
2 ,( [0, T]), C* e 2i_I( [0, T]) and(ii) There exist u e L(ft [O, T], % e v

a subsequence (n’) of (n) such that for n’--<x we have

,-, g a/(a [o, T]),
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(iii) For all v e V, t e [O,T] and a.e. w G a the process (u(t)) e [o,T] satisfies the
equation"

o o (3)

The process (u(t)) e [0,T] has in H almost surely continuous trajectories.
Proof: (i) Let n lie an arbitrary fixed natural number. Equation (Pn) can also be

written as

o o (4)

0 0

for 1,...,n, t E [0, T] and a.e. w E ft.
Let z(t) exp{- (61 + 3)t}, so z(t) 1 f (61 + 3)z(s)ds for each t e [0, T].

From (4), the It8 formula, and hypothesis (iii) we have

z(t) II u(t)II + 2 f z()((),())d II o II + 2 f z(s)(S(s), u.(s))ds
0 0

+ / z()II a.()II d- (6 + 3)J z(s)II .()II d
0 0

+ 2 f z()(c.(), .())dw()
0

and

z(t) II (t)II 4 + 4 / z(s)(Au(s), u(s)> II ()II d 4 / z()(cn(),())d
0 0

+ 2 / z()II c.()11211 ()II 2d -(61 + 3) / z(s)II un(s)[I 4ds
0 0

A- 4 / z(s)(f(s), un(s)) II n()II 2ds
o

(6)
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+ 4 / z(s)(Cun(s), Un(S))II ()II 2dw() + II o II 4.
0

Using the properties of .,4, C and some elementary calculations, we obtain

and

z(t) II .(t) II + 2f z() II .() II d
0

_< II o II + / z()II S()II d + 2 / z()(e.(), .())d()
0 0

z(t) II ttn(t) II 4 nt 4u / z(s) II un(s) II II n(s)II 2d
0

_< II Xo II 4 / / z(s)II f(s)]] 4ds + 4 / z(s)(Cun(s), un(s))II ()II d().
0 0

(7)

(8)

In (7) we square both sides of the inequality, use some well-known inequalities and
obtain

z(t) II n(t)II 4 + 4u2 z(s) II n(s)II d
0 (9)

3 II ’o II 4 ..}_ 3 Z(S) II Y()II 2d + 12 z(s)(Cun(s), n(8))dw(s)
0

Taking the expectation in (7), (8) and (9) we obtain

Ez(t) II (t)II + 2uE / z(s)II ()II 5d _< E II Xo II + E / z()II f(s)II d,
0 0

Ez(t) II ,(t)II 4 + 4uE / z(s)II ,()II II ()II d
0

and

<_3E]lxo]14+3E (/o

_< E II o II / / z(s)II f(s)I1 4ds
0

Ez2(t) [I Un(t) II 4 + 4u2E z(s) II un(s) II /ds
0

z() II f()I[ 2d + 12E z(s)(eUn(S),Un(s))dw(s
0

(10)
2
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From the properties of z it then follows that

T T

E II (T)II +E/ II ()II _< xp{(6 + 3)T}[E II 0 II + E / II f(s)II d],
0 0

(11)
T

sup g II un(t)II 4 + 4uE / II n(8)II II n(8)II 2ds
[0, T]

0

T

_< exp{(6, + 3T}[E II 0 II 4 + E / II f(s)II 4ds]
0

In (10) we apply the property of the second moment of the It integral and the
Schwartz inequality to obtain

(/Ez2(t) II u(t)II 4

__
4u2E z(s) II ()II d

0

_< 3E II x0 II 4
__
3rE / Z2(8)II f(8)II 4ds + 12E / Z2(8)(CUn(8), Un(8))2d8

0 0

(12)

_< E II o II 4 + 3rE / II f(s)II 4d + 12E/ II ()II 4d8"
0 0

From (11) and (12) it follows that there exists a constant cI (depending on A and T)
such that

T T

E II un(T)II = + 2E/ II =()II d < Cl[E II o II = + E / II f(s)II =d],
0 0

T

sup E II n(t)II 4 -I- 4E / II n()II II n()II =d
E [0 T]

0

(13)

and

E

T- Cl[E II o II 4 + E / II f(s)II 4ds]
o

II n()II d Cl[E II o II 4 + E II f(s)II 4ds]
o o

(ii) The right-hand side of inequality (13) does not depend on n. Taking into con-
sideration the properties of C and the estimate from the first part of the proof of this
lemma, it follows that (tUn)is a bounded sequence in the space /(fx[O,T]).
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From (i) and the properties of % we can derive

T T

0 0

T
bCl---[E ]l Xo l[ 4 + E I] f(s)I[ 4ds],

o

so (%(un, un) is a bounded sequence in the space /.(flx[0, T]). Applying the
weakly sequentially compactness property (see [18, Proposition 10.13, p. 480]), it
follows that there exist a subsequence (n’) of (n) and

.(f x [0, T]), * e }_/(a x [0, T]) such that for

* ,(a [0 T]),u , u,n/(ax[0,T]) %(un, un,) % iny

eu , e* in /(a x [0 T]).

(iii) In (4) we take n’c, use the properties of A, the weak convergences from
above (also see Corollary 4.3 from the Appendix) to arrive at

0 0

0 0

(14)

for a.e. (w,t)e fl x [0, T] and an arbitrary fixed natural number. Since sp{hl,...
h,,...} C V is dense in V (because of the properties of the eigenvectors of A) it
follows that (14) holds also for all v E V.

From the It8 formula for I1" II 2 applied to processes over (V,H,V*), it follows
that there exists a t-measurable H-valued process, which is also equal to if(t) (for
a.e. (w, t) e a x [0, T]) and is equal to the right-hand side of (14) for all t e [0, T] and
a.e. w e a. We denote this process by (u(t)) e [0, T]" Hence,

v) + f v)d 
0

0 0 0

(15)

for all v V, [0, T] and a.e. w @ f; the process (u(t)) e [o, T] has in H almost sure-

ly continuous trajectories (see [11, Theorem 3.1, p. 88]).
For each natural number M, let us introduce the following stopping times:
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T, if sup
[O,T]

inf{t G [0, T]: I] u(t)[[2 _> M), otherwise,

<M

’ inf{t G [0, T]: f o II u(s) II ds > M},

if f To Il u(s) ]l ds < M

otherwise.

Let
rM: min{r//, -/}.

Since u has continuous trajectories in H, we see that for all t G [0, T],
tarM

[u(tArM) ll 2 <_M, /
0

]] u(s) II ds < M for a.e. w e a.

Lemma 3.2: (i) The following convergences hold:

lim P(rM < T) O

and for a.e. w
lim rm T.
Mx

(ii) The function u from Lemma 3.1 satisfies

E sup II u(t)II 2

e [0,T]

Proof: (i) From Lemma 3.1 we have

sup
[0,T]

I! (t)II 2

T

< oo, / II ()II =d < o for a.e. co e a.
0

Using some elementary inequalities and arguments we obtain

lim P(rM < T)< lim P(,1M < T)+Mli_,rnP(r21VI < T)
Mx M--*cx

T

< lim P( sup ][ u(t)]]2> M)+Mlrn(P/ [[ u(s)]] /ds >_ M)Mo ( [0, T]
0

))=1 e [0,z] = 0

The sequence (T-rM)M is monotone decreasing (for a.e. co e a) and above we have
proved that it converges in probability to zero. Therefore, it converges to zero for
almost every co E f.
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(ii) In (3) we apply the It8 formula and take t- 7M, use the Burkholder
inequality (see [9, p. 166]) and some elementary inequalities, and obtain

E sup
[0, rM

rM

II u(t)II 2 E II o II 2 + 2E j
0

rM

+2Ei
o

II f(s)II II ()II d + 2E sup
[o,-M

(c*(), ())d()
0

rM

rM

( II *()II 2
v* + II ()II + II ()II = + II f()II = + II c*()II =)d

1

-t- 2klE sup II (t)II II C*(s)II 2as
t[O’rM] 0

1E sup< E II ’o II = / 2 e tO,-M]

rM

v. / II (,)II + !1 (,)II + II f(.)II + II e*(.)II )..
0

where kl,k2 are positive constants (k is the constant that occurs in the Burkholder
inequality). We get

E sup
te[o,rM]

rM

+’I ( , + II (.)II + II (.)II : + II f(.)II : + II e*(.)
0

Since "rM--,T for a.e. a f2 it follows that

1/2E sup II (t) II :_< E I1,o II :
e [0, T]

T

0

But u e .(a x [0, T]), %* e /,(a x [0, T]), C*, f e /(f2 x [0, T]). Consequently,
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E sup
[o,T]

Lemma 3.3: For each fixed natural number M,

rM

and

E II U(7"M)- Un’(7"M)II =--+0 fo ’o.

Proof: For each natural number n let n E 2 ( [0 T]) be defined byHn

.(t)- (,(t),)
i=1

for all t E [0, T] and a.e. w . Using the properties of A and of its eigenvectors
{hi,h2,...} ({1,2,...} are the corresponding eigenvalues), we have

II .(t)II 2 < II ,(t)II 2, II **(t)- (t)II 2 < It **(t)II 2

(16)

,(,(t) ): < ((t), (t)) < at II ,,(t)II :

Hence for all t [0, T] and a.e. w fl,

II u(t)- ",(t) II ---+0 for n---+c.

By the Lebesgue Dominated Convergence Theorem, it follows that

T

E / II u(t) (t)II dt--+O for ncx3.

0

(17)

From (3)and (4) we have

(u(t)- un(t), hi)+ / (u(s)- un(s), hi>ds
0 (18)

/ <*(,) ((,), (,)),>, + / (c*(,) e(,), )(,),
0 0

for all [0, T], 1,..., n, a.e. w E 2. After applying the ItS" formula and summing
from 1 to n, we use the properties of A to obtain

II ,(t)- n(t)II 2 + 2 / <.(,)- n(),n(S
0
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f (*() ((),()),() ())d
0

(19)

+ 2 (C*(s) Curt(s), n(s) un(s))dw(s + E (C*(s) Curt(s), hi)2ds
0 0 i-’-1

for all t G [0, T], 1,..., n, a.e. w G ft. Write

u(t)- xp - II ()II d- t
0

for all t G [0, T] and a.e. w G gt. By the It6 formula we have

y(t) II n(t) un(t) II 2 + 2 / y(s)(An(s Aun(s), n(s) un(s)>ds
0

= 2 f v()(*()- (.(), .()),u.()-
0

(20)

u(,) II (,)II II (,)- (,)II 2ds y(s) II (*)- (*)II d,
0 0

+ E y(s)(C*(s) tun(s), hi)2ds + 2 y(s)(C*(s) Cun(s),’n(s) un(s))dw(s
0 i=1 0

for all t G [0, T], 1,..., n, a.e. w G . From the properties of % and n we see that

From the properties of and ’n we get
n

(c*() c() ): II c() c()II :
Hn

i=1

n gn
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II c() c*()II :
H

where (x, Y)H 2= 1(x, hi)(Y, hi) for all x, y e H, sp{h, h,..., h,}.
We use these estimates in (,) to get

rM

E(.) II () (.)II +Ef ()II () ()II e
0

rM

0

rM

< 2E/ y(s)(%*(s)- %(n(s),’fin(s)),’n(s)- un(s))ds
0

(21)

rM rM

0 0

where M is an arbitrary fixed real number. Using the properties of %, those of the
stopping time rM, and the fact that (n)n is the partial sum of the Fourier expansion
of u e .(fl x [0, T]) (see the properties given in (16) and (17)) we have

’M
E Y() II (u(), ())- (u(), u.())II y,d

0

rM

0

rM_
E y u()( II ()II v + II .()II v)II ()II u II () ()II

0

E

1

0 0

and hence
rM

lim E / y(s) II e(() ())- (() ())II 2 ,d 0,

0
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For the subsequence (n’) of (n) we have proved that un, u in /(a x [0, T]). But
2 ,(f x [0 T]), where I[0, M] denotes the indicator function ofI[0, rM]’-(u’ u), aj, E 2..y r

the interval [0, rM]. Consequently,

rM

lim E / y(s){*(s)- %(’n,(S),’n,(S),n,(S)- un,(s)}ds
0

rM

lim E / y(s)(%*(s) %(u(s), u(s)),n,(s) Un,(s)}ds
o

(22)

rM

+n’limE / y(s)l%(u(s), u(s))- %(’n,(S),n,(S)),’n,(S Un,(S))ds O.
0

Since un, ---" * in /( x [0, T])and E= 1(*(s) -u(s),hi)hi is the Fourier ex-
pansion of *(s)- u(s), the following relations hold:

and

rM

lim E / (*(s) un,(s), *(s) u(s))H ds
T CX) n

o

rM

lim E ]
o

n

(e*() %,(), (e*() c(),))d 0
i=1

(23)

rM rM

n cx n
o o

In view of these results, we see that by taking n’--,cx in (21) the right-hand side of
this inequality tends to zero. Therefore,

n!rnEY(WM) II n’(’rM) Un’(VM) II 2 o,

and
rM

rM

lira E
nl__+ j r/,

o

(24)

From the properties of y over [0, rM] and from (17) it thus follows that for each fixed
natural number M,

rM

II ()- n,()II dO and E II u(7"M)- Un’(7"M)II 2o
(25)
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Lemma 3.4: (i) The process (u(t)2m[oOs T] is a strong solution of the stochastic
Navier-Stokes equations (2) and it has surely continuous trajectories in H.

(ii) The process (u(t)) E [O,T] is with probability one a unique solution of equa-

Proof: (i) From (24), proved in Lemma 3.3., we conclude that

The set

I[o, M](S)eU(s) I[0, M](S)e*(s) for a.e. (w, t) e x [0, t]. (26)

. (x e( x [0, T])lx nv, v e V;

/3 e (fl [0, T])is for a.e. (w, t) bounded}

is dense in (fl [0, T]). Using (25) and the properties of % it can be proved that

rM

lim E / (%(u(s), u(s)) N(un,(s), un,(s)) x}ds 0 for all x e .
0

But %(un, un, * in /.(gt x [0, T]); so,

rM

lim E / (3*(s) (un,(s), un,(s)) x)ds 0 for all x e .
0

Since is dense in (f x [0, T]), it follows that

I[0, rM](S)ZJ3*(s) I[0, rM](S)’J3(t(s) u(s)) for a.e. (w, t) E f X [0, T].

Using (26) and (27)in (3) we have that

A rM A rM

(u(t A 7"M) v) -+- / <.Au(s), v>ds (x0, v) q- / ((u(s), u(s), v>ds
0 0

A rM A vM

0 0

for all v E V, [0, T] and a.e. w .
From the properties of the stopping time rM and Lemma 3.2 we see that

(27)

(28)

Let

P {vM T} 1-P {’rM < T} 1-lim P(vM < T)- 1.
M=I M-1 M--*oo
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{ o )’" w E : w ( {7"M T} and u(w, t) satisfies (28) for all v V, [0, T]
M=I

Obviously, P(’)- 1.
Let w ’ be arbitrary and fixed. For this w, there exists a natural number M0

such that 7"M T for all M > M0. From (28) we have

0 0

(29)

for all v V, t E [0, T]. Consequently, (29) holds for all w D’. This means that the
process (u(t))t.e [0,T] satisfies the Navier-Stokes equation (2). From Lemma 3.1 it
follows that u has almost surely continuous trajectories in H and from Lemma 3. it
follows that E sup II u(s)II 2 < oc. Hence (u(t)) e [0,T] is a strong solution of the

e [0, T]
Navier-Stokes equation (2).

(ii) In order to prove the uniqueness we assume that u,z e z(Dx [0, T]) are two
solutions of equation (2), which have in H almost surely continuous trajectories. Let

{ i’ }(t) Cx, - il ,()II <s-
0

for all t G [0, T] and a.e. w G . It follows by the It formula that

(t) II (t) z(t)II : + i ()(u() tz(), () z()>d
0

2 i y(s)(%(u(s), u(s))- %(z)(s), z(s)), u(s) z(s))ds
0

0 0

+ 2 S y()(e() Cz(), () z())d() + S y() II c() Cz()II d.
0 0

In view of the properties of % we can write

2((.,(.)..(.)) (z(.). z(.)). (,) z(.)) 2((() z(.). .,(.)). .,() z(,))
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Now we use the properties of A and to obtain

(t) II (t)- z(t) II + / () II ()- z() II d
0

< 2 / ()(c() Cz(), (1 z())d()
0

for all t E [0, T] and a.e. w E . Consequently,

Ey(t) II u(t)- z(t)II 2 0 for all t e [0, T]

and hence P(u(t)- z(t))- 1 for all te [0, T].
subset ff C [0, T] we have

Then for each countable and dense

P(tefsup li u(t) z(t) ll 0) -1.
But u and z have almost surely continuous trajectories in H, so

P ( sup
[0, T]

II (t)- z(t)II o)- 1.

This means that (2) has an almost surely unique solution. VI
Lemma 3.5: There exists a positive constant c2 (depending only on ,k, and T)

such that both expressions

sup E II u(t)II 4, E II ,(s)II ds
e [o,T] o

are less than or equal to c2[E II 0 II 4 + E f 0
z II f(s) II 4ds]

The proof of Lemma 3.5 is analogous to that of Lemma 3.1; so it will be omitted.
Now we can prove Theorem 2.3.
Let 5, > 0 be arbitrary and fixed. In Lemma 3.3 we have proved that for each

fixed natural number M,

rM

/ II ()- a,()II d-0, E II u(7"M)- Un’(VM)II 2___0E for n---)(X)o

0
From Lemma 3.2 we have

lim P(rM < T) -O.
Mo

Hence there exists a natural number Mo such that

<T)<P(rM
0 -.
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From Lemma 3.3 it follows for this Mo that we have

rMo

Consequently, there exists a natural number n (depending on 5, , Mo, T) such that

rMo

We can writefor all n’> no.

P (/ )
0

+P {VM0-- T}A /
0

_+P
0

and

rMo

_+E
0

P( [I u(T)- un,(T II 2

_
6)

_
P(-Mo < T)

-4- P({’r’Mo T} A {ll u(T)- un,(T [I 2 _> 6})

e p( (7"M0< + II )- .,(io) II u > 6)

_< / }E II tt(VMO) Un’(7"MO) II u

for all n’> n). Hence for all 5 > O,

<g+

P (/ )It ()- ,()II d _> e 0, P( II (T)- ,(T)II = > s)o
0

for //---oc).
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Therefore, the sequences (f0T II u(s)- u,()II ds) and (11 u(T)- un,(T II 2)
converge in probability to zero. From Lemma 3.1 and Lemma 3.5, it follows that
these sequences are uniformly integrable (with respect to w E ft). Hence,

T

II ()- u,()II d--,0, E II u(T)- un,(T II for n’---cx3.

Every subsequence of (Un) has a further subsequence, which converges in the norm
of the space ,(ft x [0, T])to the same limit u, the unique solution of the Navier-
Stokes equation (2) (because we can repeat all arguments of the results of Section 3
for this subsequence). Applying a property from functional analysis (see [18, Proposi-
tion 10.13, p. 480), it follows that the whole sequence (Un) converges in mean square
to u, i.e.,

T

II u()- Un(S II d-O for n---+cx3.

By the same argument we can prove that the whole sequence (un(T)) converges to
u(T) in the norm of the space 4(f2), as soon as for all t [0, T], (u,,(t)) converges

to u(t)in the norm of the space

4. Appendix- Some Convergence Principles

For the convenience of the reader, we recall some basic convergence results.
Proposition 4.1: [19, Proposition 21.27, p. 261] Let S1 and S2 be Banach spaces

and let L:SS2 be a continuous linear operator. If (Zn) is a sequence in S1 such
that xn x (where x S1) then L(xn) - L(x).

By applying Proposition 4.1, we obtain the following corollary.
Corollary 4.2: If S is a Banach space and if (Xn) is a sequence from

L(f x [0, T]), which converges weakly to x L(f x [0, T]), then for n--cx3 the follow-
ing assertions are true:

(i)

i xn(s)ds-’* i x(s)ds and i xn(s)dw(s)--- i x(s)dw(s)in L(f x [0, T]);
0 0 0 0

(ii)

T T

d8 and

T T

0 0
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