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Random time changes (RTCs) are right-continuous and non-decreasing
random functions passing the zero-level at 0. The behavior of such sys-
tems can be studied from a randomly chosen time-point and from a ran-

domly chosen level. From the first point of view, the probability character-
istics are described by the time-stationary distribution P. From the sec-
ond point of view, the detailed Palm distribution (DPD) is the ruling prob-
ability mechanism. The main topic of the present paper is a relationship
between P and its DPD. Under P, the origin falls in a continuous part of
the graph. Under the DPD, there are two typical situations: the origin
lies in a jump-part of the extended graph or it lies in a continuous part.
These observations lead to two conditional DPDs. We derive two-step pro-
cedures, which bridge the gaps between the several distributions. One step
concerns the application of a shift, the second is just a change of measure

arranged by a weight-function. The procedures are used to derive local
characterization results for the distributions of Palm type. We also con-
sider simulation applications. For instance, a procedure is mentioned to
generate a simulation of the RTC as seen from a randomly chosen level in
a jump-part when starting with simulations from a randomly chosen time-
point. The point process with batch-arrivals is often used as an appli-
cation.

Key words: Random Time Change, Palm Distribution, Detailed Palm
Distribution, Local Characterization, Radon-Nikodym Derivative, Simula-
tion Procedure.
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1. Introduction

Palm theory for queues and point process (PPs) studies a relationship between two
probability mechanisms. Intuitively, the first one- the time-stationary distribution
P describes the probability behavior of random phenomena within the (queueing)
system as it is seen from a randomly chosen time-point. The second one the Palm
distribution p0 describes this behavior as it is seen from a randomly chosen
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occurrence (often an arriving customer). See, e.g., Slivnyak [16], Ryll-Nardzewski[13],
Franken et al. [4], Baccelli and Brmaud [2], or Sigmas [15] for a review. An impor-
tant part of this Palm theory considers a direct relationship between the distributions
P and p0 themselves. For instance, in Theorem 1.3.1 of [4] the local characterization
of the Palm Distribution (shortly, PD) of a simple point process is formulated.
Intuitively, this approximation theorem expresses that in a sense, p0 can be
considered as the conditional distribution of P given an occurrence at the origin.

In Nieuwenhuis [11], it is proved that this local characterization is uniform and
there the rate of convergence is studied. Also, a two-step procedure is given to trans-
form P into p0 (or vice versa). (See also Thorisson [17] and Nieuwenhuis [12].)
Starting from P, the first step is based on a shift, moving the origin to the last occur-
rence before it. It leads to a probability measure that gives exactly the same events
zero probability as p0. In the second step, this probability measure is transformed
into p0 by using Radon-Nikodym’s theorem. The first step is based on a shift, the
second one on a change of measure. This change of measure follows from Theorem
2.1 in Nieuwenhuis [10] where distributions are introduced which have the same null-
sets as the PD and which can serve as a bridge between P and p0. As an immediate
consequence of the simulation procedure in Section 14 of [17], this theorem gives an
opportunity to obtain a simulation from p0 when starting with simulations from the
distribution P, in the case that, with probability one, the interarrival times are larger
than a positive constant.

During recent years, the development of Palm theory has advanced. In Schmidt
and Serfozo [14], an overview is given of Palm theory for random measures. In
Miyazawa and Schmidt [8], Palm theory is applied in the context of risk processes,
while Miyazawa [7] considers fluid queues. In Miyazawa et al. [9], a general view on
Palm theory is presented by considering a random phenomenon of interest as a right-
continuous and non-decreasing random function passing the zero-level at zero, i.e., as
a random time change (RTC). This theory not only includes Palm theory for ran-
dom measures, but also includes the theory for non-simple queueing systems and fluid
queues with general jumps. For an RTC A, two distributions of Palm type are
considered. The detailed Palm distribution (DPD) of A is the most important one in
the sense that, for instance, the ordinary Palm distribution (OPD) can immediately
be obtained from it. Intuitively, the DPD of A arises by another random-choosing
procedure: choose a level at random on the vertical axis and shift the origin to the
corresponding position on the extended graph of A (i.e., the graph extended with the
jump-parts).

In view of the advances of Palm theory for simple PPs via Palm theory for ran-
dom measures to Palm theory for general RTCs, it is natural to study generalizations
of specific results like the characterization theorem, the two-step procedure and the
simulation procedure. Especially, these are interesting, because they will give a better
understanding of rather new concepts like the DPD. In the present research, we will
consider such generalizations for the DPD (and also the OPD) of RTCs. For the
larger part, we will assume that the probability that the random function A (or its
generalized inverse) makes jumps is positive.

In Section 2, we will formulate the framework that is used. Some known results,
needed for the present research, are recalled. Under the DPD, there are two typical
types of realizations of the RTC. For the first type, the origin lies in a jump-part of
the extended graph. For the second type, it lies in a continuous part. So, the DPD is
a mixture of two conditional DPDs. In two lemmas, we study independencies under
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the several distributions. In Section 3, we derive several relations which express
easytransitions from one distribution to another. Essentially, they express transforma-
tions by a two-step procedure. One step concerns a shift of the origin. The other
step is based on Radon-Nikodym’s theorem and just means a change of measure.
Emphasis will be on the transition from P to these two conditional DPDs. The topic
of Section 4 is how to approximate one distribution under the regime of another. For
instance, in the case that P is the ruling distribution, we derive a local characteriza-
tion of the conditional DPDs. The limit results turn out to hold uniformly. As an

application, we also consider a local characterization of Palm probabilities in the case
of a bulk arrival process. In Section 5, we apply the results of Sections 3 and 4 by
considering simulation procedures. For instance, a version of the RTC as seen from a

randomly chosen level in its jump-parts can be derived from versions as seen from a

randomly chosen time-point. This procedure is of special interest when realizations of
the RTC are difficult (or time-consuming) to obtain from the former point of view,
but easier under the latter. If necessary, the resulting realization can be transformed
into a realization of another desired Palm type (e.g., under OPD). Again, the results
are applied for a point process with batch arrivals.

2. Preliminaries

Let (f,) be a measurable space supporting the right-continuous, non-decreasing
random function A on R for which

lim A(t)- + oo and A(0-) <_ 0 <_ A(0)
t-+ :k oo

for all w C f. We call A a random time change, RTC for short. The extended graph
P(w) of A(. ,w)is a subset of R2 consisting of the graph of A(., w) supplied with the
vertical jump-parts"

r(w) {(t, x) e 2. A(t- ,co) _< x <_ A(t, w)}.
In practice, often the canonical setting is considered. That is, f is taken as the set G
of all right-continuous and non-decreasing functions g’NN with limt__ +g(t)-
+ oe, passing the zero-level at zero. We will, however, consider the general, abstract
setup.
We will always assume that a family (R)- {lD(t,z):(t,x [R2} of transformations

exists possibly on a larger measurable space (f, in such a way that the (ran-
dom) extended graph F of A is consistent with O, and that the family @ behaves on

F as a group. I.e., we assume that"
(i) For all w e a, (t,x) e F(w) and (s, y) F((R)(t,x)w) we have

(a) A(.,O(t,x)w) A(t + .,w)- x,
(b) 2c(2n(’iOc(atl: )e : Ot(Note that in th s t,x + y)W"

g, assumption is trivially satisfied: just take f
as the set G arising from G by omitting the condition about passing the zero-level,
and define (R)(t,z)g by g(t + )- x. For details, we refer to [9].

The right-i:oninuous inverse function A’(., w) is defined by

sup{ _< .},

Hence, A’ is another RTC. From the two-dimensional family @, we define two one-
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dimensional groups, {0t: t E } and {r/x: x E }, of transformations by

Otw: O(t,A(t,w))w and r/xw O(A,(x,w),x)W, w and t,x

It follows immediately that, for all w and t, s, x, y ,
h(t) o n(t + ) A(),

h’() o , ’( + )- ’(),

h’( + (t))- t (.1)A’(x) o Ot
o +

r/xOt--qx+h(t) and Otr/x--0t+A’(x)"
The transformations t and r/x will be called shifts. By Lemma 2.3 of the above refer-
ence, the two invariant r-fields of the Gshifts and the r/-shifts coincide. We denote
this common a-field by :] and note that :t-measurable functions on f are invariant
under all shifts of both types.
We next introduce a probability measure P on (,ff). We will always assume

that under P, the &group is stationary and the long-run average A" -limtA(t)/t
is positive and finite, i.e.,

(ii) P(O 1A)- P(A) for all t E and A G if,
(iii) p(o < h <

So, we assume that the RTC A satisfies (i)-(iii). These assumptions are sufficient to
consider the probability measure PA, the detailed Palm distribution (DPD) of P
w.r.t.A. It is defined by

1 r/xdx A e ff (2.2)PA(A)-E - 1Ao
0

In [9], it is proved that all shifts r/u’ y R, are measure preserving under PA" So, the
r/-group is stationary under Ph" It is also proved that the following inversion
formula holds:

1 Osds Aeff, (23)P(A) Ei - 1A o

0

and that PA and P are dual in the sense that the DPD of PA w.r.t. A’ returns P.
Here A’:- hmtooA (t)/t- l/A, and EA denotes expectation under-PA" Another
distribution of Palm type is also considered: the well-known (ordinary) Palm distribu-
tion pO (shortly OPD) of P w.r.t.A. It is defined below with the right-hand side as
the most known:

1 o 0A,( E 1 OtA(dt A E ft. (2.4)P(A) E - 1A x)dx --o, 1A
o

The right-hand side is a natural extension of the case where A is a random
counting measure and is essentially due to Mecke [6]. From the left-hand side of
(2.4) and the stationarity property of PA, it follows that
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DPD and OPD coincide iff P(A is continuous) 1 iff PA(A(0) 0) 1.

In a sense, it was already noted in Geman and Horowitz [5] that a duality between P
and p0 appears in the continuous case. Hence, the DPD can be viewed as the distri-
bution of Palm type which restores duality also in the non-continuous case. It turns
out that the DPD is a very natural distribution (see (2.5)-(2.8) below), which behaves
like "the mother of all PDs" in the sense that a PD needed in a specific context can

immediately be deduced from it. See [9] for more details and Example 3.1 below for
the deduction of a PD with nice stationarity properties in the case of a point process
with possibly non-single occurrences.

The relationship between P, PIt, and p0 is expressed further in the following
formulas. Here E denotes the expectation under p0, and A{0}: A(0)- A(0- )is
the jump-size at 0. The expressions in (2.6) hold both P- and PA-a.s:

P(A) PA(O- 1A) and

tli_.rn / 1A o Osds P(A ])
0

PA(A) E A0} 1A o xdx (2.5)
-A{O}

Y

and lm-/
0

1A ordx PA(A ),

y

JLIII/ P(fl:ln)dx
o

PA(A) and

y

0

A) dx- P(A), (2.7)

tl_In/ PA(O-IA)d8- P(A);
o

A . (2.8)

(The averaged integral in (2.5) is interpreted as 1A(W if A({0},w)= 0.) These rela-
tions have very natural and intuitive meanings in the canonical case. For instance,
the left-hand side of (2.7) indicates that, starting with P, we can obtain PA by ran-

domly choosing a level x on the (vertical) positive half-line and shifting the origin to
the position on the extended graph which corresponds to this level. The OPD can be
obtained by shifting (if necessary) this randomly chosen position x up to the closest
position on the graph. For more details, again we refer to [9]. In this reference, it is

also proven that every random measure A*, which satisfies the usual stationarity
assumptions in random measure theory, can be characterized by a suitably chosen
RTC A satisfying (i)-(iii). Hence, this RTC setting includes the random measure

framework. Essentially, it is a straightforward generalization of the framework in [5].
In this reference, it is additionally assumed that A(0) 0 for all w E f (and for many
of the results even that A is continuous), leading to a setting which is not suitable to

support the concept of a DPD.
Since so many distributions are involved, we will sometimes attach the distribution

to describe a property. For instance, we will talk about P-independency if indepen-
dency under P is meant. PA-distributed means distributed under PA.

If A is continuous and strictly increasing (with probability one), then both A and
A’ makes no jumps. This case will be shortly considered now, under the assumption
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that, with probability one, A is almost everywhere differentiable. At first, note that

Pit and p0 coincide because of continuity. Writing ,(.,w) for the derivative of
A(., w) it follows immediately from the assumptions that, at least P-a.s.,

(t,w)- ,(O, Otw for almost all t E N.

From the right-hand side of (2.4) we obtain that

PIt(A)- P(A)- E(-IA)
So Pit arises from P by changing the importance of the realizations by way of the
weight function ,k(0)/A. That is, PA describes a change of measure.

The case that A makes jumps is more complicated. For the larger part of the pre-
sent paper we will assume that A makes jumps, i.e., that

(iv) p: PA(A{0} > 0)is positive.
The case that A is continuous (that is, p- 0) while its graph has horizontal parts,

implies that A’ makes jumps. This case can be treated by using the duality property
mentioned above and will be considered shortly in Section 3.

Assume that (iv) is satisfied. Let Ti, , be the (random) jump times at which
the RTC jumps, under the convention that < T_ 1 < To -< 0 < T1 < T2 <
Furthermore, set Di: -A(Ti-) and Si" -A(Ti), i’. If q: 1-p-Ph(A{0}-
0) is also positive, then there are, under Pit, two typical types of realizations. The
important point here is the position of the origin" it falls in a jump-part of the
extended graph, or in a continuous part. Set

Plit: -Pit(" [A{0}>0) and P2A: --PA(" A{0}-0)"

The two types of realizations are just versions of the RTC under P1A and P2it, respec-
tively. Note that

PA PP1A + qP2A" (2.9)

It is not forbidden that Di- Si_l equals zero, i.e., that h does not increase on

(Ti_l,Ti). We want to identify the non-empty intervals (Si_l,Di) on the vertical
axis. For 7/, let K(i) be the index of the ith jump-time in order for which

DK(i)+I--SK(i) is strictly positive, with the convention that K(1)>_ 1 and

*" *" * * -A(TK -) Note thatK(0) _< 0. Set Ti. TK(i) Si. A(Ti) and D + 1 (i) nt- 1

D+ is not necessarily equal to A(T+ 1 )’ and that D+ 1 S**. > 0. Furthermore,
set

T T U’: So U" DU’T To U*: , ,,T To So Do and , ,D So

(The definitions of U* and U" require that q > 0.)
P2h-a.s. since Pit(A(t) > 0 for all > 0)= 1 by (2.2).
Lemma 2.1: Assume that A satisfies (i)-(iv).
(a)

Note that U"-D1/(D1

Then:
For all , it holds that 0[-14 and U’ are independent under PIA, while
U’ is uniformly (0, 1) distributed.
For all n , it holds that 014 and U are independent under P, while U
is uniformly (0, 1) distributed, n
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(c) Let q > O. For all n E 77, it holds that Off,z5 and U* are independent under

P, while U* is uniformly (0, 1) distributed.
(d) Let q > O. For all n 77, it holds that o: ln and U" are independent under

P21t, while U" is uniformly (0, 1) distributed.
Proof: Let f and g be suitably measurable functions. Denote the number of Sis

in (0, y] by M(y). By (2.7) and (2.1), we have, since A’(x)= T for all x G (Di, Si),

)E1h(f(U’)g o Or) li_krnE f(U’ o lx) g o 0 o x I(A{o} > o) o ]xdx
o

-P Y,I f dx g Ot + Ti

[’ M(y) )1/ f(x)dx i1-f uli_[nE (g o O + Ti(S Di)
0

Applying the above for f 1, yields for general f and g:

1

E1A(f(U’)g o Ot) J f(x)dx E1A(g o Or).
0

Part (a) follows. Parts (b) and (c) can be proven in a similar way by using (2.8) and
partitioning (0, t] into the parts (T 1, Ti] and (T_ 1,T], respectively. For (d), we

use (2.7) again and partition (0, y] into the intervals (Si_l,Di]; note that U"=
D1/(D1 SO) under P2A" V1

We need more definitions. Set

T T_ ,._ 77, (2.10)Ti Ti- 1 .A and 5 1" * *7/-1" Si_l_Di_l Di _Si_ 1

T ,. (2 11)TI_ and Y: U*5o D1 So
X: -U70=S0 D0

A

provided that these random variables are well defined. (For instance, the definition
of 5 1 requires that both p and q are positive.)

Lemma 2.2" Assume that A satisfies (i)-(iv). Then"
(a)
(b)
(c)
(d)

U and 70 are P-independent. Ifq > O, then U* and 50 are P-independent.
U’ and 70 are PiA-independent.
If q > O, then U" and 5o are P2A-independent.
The conditional P-distribution of X, given 70, is uniform on (0, 70).
If q > O, then the conditional P-distribution of Y, given o, is uniform on
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Proofi Since 70--700T0,6o-6ooOT and 70-7000, parts (a), (b) and (c)
follow immediately from Lemma 2.1. For nonnegative a and b, we obtain, by
conditioning on 7o, that

P(70 <_ a and X <_b)- E(l(.r0 <_ a)(1A 7))’
of. (2.11) and (a). A similar result holds for 60 and Y. Parts (d) and (e) follow
immediately. E!

3. Two-Step Procedures

At first sight, there seem to be large gaps between the distribution P on one hand
and the distributions of Palm type on the other. However, the gaps can be bridged
by simple two-step procedures. For the PP case with single occurrences, it is well-
known that the time-stationary distribution P can be transformed into the PD by a

two-step procedure. First, the origin is shifted to the last arrival on its left, then, a

change of measure is applied. In this section, we will study similar bridging proce-
dures for the general RTC case.

In view of Lemma 2.1, we can, in a sense, consider

r" DO + U(So Do) and r" S; + U*(D S;) (3.1)
as arbitrarily chosen positions in the intervals (Do, So)and (S;,D), respectively.
With this observation in mind, the following theorem is less surprising.

Theorem 3.1: Let A be an RTC which satisfies (i)-(iii).
(a) If p > O, then P(r/ 1A) PEIA(701A) A .
(b) If p,q > O, then P(r/ 1A)- qE2i(6OIA) A .
Proof: (a) The proof is mainly based on (2.6)and (2.8). Let the number of jump

times in the interval (0, t] be denoted by i(t). Since
T s

(Si- 1 Di- 1),r/a o 0s r/L(s) with L(s): D 1 + Ti Ti
for all w e a and s between Ti_l(W and Ti(,,), we obtain (by decomposing the
integral and changing the variable of integration):

N(t) Ti

/ lA,OdsP(r/- 1A) tF)mEA
i= T 1

N(t) Si-1

tli-+rnEA
D

Ti-Ti_ 11A r/x "gi_ Di_
dx

A(t) 1 /t--,limEA A(t)
0

(t)
(T

1A o r/x .(SO
To) o x
Do) ox I(A{0} > o) o ]xdx
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( T TOEA EA 1A’So DO
I(A{O} > O) I))-- PEIA(7olA).

The proof of (b) is similar. Let N*(t) be the number of Ts in (0, t]. Then,

(N*(t) T

P(r/jlA)--tli-mEA{ Ti
/ lA rlr Osds

N) f
D

--trnEA
Si_l

* ,
1A o rlzdx Ti, Ti. 1

D -Si_ 1

=tli_,rnEA/A(t) 1 /t A(t)
o

A(t)

1Aoz (T-T;)x.1 o dxI"(D-S;)orx (A{O}:O) rx

EA kEA 1A" D S;

As a consequence of part (a), the distributions P1A and Pr/-1 have the same null

sets. If a statement holds P1A-a.s. then it holds Pq-1-a.s. and vice versa. The

transformation of P1A into Pr-l, as expressed in part (a), is nothing else but a

change of measure. In order to arrange this, the weight function PT0, i.e., the Radon-
Nikodym density of Pr/-1 w.r.t. P1A, is used to transform P1A into Pr/-1. Similar
remarks can be made for part (b).

Since 7o and 50 are invariant under the shifts r/ and r/., we have

1 1 and E(0 r), (3.2)PIA(A) E(yIA o r/) P2A(A) 1AO r/

E(llA rlr),AE ,PA(A)- E(7IA o r/r)+ 50
if p and q are positive. Consequently,

(@o)- E(1)_ 11 and qE p
E1A(70 60 ,2A(0)

(3.3)

The fractions of the increase of the random function A caused by jumps and
continuous parts are just the fractions p and q, respectively.

Recall the definitions of U’ and U" below (2.9). Set V: To + U’(T -To) and
W:- T; + U"(T-T;). In a sense, r# and 0V (and also rr and Ow) are inverse
transformations. This is expressed in the following relations:

0Vor/ =00and rltooV=rlo PiA-a.s., (3.4)
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0Wor/r=0o and r/rO0w=r/o P2A-a’s’,

r/o 0w r/Do (S0/(D1 -S0))(S0 DO if T To and T T1,

fir o OV rlS0 (Do/(S0 D0))(D1 SO) if T) To and T T1.

As a consequence of Theorem 3.1, and (3.4) and (3.5) we obtain, for all A E zh:

P(A) PEiA(’,/ol A o OV) if p > 0,

P(A) qE2A(5olA o OW) if p,q > O.

(3.6)

Theorem 3.1 and relations (3.2), (3.8) and (3.9) can be summarized in the follow-
ing diagrams, where means that the corresponding probability measures have the
same null-sets.

-1 p p2AowP PIAOv

-1Prlff 1 P1A Prlr P2A
(3.10)

The left-hand diagram expresses that the Radon-Nikodym density of P w.r.t.

P1hO 1, i.e., PT0 is not affected by applying the shift (cf. Theorem 3.1 (a) and
(3.8)). Transformation of P into P1h (or vice versa) can be arranged by either of
two two-step procedures. The first procedures goes clockwise, with the first step
being a change of measure and the second one, the application of the shift r/a (or Oy).
The second two-step procedure works counter-clockwise with the steps in the reversed
order. For the right-hand diagram similar observations hold. See also, p. 47 in [11]
for the PD in the single (simple) point process case, and Sections 4 and 5 in [17].

For completeness, we note that the above results can (if p,q > 0) also be used to
transform P2h into P1h or vice versa. The application of (3.2) and (3.9), and (3.2)
and (3.8), respectively, yield:

o )PIA(A) E:h oIA o rl o 0W (3.11)

1P2A(A)--E1A 0 A
See a so and (a.7).
We next investigate corollaries for p0, the OPD of A.

AE. (3.12)

Set

p0: p0(. A{0} > 0) and P" p0(. [A{0) 0).

_pO_pO If p-1 (i.e. ifAIf p 0 (that is, if A is continuous), then PA PA p"is a step-function, a pure jump process), then PA- P1A and P- PAOd In
the case that 0 < p < 1, it follows by (2.5) that

pO_ ppO + qp, p_ P1A00- and P20 P2A" (3.13)

Consequently, the above right-hand diagram can also be used for P2.
follows from (3.13), (3.2), (3.8)and (2.5)that

For P1, it
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A OsdsP(A)-E(7-1-IAOOTo)andP(A)-pE A{O} 1AO
0

A E 3. Here E1 denotes the expectation under P1. With P’ defined by

_1 1 ), AEP’(A): -fE(-IA
we obtain the following diagram"

(3.14)

(3.15)

p

OT0 I lOT0
po 1 p

0

Similar to the diagrams in (3.10), this diagram gives two two-step procedures to
generate P1 from P, clockwise or counter-clockwise. In fact, this is the immediate
generalization of the diagram in [11]. See also [17].

Example 3.1: Let A- be a point process (i.e., an RTC with p- 1 and integer-
valued jump-sizes), which satisfies (i)-(iii). The relationships between P, the DPD,
and the OPD follow immediately from the above theory. However, in [9] it was
noted that in this point process setting, a modification of the DPD is desirable since
now only discrete positions (representing customers, for example) within the jump-
parts are of interest. The following distribution incorporates this"

PO: Por-1, (3.16)
with a:- max{O(0)- i’i N0 and (0)- i 0} being the largest non-positive num-

ber which is integer-distanced from (0). The distribution Po has nice stationarity
properties, it can "distinguish between simultaneous arrivals within a batch of arri-
vals", and is (for the present time change set-up) an equivalence of a similar
distribution in Brandt et al. [3]. It follows immediately that pO_ pool=
0. From this result, (3.2) and (3.14), we obtain immediately that

/1Po(A)-E (TI_T0)IAo[] andP(A)-E {0} 1Ao
0

where [a] is the largest number in [D0, a which is integer-distanced from D0. The
left-hand side of (3.17) is of special interest. It ensures that the time-stationary distri-
bution P can be transformed into the distribution Po by a two-step procedure consist-
ing of a change of measure and the application of the shift ]. These observations
are not only of interest for getting a good understanding of -, but also for simula-
tion purposes. See Section 5.
We complete this section with a short treatment of the case p 0, i.e., with A be-

ing continuous, but A having constant pairs. Thus, p"-P(A’{0} > 0) is positive.
In [9], it is noticed that PA and P are dual in the sense that the DPD of PA w.r.t, h’
is equal to P. From the arguments in Section 4 of this reference, it follows immediate-
ly that the results in the present research remain valid if A is replaced by A’, P by
PA, PA by P, 0 by , and by 0. In this context, we also replace functions of A by
functions of A’, attaching a prime to the notations. For instance, T is the ith occur-

’- ’" -A’(T) and a’: ’-fence of A’, Di.’" -A (T ),
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Set PI(B): P(B A’{0} > 0). With these considerations in mind, we can (for in-
stance) deduce from Theorem 3.1 (a), (3.2) and (3.8) that

PA(O, 1A) P’EI(7’olA)

1E(II 0,)P(A) op A ")’0 A

PA(A) P’El(7’olA o AEff.

(3.18)

4. Local Characterization of PDs

The PD of a point process with only single arrivals is often described as a conditional
distribution, given an arrival at the origin. This intuitive interpretation of the PD is
justified by the well-known local characterization theorem. In the present section,
we will consider local aspects of Palm theory for general RTCs. At first, we derive a

result which is Dobrushin’s lemma in case of an ergodic PP. Then we prove results
which give local characterizations of the conditional DPDs and OPDs. In the case of
a bulk arrival process, this leads to a heuristic interpretation of Po as a conditional
distribution.

Let F be the P-distribution function of X- UT0- TIA/(So-Do) (cf. (2.11))
and suppose that p > 0. By Lemma 2.2 (d)and Theorem 3.1 (a) we have, for all
t>0"

F(t)- P(X <_ t)- E(OO A 1)- PEIA(t A 3/0)
(4.1)

p/ PIA(3/0 > s)ds.
0

Hence, F is differentiable with derivative F’(t)- PPIA(7o > t).
3.1 (a), we obtain:

F(t) P(7o <_ t) + PtPIA(7o > t), t > O.

Again by Theorem

(4.2)

From (4.2), it follows immediately that F(t) >_ PtPiA(7o > t) and that

F(t) PEIA(7ol( _< t))- PtPIA(7o < t) + pt < 0 + pt.

Consequently,

ltllr(t p if p > 0. (4.3)

If A is a simple, ergodic PP with intensity A, then (4.3) can be rewritten as

P((O, t] > O) At + o(t), as t0. This is exactly Dobrushin’s lemma; see, e.g. p 39
in [2].

If both p and q are positive, we can derive similar results for the P-distribution
function G of Y (cf. (2.11)): just replace p and 7o in (4.1)-(4.3) by q and 50 The
same holds for the PA- and the P2t-distribution functions H and J of

,1 So 1 andZ2 -U"I D 1 (4.4)Z1" U - T- TO -- - T- T------- -’
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respectively. Just replace (p, PIA, 70, P) by (1/p,P, 1/7o, P1A), (1/q,P, 1/5o, P2A),
respectively. (For the proofs, we use Lemma 2.2, parts (b)and (c).)

Recall that U TI/(T- To) and X T1A/(S0 -Do) For a simple and ergodic
PP, local characterization expresses that P(A) can "be approximated by the
conditional probabilities P(O:AIT1 <_ l/n), as noc, leading to the well-known

intuitive interpretation of p0 as a conditional distribution under P. (See, e.g.,
Theorem 10 in [11] for a uniform version.) In view of this observation, one might ex-
pect that, in the general RTC case, the conditional probabilities g(rl AIX <_ l/n)
tend to PIA(A) as n--,oc. Unfortunately, this is not the case. Note in this context
that

(So Do) o r] SO DO and DO o r] U(So Do).

With U): Do/(So Do) 1 -U’,

P(r]-1A IX
_
)

we obtain by Theorem 3.1 and (4.1) that

E(1A ," 1 l/n rlr)
(% <_

1/,E(1 A

EIA(1AT01

EIA(70 A )

The choice A- (U

_
1/2) makes it clear that, in general, (4.5) will not tend to

PIA(A). Studying (4.5) in more detail yields that a reason might be that, in spte of
Lemma 2.1 (b), the random variable U in X UT0 is P-dependent of A. Let U1 be
another uniformly (0, i) distributed random variable on (,if, P) but 1 is assumed
to be P-independent of r]-lf. (Here we assume that fl is rich enough to support
such a variable.) By conditioning on the (r-field generated by 70, we obtain that

P(r/-1A 1")’0 < 1_)_ E(1A rla" (1 A 1_))
1/n "Pn(A). (4.6)

E(1 A --o
A similar relation can be obtained in terms of and 50. Suppose that U2 is a

uniform (0, 1) random variable which is P-independent of 1. Then we have

P( 1A l250 < )-
E(1A r" (1A))

E(1 A 1/n
.Qn(A). (4.7)

50
After all, Pn and Qn do not depend on 1 and 2, respectively. These uniform (0, 1)
random variables are only used to write Pn and Qn as conditional probability mea-
sures.

The next theorem expresses local characterizations of the conditional DPDs. For
the proof, we need a well-known general result. Let Q1, Q2 and Q be probability
measures on a common measurable space. Suppose that the null sets of Q are also
null sets of both 1 and Q. Let h be the density of Qi w.r.t. Q (i 1,2). Then,
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f
24uP QI(A) -Q2(A)] ] hl-h2]dQ.

(See, e.g. [12] for a short proof.)
Theorem 4.1: Suppose that the RTC A satisfies (i)-(iii). Then

sup ]Pn(A)-Plh(A)I 1
F(F()/p)

(4.8)F(I 

sup Qn(A)- P2A(A) 1 -G(G(I)/q) 0 (4.9)
A zj: G(I)

as n---.c, provided that p is positive and both p and q are positive, respectively.
Proof: Set h(n)- F(1/n)/p. By Theorem 3.1, it follows immediately that the

null sets of Pin are also null sets of Pn" By the result preceding this theorem, the
supremum in (4.8) is equal to E1A 170 A (i/n) h(n)]/(2h(n)). This in turn can be
written as a summation of P1A- and P-probabilities by partitioning f into the parts
(70 <- h(n)), (h(n) < 70 <- l/n), and (70 > l/n), and applying Theorem 3.1 (a). The
equality in (4.8) follows by properly applying (4.2). The convergence in (4.8)is a

consequence of (4.3) when replacing t by F(1/n)/p. The proof of (4.9) is similar. El
lmark 4.1" Since 1AOOoorla-lAoOT and since (el. Lemma 2.1) U=

0- it follows immediately thatT1/(T1 -To) is indeed P-independent of OTo
Asup IP(OTo-lAIN _< )- P1A(00- 1A) ---*0 (4.10)

as noe. Since PIAOd 1 is just the conditional OPD (of. (3.13)), (4.10) is for the pre-
sent RTC-setting the generalization of Theorem 10 in [11]. See also [17] for a process
with cycles setting. If p 1 (i.e., if A is a pure jump process), then (4.10) expresses a

local characterization of the OPD of A. It is well-known in the case of simple PPs. V1

Unfornately, we had to choose an abstract uniformly (0, 1) distributed random
variable U that is, not a concrete function of A to arrange the desired indepen-
dence and the local characterization in (4.8); recall the arguments following (4.5). As
a corollary, for a general RTC, (4.8) does not lead to a nice heuristical interpretation
of PIA" However, in special cases, U1 can be adjusted. We investigate th local
characterization of PO, the distribution of detailed Palm type which has nice
properties in case the RTC is a not necessarily simple point process ; see Example
3.1. As usual, we assume that within a batch, the arrivals are ordered. Although

1P=Pr/- we cant use an approach as in Remark 4.1 since o O =Orc
1

c cr LCr
depends on U, and U and r/-, Y are P-dependent It looks like we really need an

Lrl
abstract uniform (0, 1) ran.dom variable as U in (4.6). However, in the present PP
case, we still can choose U as a function of (I). Recall that Ti_ 1 is the (i-1)th
jump time, and that Si_ --Di_ is the corresponding jump size (which is now

integer-valued), G’. We partition the interval [Ti_,Ti) into Si_l-Di_
subintervals of equal lengths by defining the intermediate times

Ti- Ti- j 0,...,S Di- a" (4.11)Ti_,j: Ti_ l + jSi_l_Di_l
For s between T 1, j- and T 1, j, we have

rlaorlaoOs-rsi_i_j; j- 1,...,Si_l-Di_ 1. (4.12)
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Let T1 and To, respectively, be the smalles~t positiveand the largest non-positive
intermediate times in [T0, T1] and set U"- T1/(T1-To). Note that U-
rl(o0 D0)/(T1 -To) and that U 7o- TI(I). Part (b) below expresses local charac-
terization of P0.

Theorem 4.2: Let be a (possibly non-simple) PP, which satisfies assumptions
(i)-(iii) and let [r] be the largest number in [D0, a], which is integer-distanced from
Do Then"

(a) r/[-ll5 and r are independent under P, while 7 is uniformly (0,1)
distributed.

(b) suPA e P([;]1A 1 -< In) o(A) -0.

Proof." (a) Let f and g be suitably measurable functions. Denote the number of

Tis in (0, t] by N(t). By (2.8), and by partitioning (0, t] into the subintervals

(Ti_l,Ti] and partitioning these intervals in turn into the subintervals constituted
by the intermediate times, we obtain that

E(f(U )g o rlc o rlr)
Ti-1 jN(t) Si-l-Di-l/’ (Zi-l,J -s ) gorlS

i-
_jds=tlInE’ E E f Ti l, j Z--i l, j 1 1

i=1 3=1Ti_1,j_1

f(u)du.t_olim E+ t
1-

,z_.,Si-1"= Di- i-lE g rlsi_ - J
0

1

/ f(u)du. E(g o rio
0

Here the third equality follows for general f and g, by applying the second
equality for f 1.

(b) This follows from (4.6) and (4.8) replacing A by r/-1A, 1 by , and by
]- 1. [-]

Remark 4.2: For a heuristic interpretation of part (b) of the theorem, recall that
working under P means that the origin is uniformly situated in the interval (To,
cf. Lemma 2.1 (b) in this paper and Remark 4.1 in [9]. Hence, letting t tend to zero,
with T1 _< t implies that in equilibrium the origin falls in an intermediate time, M
units of (T1 -To)/(So- Do) away from T1. Here the integer-valued random vari-
able M is (conditionally) uniformly distributed in {1,...,_S0- Do}. But in this ulti-
mate situation, (r equals Do + M. Hence, heuristically, Po arises from P by condi-

tioning on the origin falling in an intermediate time, and- with M intermediate
times on its right in (0, T1] moving the origin to (To, Do + M).

Obviously, transitions from P to P1A and to P2A (as described above) are impor-
tant for getting a good understanding of the DPD of an RTC. Finally, we consider
transitions the other way round: from PIA to P and from P2A to P. Since 0V and
0W are in a sense see (3.4) and (3.5)- the inverse shifts of 1 and ., respectively,
the following results are obvious:

( 3 )EIA( 1 0V (1A -P-))
P1A 0IAI--0 _< A

E1A( 1 A --0-)
"Rn(A), (4.13)
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A E 5. Here U3 and U4 are uniformly (0, 1) distributed random variables, Pin-inde-
pendent of 0}7 1 and P2h-independent of 01, respectively. By using the distribu-
tion functions H and J of Z1 and Z2 (see (4.4)), it can be proven that Rn(A and

Sn(A tend to P(A), uniformly over A E 5.

5. Simulation Apphcations

P describes the random behavior of the RTC as it is seen from a randomly chosen
time-point (on the horizontal axis), PA as it is seen from a randomly chosen level (on
the vertical axis). Under P, a typical realization will have its origin in a continuous
part of the graph, but it might be constant (and hence equal to zero) on a small
interval (0, c). Under PA, there are two types of typical realizations. For the first
type, the origin is in a jump part; for the second, it lies in a continuous part but the
time change is strictly increasing on (0, c) for small enough. In the present section,
we will in particular consider procedures for generating these two types of realizations
when starting with realizations typical under P. The procedures originate from
Asmussen et al. [1] and [17], and they are of special interest whenever it is easier (or
less time-consuming) to obtain realizations of the RTC from one viewpoint than it is
from another. In the case of a PP with multiple arrivals, the main procedure gener-
ates a version of the PP as seen through the eyes of an arbitrarily chosen arrival with-
in a batch of simultaneous arrivals at the origin.

At first we generate a version of the RTC under P1A, starting with independent
versions under P. Let p be positive. For a version A of A will occasionallywe

write T(.n) T*.(n) (for j 7/), S(n) D(n) D(n) S*(n) ).(n) D,(n) ,,(n) 5(n) r
j j 0 0 1 0 0 1 I0 0 n

rn, Vn and W, in accordance with the corresponding definitions in Sections 2-4.
For a positive and fixed constant b, the recursive procedure (for n l) with the steps

(1) generate a version An of the RTC under P, independent of A1,... An 1,

(2) set A0,: An o r/

(3) generate under P, a uniform (0,1) observation U,, independent of
U1,’", Un 1 and A0,... A0n

(4) stop the procedure as soon as Un < b/7(on) and set M" min{n N: Un <

leads to a version AoM. For a measurable function f, we obtain that

E(f(AoM))- E E(f(Aon)I(M n))
n=l

E E(f(Aon)l ))P(M > n- 1)
n 1 (Un - b/3’n)

Note that

E(f(h01)l ). E(M).
(U1 _( b/"/1))

E(M)- E (P(U1 > b/7(ol))- lIP(U1 <-b/7(o))
n--O
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E(f(AoM))
E(f(A o r/r) (1 A -))

E1A(f(A)(70 A b))
(5 1)EIA(70 A b

See Theorem 3.1 (a)for the last equality. By (4.6) and (4.8), the P-distribution of
the version A0M of the RTC tends to the P1h-distribution of the RTC as b tends to
zero from above. If g(70 > b)= 1, it follows immediately that E(f(AoM))=
E1A(f(A)). The following intuitive statement declares what is going on (renaming

A(01 )
A(01M is a typical version of the RTC as seen from a level chosen at random
in its jump parts, (5.2)

provided that, with probability one, 70 is larger than a positive constant. Note also
that, under this hypothesis, the right-continuous inverse of the version generated by
this procedure is just a version of A’ as seen under PA" For instance, the inverse of
the pure jump process A with jump sizes X and T T 1 1 is a simple point pro-
cess. So, the above procedure can be used to transform realizations of a P-stationary
sequence {Xi} into a realization of a time-stationary point process with intensity
1/EXi.

In the case that A- (I) is a PP with multiple arrivals, the above procedure can

easily be adapted to generate a version of the PP as seen under Pc. That is, to
generate a version as seen through the eyes of an arbitrarily chosen arriving customer
within a batch of simultaneous arrivals in the origin. Just replace step 2 by A0n:
Anrln rlern An /[], replace all As by (bs, and recall that in this case,

P1ar/-1 is just PC.
If both p and q are positive, a similar procedure leads to a typical version of the

() ()RTC as seen under P2A: just replace (an, T0 by (rn, 5o ). By Theorems 3.1 (b)
and (4.9), we obtain that the P-distribution of the version A(0/, which follows from
the adapted procedure, tends to the P2A-distribution of the RTC (as b0), and

A(02M is a typical version of the RTC as seen from a level chosen at random
in its continuous parts,

provided that, with probability one, 50 is larger than a positive constant.
With (3.8), (3.9), (4.13) and (4.14) in mind, we can also formulate procedures,

which work the other way around. Starting with versions An under P1A or P,2^,._,,, we
just have to replace (b,P,,n, 7(on)) in the procedure by (1/b, PiA, OYn, 1/7’’J) or

(1/b, P2h, Own, 1/6(on) ). The respective versions A0M are both versions of the RTC
under P.

Finally, we note that, under a similar boundedness condition, (3.11) (or (3.12))
leads to a procedure to derive an observation under Pin (or P2h), when starting with
observations of the RTC under P2A (or P1A)" Here, we have to replace r/ by
7,r o OW (or r/r oOV ).
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