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In this paper the following two connected problems are discussed. The pro-
blem of the existence of a stationary solution for the abstract equation

x"(t) + x’(t) Ax(t) + / E(t- s(x(s)ds + (t), t E R (1)

containing a small parameter e in Banach space B is considered. Here A E
(B) is a fixed operator, E C([0, -t-c),(B)) and is a stationary pro-
cess. The asymptotic expansion of the stationary solution for equation (1)
in the series on degrees of is given.

We have proved also the existence of a stationary with respect to time
solution of the boundary value problem in B for a telegraph equation (6)
containing the small parameter . The asymptotic expansion of this solu-
tion is also obtained.

Key words: Stationary Solutions, Singular Perturbations, Telegraph
Equation, Time-Stationary Solutions, Asymptotic Expansions.

AMS subject classifications: 34G10, 60G20, 60H15, 60H99.

1. Introduction

Let (B II" ]]) be a complex Banach space, 0 the zero element in B, and (B) the
Banach space of bounded linear operators on B with the operator norm, denoted also
by the symbol I1" I1" For a B-valued function, continuity and differentiability refer
to continuity and differentiability in the B-norm. For an (B)-valued function, con-

tinuity is the continuity in the operator norm. For operator A, the sets (r(A) and
p(A) are its spectrum and resolvent set, respectively.
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In the following, we will consider random element son the same complete
probability space (fl,,P). The uniqueness of a random process that satisfies an

equation, is its uniqueness up to stochastic equivalence. We consider only B-valued
random functions which are continuous with a probability of one. All equalities with
random elements in this article are always equalities with a probability one. For a

given equation, we consider only solutions which are measurable with respect to the
right-hand side random process.

It is well known that the stationary solutions of difference and differential
equations are steady with respect to various perturbations of the right-hand side and
perturbation of coefficients. For example, see [5]. In the present work, it is shown
that stability has a place with respect to perturbations such as degeneracy of the
equation.

In the first part of this paper, we consider the following equation

ex"(t) + x’(t) Ax(t) + / E(t- s)x(s)ds + (t), t e R (1)

containing a parameter in B. Here A E (B) is fixed operator, is a stationary
process in B and E E C([0, + cx), (B)) is a function satisfying the condition

We suppose that the following condition

o’(A) g iR O
holds. Under condition (2) the function

eAtP +,G(t): entp _,
satisfies the inequality

t<O;

t>O

Here P_ and P+ are Riesz spectral projectors corresponding to the spectral sets
o’(A) N {z Rez < 0} and o’(A) V {z Rez > 0}, respectively.

Let S be the class of all stationary B-valued processes {(t): t R} which possess
continuous derivatives of all orders on R with a probability one and such that, for
some numbers L L > 0, C C > 0, 5 > 0, the following inequalities

Vn>_O:E{ sup lib(n)(s) ll)_LCn
O<s<5

hold. The notations S(L, C, ) and 5’ will be used. Then we have the follow-
ing result.
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Theorem 1: Let A (B) be an operator satisfying (2). Suppose that S and
ab < 1. Then there exists eo > 0 such that for every e with el < eo, the equation (1)
has a stationary solution xe S, which for every bounded subset J of R, satisfies

where Yo is a unique stationary solution of the equation

x’(t) Ax(t) + / E(t- s)x(s)ds + (t), t R.
--00

(3)

The process x is a unique solution of (1) in the class of all stationary connected
processes in S.

This theorem is proved in Section 2. The method of proof uses a modification of
the proof of Theorem 1 in [7] about the stability of stationary solutions for equation
(1) with E 0.

Remark 1: The asymptotic expansion for a stationary solution of (1) is obtained.
Remark 2: The assumption (2) is equivalent to the existence of a unique

stationary solution {x(t) lt R} with E II x(0)[I < + c of the equation

x’(t) Ax(t) + (t), t R

for every stationary process {(t)[t E R) with Eli (0)I] < +oc, see [3, pp. 201-

Remark 3: The general approach to the analysis of the Cauchy problem for deter-
ministic differential equations containing a small parameter leads to the appearance
of boundary layer summands in the asymptotic expansion of solution [10]. These
summands are absent in the asymptotic expansion of the stationary solution in the
considered problem.

Remark 4: The problem of the existence of stationary solutions for difference and
differential stochastic equations has been investigated by many authors. See, for
example, monograph [1], surveys [2, 4] and article [6].

Corollary 1: Let A e (B) be an operator satisfying (1). Suppose that e S.
Then there exists o > 0 such that for every e with < Co, the equation

tx"(t) + x’(t) Ax(t) + (t), t e R (4)

has a unique stationary solution xe G S, which, for every bounded subset J of
satisfies

II  o( )II Fo,
where xo is a unique stationary solution of the equation

x’(t) Ax(t) + (t), t R.

The second part of this paper deals with the asymptotic expansion of the station-
ary with respect to time solution of a boundary value problem containing a small
parameter. The following definition is necessary.
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Definition 1: A B-valued random function u defined on Q: R x [0, 7r] is time-
stationary if

Vt E RVn NV{(tl, x1),.. ., (in, xn)} C QV{D,..., On} C %(B):

P {w: u(w; tk + t, Xk) e Dk} P {w" u(w; tk, xk) e Dk}
k=l k=l

where %(B) is the Borel r-algebra of B.
Let

c: {: [0, ]-c (/(0) (() 0, 0,1, 2} c([0, ]).

Theorem 2: Let A L(B) be an operator satisfying the following condition

{k2 + ia k e N, a R} C p(a). (5)
Suppose that g C3o and E S with a number 8>0 and ab < l. Then there exists
e0 > 0 such that for every e with [e < eo, the boundary value problem

,’t(t, ; ) + u(t, ; ) ’(,;)
Au(t, z; e) + g(x)(t), t R, z [0,

,(t, o; ) ,(t, ; ) o ,t n
has a unique time-stationary solution u(., .; e) with

(6)

E ( sup
O<s<,o<<

which, for every t R, satisfies

E ( sup
<_s< +8,0<x < r

where v is the unique time-stationary solution of the following boundary value problem
for a heat equation

v(t, x) vx(t x) Zv(t, x) + g(x)(t), t Q
(7)

v(t, o) v(t, ) o, t e n
with

sup E II v(O, )II < + ,
O<x<Tr

This theorem is proved in Section 3.
Remark 5: Condition (5) is a necessary and sufficient condition of the existence of

a time-stationary solution for boundary value problem (7) [8].
Remark 6: Note that, if e > 0, problem (6) is a boundary value problem for a hy-

perbolic equation and that, if 0, we have a boundary value problem for a para-
bolic equation.

Pemark 7: The study of the asymptotic behavior of a solution u(., .;e) of the
telegraph equation from (6) as ---,0 + has also physical sense [9].
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2. Asymptotic Expansion of the Stationary Solution of Equation (1)

In order to prove Theorem 1, a few lemmas will be needed.
Lemma 1: Let A E (B) be an operator satisfying (2). Suppose that S.

the equation
x’(t)- Ax(t) + (t), t R

has a unique stationary solution x S, which can be presented in the form

Then

t

Proof: This is the corollary of Theorem 1 in [3, pp. 201-202].
Lemma 2: Let A (B) be an operator satisfying (2). Suppose that S. The

following two statements are equivalent:
(i) A stationary process x S is a unique stationary solution of the equation

(3).
(ii) A stationary process x S is a unique stationary solution of the equation

8

t e (S)

Proof: The result is a consequence of Lemma 1.
Lemma 3: Let A (B) be an operator satisfying (2) and ab < 1.

is a stationary process in B, which, for some 5 > O, satisfies
Suppose that

o_<t_<

Then the equation (8) has a unique stationary solution x, which satisfies

E( sup I[x(t) ll’ < +cx:" (9)
o_<t_<,

Proof: Let SO be the class of all stationary connected B-valued processes x which
are stationary connected with and, for given 5 > 0, satisfy (9). Let us introduce the
operator

(Tx)(t)" / G(t s) / E(s u)x(u)duds / / G(t s)(s)ds, t R.

Then Tx SO and

E ( sup
o_<t_<

II (Tx)(t)-(Ty)(t) II - abE sup
] \o<t<

therefore T is a continuous operator on S0. Set

o(t) / a(t- tER,

then x0S0and
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su.
0<< 0<<

Introduce the sequences of random processes

It is clear that

and for every

XO,Xl" TZo, x2: TXl ., Xn: Txn 1,

Xn SO, n t/r; Xn + 1 Txn, n >_ 0

E II Xn + l(t)-xn(t)ll <- E ( sup Il Xn + l(s)-xn(s)ll
\ t<_s<_t-t-5 ]

Hence, the series
<_ a(ab)n + lE( sup

\o<t<
II ()II ), n > o.

x(t)" XO(t -}-[Xl(t x0(t)] +...-}-[Xn(t Xn- l(t)] +""

converges with a probability one for every t R and this convergence is uniform over
the bounded subset of R with a probability one. By continuity of T we have x Tx.
The solution x of (8) is unique.

Lamina 4: Let A G (B) be an operator satisfying (2) and ab < 1. Suppose that
is a stationary process in B, which, for some 5 > O, satisfies

E [ sup
\0_<t_< J

Then equation (3) has a unique stationary solution x, which satisfies (9).
Proof: The result is an immediate consequence of Lemma 2 and Lemma 3.
Setc: -(1-ab)-l.
Lamina 5: Let A e (B) be an operator satisfying (2) and ab < 1. Suppose that
S(L, C,5). The equation (3) has a unique stationary solution x e S(bcL, C, 5).

Proof: We return to the proof of Lemma 3 where the stationary solution x for
equation (3) was given. From the inclusion S(L, C, 5) and representation

0(t) [ ()(t- )d, t
it follows that d

(0)(t) f a()()(t- )d,

for every k k 0 and xo S(bL, C, 5). For the process xI --:gO’ we have

Xl(t) Xo(t / G(it)/ E(v)xo(t- it- v)ditdv, t e i.

It o

Hence, for every k > O, we have

R
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and (x1 -x0) E S(ab2L, C, 6). By induction, we find

(xn xn 1) E S(b(ab)nL, C, 5), n > 1.

Therefore,
z s(cL, c, ).

Lemma 5 is proved.
Proof of Theorem 1: Let S(L,C, 6). We shall construct the asymptotic

expansion for a solution of (1) in the following way. From Lemma 5, equation (3)
has a unique stationary solution Yo S(bcL, C, 5). Note that y’ S(bcLC2, C, 5).
Let Yl be a unique stationary solution for equation

yi(t) AYl(t + / E(t- s)Yl(S)ds- yg(t), t e R.

This solution exists from Lemma 5 and

Yl S(b2c2LC2, C, 5).

By analogy with Yl, let Y2 be a unique stationary solution for equation

y2(t) AY2(t + / E(t- s)Y2(s)ds- y’l’(t), t e R.

For this solution, we have Y2 S(b3c3LC4, C, 5).
If the processes Yo, Yl,’",Yn-1 for n > 1 are already constructed we will define

process Yn as a unique stationary solution of the equation

which satisfies

y’n(t) Ayn(t + j E(t- s)yn(s)ds y’_ (t), t e R,

Yn S(bn + lcn + 1LC2n, C, 5).

It is clear that the processes Yn, n > 0 are stationary connected [3].
Set

Since

n=O t_s_t+5

bn + 1LC2n 2bLII II ) < n <-n o (1 ab)n + 1 1 ab

(10)

for every t e R and 1 < 0: (1 -ab)/(2bC2), the series for y converges uniformly
on bounded subsets of R with a probability one. This shows that y is continuous on

R with a probability one stationary process.



146 A. YA. DOROGOVTSEV and O. YU. TROFIMCHUK

By exactly the same arguments as those used above, we claim that the series for

Ye are also absolutely and uniform convergent on bounded subsets of R with
probability one and we have

y(t) -t- Ye(t) E (n -t- ly,r(t
__
nyn(t)

ri O

en+l Ayn+l(t)+ E(t-s)yn+l(s)ds-yn+l(t) + e Yn(t
n OL -oo

E n-I- layn E <n -t-1 g(t ld8 rn
+: --.-n+ < om,,+ <"

n;O n=O -ex m=l n=O

= A e.mym(t) + E(t- s emym(S) ds + Yo(t)
m=l -oo m=l

Aye(t + f E(t- s)ye(s)ds- AYo(t f E(I- s)Yo(s)ds + y’o(t)

Aye(t)+ i E(t- s)ye(s)ds + (t), t E R.

Moreover, for every t E R, we have

E ( sup
t<s<t+5

II y,(.)- y0(’)II ) <=: I, "-1

(1bin-+ab)mlLC2m+ 1 <
262LC2
(1 ab)2e’

if lel <e0.
To complete the proof of Theorem 1 we need show only the uniqueness. It is

sufficient to prove the following fact. If z is stationary connected with the process ac

solution of (1), which satisfies

E ( suo IIz(t) ll< +oo, E ( su. IIz’(t) ll< +
t,o<_t<_ ] \o<_t<_ ]

then z- xe. We apply Lemma 4 in the following way. The difference u: x -z is
a stationary process which satisfies the equation

and

eu"(t) + u’(t) Ax(t) + i E(t- s)u(s)ds, t e R (ii)
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su.
0<< 0<<

Let us consider a Banach space B2 of two vectors equipped with term-by-term linear
operations and with the norm which is equal to the sum of the norms of the coordin-
ates. Let

u(t):- /:- E:-
u I (R) (R)

where @ and I are the zero operator and identity operator on B, respectively.
the following equation in B2

,,’(t) a,,(t)+ f -(t- ),,d, t e

Then

(12)

is equivalent to the equation (11) in B. By direct computation we obtain that condi-
tion

()i-0

is fulfilled if, for every a E R, an operator A-(ia + ct2c)I has a bounded inverse.
For the justification of this assertion for all small cl it suffices to make use of condi-
tion (2) and the boundedness of operator A. Then, by Lemma 4, the equation (12)
has a unique stationary solution and hence u(t) O, t R with the probability of of
one.

The proof is complete.
Remark 8: Let B- R. It can be proven that the existence of expansion (10) for

the solution of equation (4) leads to condition C(R).

3. Time-Stationary Solutions of the Boundary Value Problem for PDE
Containing a Paxameter

Proof of Theorem 2: Let a process S(L,C,5) and a function g C03 be given.
Then, one can expand g as

g(x)- gksinkx,
k=l

x[0,r]; {gk:k >- l} C C,

where the series on the right-hand since is uniformly convergent. Note that

Let k >_ 1 be fixed. From assumption (5) and Corollary 1, it follows that there is

(k > 0 such that for every e with el < ek, the equation

ev(t; ) + v’(t; ) + k2vk(t; ) Ave(t; ) + g$,(t), t R (13)
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has a unique stationary solution vk(. c) such that

(,  sup II   t)II

where vk is a unique stationary solution of the equation

V’k(t + k2vk(t) Avk(t + gk(t), t e R,

and J is a bounded subset of R. Moreover, for every t E R, we have

and

E (t<_s<_t-l-hsup II Vk(8;C)]1)<-- 21gk iil,k

E ( sup
t<s<t+8

II Vk(;)- Vk() II ) 21g LL,C= I,

(14)

(15)

if I1 _< k, where

Ll,k: / II Gk(S) II ds < -q-cx3

R

and Gk is Green’s function for operator A- k2I; k > 1. It follows from the properties
of Gk that

LL1, k -<k2 k20
k > ko, (16)

where a number L can be chosen to be independent of k.
Now we shall remark, that by virtue of boundedness of an operator A, the

numbers ok, k > 1 are identifiable and not depending on k. Really, let k0 be the least
natural number such that a spectrum of an operator A-(c2c-k)I resides in the
left half-plane. Then the spectrum of an operator A- (a2c- k2)I, k > k0 also resides
in the left half-plane and it is possible to put %: min{Q,c2,...,%0} > 0. Thus, for
every c, c < Co, all equations (13) have a unique stationary solution.

Let us consider the series

u(t,z;c): Vk(t;c)sinkx (t,x) Q (17)
k=l

for c < %. It follows from (14) and (16) that

E ( sup llVk(t;c)sinkxll)-< -21gklLLl,k < +cx,
k=l t<s<t+8,0<x<Tr k=l

for every R and [c _< c0. This implies that the series (17) converges absolutely
and uniformly on [t,t + 6] x [0, Tr] with the probability one and the random function
u(.,. ;c) is a continuous, time-stationary with respect of time variable, random
functions. In addition,

sup II u(, ; )I1% < + .
o_<<_,o<__<
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Using the above-mentioned reasoning, the following equalities are installed

ui(t’x;e)" E v’k(t’e)sinkx’
k=l

E "(t;e)sinkx
k=l

(18)

u;x(t,x;c)" E (- k2)vk(t;c)sinkx,
k=l

for (t,z)E Q and uniform on [t, t+ 5] x [0, r] convergence with the probability one of
an appropriate series for any t E R and cl <_ %. We have also

E ( sup

From (17), (lS), and (13), it follows that

,) + u;(t, ,)

E (cv(t;c)+ v(t;c) + k2vk(t;c))sinkx
k=l

E (Avk(t; c) + gk((t))sin kx
k=l

Au(t, x; c) + g(x)((t), (t, x) e Q.

Hence, the random function u(., .;c) for c with I 1< is a time-stationary
solution of (6).

This solution is unique. To see this, we observe that for any t R, the elements
{vk(t; e)} are Fourier coefficients of u(t, .; ) e C2([0, 7r], B) which determine u(t, .; )
uniquely with the probability one. See, for example [3] for details. By Corollary 1,
the solutions of (13) are also determined uniquely with a probability one.

Similarly, by repeating the above arguments, we conclude that random function

v(t,x)" E vk(t)sinkx’ (t,x) e Q
k=l

is a unique, stationary with respect to time variable, solution of (7) and

E ( sup
t<s<t+5,0<x<Tr

for every t R. Note that the random functions u(., .;c), cl _< c0 and v are time-
stationary connected.

Finally, let us consider the difference u(., .;c)-v(.,.) for c < c0. By
Corollary 1, the following inequalities

E ( sup
<_s<_t+5,0<_x<_Tr
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su ,
k=l t<s<t+

hold.
Theorem 2 is proved.

II v(t; )- v(t) II )_< 2L g L,C21
k=l
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