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1. Introduction

Mathematical modeling of several important dynamic processes has been rendered via
difference equations or differential equations. Difference equations also appear in the
study of discretization methods for differential equations. From a modeling point of
view, it is perhaps more realistic to model a phenomenon using a dynamic system
that incorporates both continuous and discrete times, namely, time as an arbitrary
closed set of reals called a time-scale. The recently developed dynamic systems on

time scales off a unified approach to continuous and discrete systems [2].
The Lyapunov stability of the trivial solution of a differential system does not rule

out the possibility of asymptotic stability. Moreover, the asymptotic stability of the
trivial solution does not guarantee any information about the rate of decay of the
solutions. Various definitions of stability are therefore one-sided estimates, and thus
these are not strict concepts. It is natural to expect that an estimation of the lower
bound for the rate at which solutions approach the trivial solution would offer
interesting and useful refinements of the stability notions. Such concepts, known as

stability in a tube-like domain, were introduced in [1].
Recently, in the development of the variational Lyapunov method [3], it has

become necessary to employ the strict stability concept to prove a theorem analogous
to Lyapunov’s uniform asymptotic stability result. However, it was found that the
earlier definitions of strict stability were too stringent for this purpose and that the
ideas and proofs needed some further refinement.
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In this paper we discuss strict stability notions and give sufficient conditions for
such concepts to hold. We first prove results analogous to Lyapunov’s original
theorems and then discuss them by employing a comparison principle.

2. Preliminaries, Local Existence and Uniqueness

Let - be a time scale (closed nonempty subset of R) with to > 0 as a minimal
element and no maximal element. The points {t} of are classified as

right-dense (rd), if a(t)- t,

left-dense (ld), if p(t)= t,

right-scattered (rs), if or(t)> t,

left-scattered (ls), if p(t)< t,

where r(t), p(t) are jump operators defined by

r(t) inf{s E T: s > t},

p(t) sup{s E -![: s < t}.

Set m*(t)= r(t)- t (called graininess) so that- R#*(t) 0,

q[ =_ Z#*(t) 1.

Definition 2.1: The mapping u" 7-R is said to be rd-continuous if it is continuous
at each right-dense point and lims__,t- f(t-) exists at each left-dense point.

Definition 2.2: A mapping u:YR is said to be differentiable at t , if there
exist an a R such that for any > 0 there exists a neighborhood U of t satisfying

u(cr(t))- u(s)- (r(t)- s) _< r(t)- s for all s e U.

Note: Derivative of u is denoted by then- Ru a
du(t)
dt

-[ Z=u/x a u(t + 1)- u(t).

If u is differentiable at t, then it is continuous at t.
right-scattered, then u is differentiable and

If u is continuous at t and is
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Definition 2.3: For each t E , let N be a neighborhood of t. We define the
generalized derivative (or Dini derivative), D + uA(t) as, given c > 0, there exists a

right neighborhood N C N of t such that

< D + uh(t) +c for s e N, s > t, where #(t, s) r(t)- s.

In the case of t being rs and u continuous at t, we have, as in the case of the
derivative,

D + uA(t) u(r(t))- u(t)

Definition 2.4: Let h be a mapping from q] to R. The mapping g: q]--R is called
the antiderivative of h on q] if it is differentiable on q]- and satisfies gA(t)- h(t) for
tEY.

The following known properties of the antiderivative are useful.
(a) If h’-[---,R is rd-continuous, then h has the antiderivative g:tftsh(s)ds,

s, t E -[.

(b) If a sequence {ha}n E Y of rd-continuous functions q]--,R converges uniform-
ly on [r,s] to an rd-continuous function h, then (fSrhn(t)dt)nEN
f Srh(t)dt on R.

A basic tool employed in the proofs is the following induction principle, well suited
for time scales. Suppose that for any t Y, there is a statement A(t) such that the
following conditions are verified:

(i) A(to) is true;
(ii) If t is right-scattered and A(t)is true, then A(r(t))is also true;
(iii) For each right-dense t, there exists a neighborhood U such that whenever

A(t) is true, A(s) is also true for all s U, s _> t;
(iv) For left-dense t, A(s) is true for all s [to, t) and implies that A(t) is true.

Therefore, statement A(t) is true for all t E Y.
In the following we shall consider the initial value problem for dynamic systems on

time scales and prove local existence and uniqueness results corresponding to Peano’s
and Perron’s theorems. Let -[[k represent the set of all nondegenerate points of the
time scale -. We consider the initial value problem (IVP)

xA- f(t, x), t e -k,X(to)- xo, (2.1)

where f" qVk x Rn---tn and f is rd-continuous on q]-k x Rn. A map x:-[[k---Rn is a

solution of IVP (2.1)if x(t)is an antiderivative of f(t,x(t)) on -]-k and satisfies

(t0)
Theorem 2.1: Let f Crd[Ro, Rn] where Ro [to, to + a] B, [t0, to + a] is

understood as [to, to + a] -[k and B {x Rn: X Xo <_ b}. Then, the IVP (2.1)
has at least one solution x(t) on [to, o+a], where a-min(a,-) with M being a

bound of f(t,x) on n--kqVProof: For any r E to < r < o + c, define the mapping

fr](t, x) f(t, x), t E [to, r), x B,

f(r-,x), r, x B.
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Let the statement A(r) be as follows: The IVP

x/x fr](t, x), t E [t0, r], x(t0) Xo,

has a solution xr(t on [to, r].
(i) The statement A(to) is trivially true since the mapping

Xto{tO}---,B and x(t)- ft](t, Zto(t)) for t E {to)k- O.

(ii) Let r be right-scattered and A(r) be true, i.e., IVP (2.1.r) has a solution

Xr(t on [to, r ]. Define the mapping

such that

)() { *r(t),
x(r) + f(r,x(r))#*(r),

Then z () is continuous and is a solution of (2.1.r) on [to, cr(r)].
(iii)a’et r be right-dense and Ur be a neighborhood of r. Assume A(r)is true.

We need to prove that A(s) is true for s Urf3 [t0, t0 + hi, s > r. By the classical
existence theorem (Peano’s theorem) there exists a solution xs(t satisfying

The mapping defined by
,() .().

/,

J (t), t e [to,
(t), , < t < s e U [to, to + o]

is a solution of (2.1.r) on [to, s], s > r, proving that A(s) is true.
(iv) Let r be left-dense such that A()is true for all s < r. We need to prove

that A(r)is true. For any s < r, IVP (2.1.r) has a solution xs(t on [to, s defined by

ms(r x0 + J f(7-, xs(7-))A7- t [to, s].

Since f(t,x) is rd-continuous, limt__+r- f(t, xs(t)) exists and hence we have

r

xs(r --x0 j f(7’xs(7"))Ar"

Thus Xs(t is a solution of (2.1.r) on [to, r], i.e., A(r) holds.
By the induction principle, IVP (2.1) has a solution on [to, to + a] and the proof is
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complete.
Next, we consider a Perron type uniqueness result.
Theorem 2.2: Assume that
(i) g E Crd[[tO, tO + a] [0, 2b], R + and for every tl, tO < t1 < tO + a, u(t) 0

on otu,o o (t, ),() O, o [, -+
(ii) f Crd[RO, Rn] and for each t [to, to + a], there exists a compact neighbor-

hood U such that ft] in U B satisfies

f(t,x)- f(t,y) <_ g(t, Ix- Y l),(t,x),(t,Y) U B.

Then the IVP (2.1) has a unique solution x(t) on [to, to + a].
Proof: We apply the induction principle to the following statements
A(r): The IVP

x/x fr](t, x), t e [to, r], x(to Xo,

admits exactly one solution Xr(. ).
(i) In fact, there exists only one mapping Xto’{to}---Rn with Xto(tO)- xo and

XtAo(t frl(t, Xto(t)) for t e {to}k- O.

(ii) Let r be right-scattered. IVP (2.2.r) has, according to the induction condi-
tion, exactly one solution Xr(. ). We define mapping X(r)" [to,r(r)]---,Rn by

x,(t), if t [to, r],
xr(r)(t) xr(r + f(r, Xr(r))#*(r), if t (r).

It is continuous and the only solution of IVP (2.2.(r(r)), since its restriction to [t0, r
is the only solution of the IVP (2.2.r) and its restriction to [r,r(r)] is the only
solution of the IVP

xA f(t,x), x(r)- xr(r on [r, r(r)].

(iii) Let r be right-dense. By the induction condition, there exists exactly one

solution Xr(. of (2.2.r). Let Yr C_ Ur be a compact neighborhood of r. By Perron’s
Theorem, for each s E Vr, s >_ t the IVP

x/x ff](t, x), t It, s], x(r) x,(r)
admits exactly one solution Ys(" )" The mapping xs, defined by

x,(t), if t G [to, r]

Ys(t), if t It, s],
(2.2.s)

is the unique solution of the IVP (2.2.s). Hence we have A(s) for all s G Vr, s >_ r.

(iv) Let r be left-dense, and choose Vr as above, then there is a s G Vr with
s < r. With the help of the induction condition A(s) and Perron’s Theorem, the exist-
ence and uniqueness of a solution xr(. of (2.2.r) can be shown exactly in the same

way as in (iii). Hence we have A(r).
Since there is a unique solution on each interval [t0, r], r >_ to, there is a unique

solution of (2.1) on [to, to + a]. Thus the proof is complete.
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Let %- {a E Crd[-,R + ]:a(u)is strictly increasing in u, a(0)--0 and a(u)---,c as

u--,c} and consider the initial value problem (IVP)
f(t, ), t , (to) o, (2.1)

where f: x Rn---Rn and f is rd-continuous on q]- x Rn.
Definition 2.5: The trivial solution of (2.1) is said to be:
(S1) strictly stable, if given eI > 0 and to E T, there exists a 6 61(tO, el) > 0

such that Zol < 1 implies z(t) < ea,t >_ t0, and for every 0 < 62 < 61,
there exists a

0 < e2 < 62 such that 62 < zol implies e2 < z(t)I,t to;

(s2)
(s3)

strictly uniformly stable, if 51, 62 and e2 are independent of to;
strictly attractive, if given c1 > 0, eI > 0 and to G for every c2 _< c1 there
exists 2 < 1, T1 Tl(t0,l), and T2 T2(t0,l) such that

2 z01 eel implies e2 < x(t) < el, for to + T1 < t < to + T2;

($4) strictly uniformly attractive if T1 and T2 in ($3) are independent of to;
($5) strictly asymptotically stable if ($3) holds and the trivial solution is stable;
($6) strictly uniformly asymptotically stable if ($4) holds and the trivial solution

is uniformly stable.
Remark 2.1: It is important to note that (S1) and ($3), or, ($2) and ($4) cannot

hold at the same time. If in (S1) it is not possible to find an 2 satisfying (2.2), we

shall say that the trivial solution is stable. This can happen when Iz(t) l-0 as

t--<x, or, liminf x t )1 = 0 and limsup x(t) # 0.

3. Main Results

In this section we discuss sufficient conditions for the strict stability notions.
Theorem 3.1: Assume that
(H1) for each 0 < 7 < P, Ve Crd[-[ co p, R + ], Vo is locally Lipschitzian in x

and for (t,x) T Sp and

and
hi(Ix l) < V,(t,x) < al(lX I), al,bl K,

(t,z) < o;D+Vo (3.1)

(H2) for each r, 0 < r < p, Va Crd[- X eSp, R + ], Va
x and for (t,x) e -[ So and Ix < , is locally Lipschitzian in

and
b2( x l) <_ Vo(t,x) <_ a2( x ), a2, b2 K,

D + Avo(t,)>o. (3.2)

Then the trivial solution is strictly uniformly stable.
Proof: Let 0 < < p and o G 1]- be given. Choose 1 1(1) > 0 such that

al(l) < bl(el). (3.3)
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Then we claim that
XO[ < 1 implies x(t) < el, t >_ to. (3.4)

If (3.3) is not true, then there would exist tl, t2 E -[]-, t1 > t2 > to and a solution of
(2.1) with Xol < 1, satisfying Ix(t1) Cl, Ix(t2) 51 and 1 < Ix(t) fr
t E [t2, tl].

Choosing r 51, and using (H1) we obtain

bl(el) bl( X(tl) <_ Vr(tl,x(tl)) <_ Vr(t2, x(t2)) <_ al( x(t2) al(51)
which contradicts (3.3). Hence (3.4)is valid.
Now let 0 < 52 _< 51 and choose 0 < Ix01 < 52 < 51 such that

a2(2) < b2(52). (3.5)
We now claim that

52 < ]X0[ < 51 implies e2 < x(t) < el, t t0. (3.6)
If (3.6) is false, then because of (3.4), there exists a solution of (2.1) with 52 <
Xol < 1 and tI > t2 > to satisfying

x(ta) %, x(t2) + 62 and x(t) < 52 for t G [t2, tl]. (3.7)
Let cr 52 and using (H2) we get

a2(e2) a2( x(tl) >_ Va(tl, x(tl)) >_ Va(t2, x(t2)) >_

which contradicts (3.5). Thus (3.6) is valid and hence uniform strict stability of the
trivial solution of (2.1) follows. This completes the proof of Theorem 3.1.

Theorem 3.2: Let the assumptions of Theorem 3.1 hold, except that the conditions

(.1) a,U (.2) a pacU

and
D +V(t,x)<_ -cl([x[)

D + A

(3.8)

(3.9)

where Cl, c2 K. Then the trivial solution of (2.1) is strictly uniformly asymptotical-
ly stable.

Proof: First we note that although (3.8)implies (3.1), (3.9) does not yield (3.2).
As a result, we obtain because of (3.8) only uniform stability of the trivial solution of

(2.1), i.e.,
]Xol < 51 implies x(t) < Cl, t >_ to, t G 3]-. (3.10)

Now, to prove the conclusion of Theorem 3.2, we need to show that the trivial
solution of (2.1) is strictly uniformly attractive. For this purpose, we let 1--P and
designate by 510- 51(p)so that (3.10) yields

510 implies Ix(t) < p, t (3.11)
Let Ix0[ < 510. We show, using standard argument, that there exists a t*

a1(510)
with 51 is the number corresponding to 1 in[to, to + T], where T T(e) > c1(51)

uniform stability, such that x(t*)l < 51 for any solution x(t)of (2.1) with

Ix01 <510. If this is not true we will have Ix(t) >_51 tE[to, 0+T]. Then,
letting r/- 51 and using (H1) with (3.8), we have
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h() ( (o + T) I) < V,(*o + T, (o + T)

to+T
<_ Vo(to, xO) J Cl( X I)As < al(51o)- Cl(51)T bl(51)

o
in view of the choice of T. This contradiction implies that there exists a t*E
[to, to + T], satisfying x(t*) < 1" Due to the uniform stability of the trivial solu-
tion of (2.1), this yields that x(t) < cl,t >_ to 4- T _> t*, which implies that there
exists a to<TI<T such that Ix(to+T) -el. Now for any 520 0<520<510,
choose 2 such that b2(620 > a2(2) and 0 < 2 < el < 520" Suppose that 520 <
Xol < 510. Let us define

V
[b2(52)- a2(e2)] and T2 -T1 + 7".

(1)
Since x(t) _< 1’ for t

_
to 4- T1, choosing cr (?1 and using (H2) with (3.9), we get

for t E [to + T1, to + T2],
a2( x(t) >_ V(t,x(t))

y(t,(t))- f c2(I (s) I)As b2(20)- f c2(I (s) I)ms
to $0 -t- T1__

b2(520 c2(el)[t (to 4- T1) ].

Since t- (to + T1) >_ r, it follows that

a( x(t) > b2(20)- C2(el)[b2(20) a2(c2)]
c2(el) a2(2).

This yields that
Ix(t) >- 2, for

and therefore,
e < z(t) < 1 for t e [to + T1, to + T],

which completes the proof.
Before proving the general result in terms of the comparison principle, we need to

consider the comparison differential system

Ul
A gl(t, ul),ul(tO) u0 >_ 0 (3.12a)

u2
A g2(t, u2) u2(t0 u0 >_ 0 (3.12b)

where g,g2 Crd[-l[ R-t-,R]. We shall say that the comparison system (3.12) is
strictly stable, if given el>0 and oq[, there exists a 51>0 such that uo<51
implies Ul(t < el, >_ to, and for every 52 < 51, there exists an 2, 0 < e2 < 52 such
that 52 < uo implies that e2 < us(t), > to. Here, Ul(t and u2(t are any solutions of
(3.12a) and (3.12b), respectively.

Based on these definitions, we can formulate other strict stability notions. The
next result is formulated in terms of comparison principles.
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Theorem 3.3: Let the assumptions of Theorem 3.1 hold, except that conditions
(3.1) and (3.2) are replaced by

and
D + VrA(t, x) -< gl (t, vr(t x)), (t, x) ( - x Rn

D + VA(t, x) _> g2(t, Va(t, x)), (t, x) e -[ Ru

(3.13)

(3.14)

where g2(t,u)_gl(t,u), gl, g2ECrd[-R+,R], gl(t, 0)-0, g2(t,0)-0. Then any
strict stability concept of the comparison system implies the corresponding strict
stability concept of the trivial solution of (2.1), respectively.

Proof: Let 0 < el < P and to E - be given. Suppose that the trivial solution of the
comparison system (3.12) is strictly uniformly stable. Then for any given bl(el) > 0
and to T, there exists 5 > 0 such that

0 < u0 < 5 implies that ul(t < bl(el),t

_
to, (3.15)

where ul(t)- ul(t,to,no) is any
al(51) _< 5{. Then we claim that

solution of (3.12a). Choose 51 >0 such that

Iol < 51 implies x(t) < 1, t tO. (3.16)
If (3.15) is not true, then there exist tl,t2, tI > t2 > to and a solution of (2.1) with

]x(t2) 51, Ix(t1) (1 and 51 < Ix(t)] < el’ for t It2, tl]. Choosing r] 51
and using the theory of differential inequalities, together with (H1) we get, by (3.13)
and (3.15),

bl(l)

_
bl( X(tl) <_ Vn(tl,x(tl)) <_ r(tl, t2, Vn(t2, x(t2))_

r(tl,t2, al(51))

_
r(tl,t2,5* bl(l),

which is a contradiction. Here r(t, to, Uo) is the maximal solution of (3.12a). Hence,
(3.16) is true.

Now, by strict uniform stability of the comparison system, we also have, for any
* * satisfying52.

_
51,* there exists an 2 < 52

implies u2(t > e, t _> t0. (3.17)
For any 52

_
51, with b2(52) k 5, choose e2 < 52 such that e >_ a2(e2). By following

an argument similar to the one used to establish (3.4) in Theorem 3.1, we can con-
clude that 52< Ix01 implies that 2 < Ix(t) for t>to Let r=52 Then using
the theory of differential inequalities, (3.12b), (H2) and (3.17), it follows that

a2(2) >_ a2( x(t) >_ Va(t2, x(t2))

> (t, t, v(t, (t))

>_ P(t1,t2, b2(52) >_ P(tl, t2, 5) > e _> a2(e2)

where p(t, to, Uo) is the minimal solution of (3.12b). This is a contradiction and
consequently, the trivial solution of (2.1) is strictly uniformly stable.

Next, assume that the trivial solution of the comparison system (3.12) is strictly
uniformly asymptotically stable. We see that the trivial solution of (3.12a) is
uniformly stable. That is,
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Iol < 51 implies x(t) < 1, t > to.

To complete the proof, we need to prove that the trivial solution of (2.1) is strictly
uniformly attractive. To show this, fix c1 -p and designate 510- 51(p) so that we

have

IX01 < 510 implies x(t) < p, t > to.

Let Xol < 61o. Let cl > 0 and to E ql- be given. Choose cr1 1o" Let < b1(1)
and a > a1(510). For any a2 20 < 10, define a < b2(20 and > a2(2) for any
< . Assume that the comparison system is strictly uniformly asymptotically

stable. Since this implies strict uniform attractivity, given a1 > 0, 1 > 0 and to E q],
* < u0 < a* implies*_< * * * and T1 < T2 such that a2 1for every c2 1 there exist 2 < el

that
; < u2(t < ul(t < , nit0 + Tl,t0 + T2]. (3.18)

Take any 2o < 1o and let 520 < ]Xol < 51o. Then using (H1) (3.15) and (3.12a),
we get for t [to + T1, to + T2],

b( (t) <_ Vo(t)) <_ (t, to,

< r(tl, t2, al(lXo[)) < r(tl, t2,8o < < hi(el), (3.19)

which implies that x(t) < x, t e [to + T1, to + T2].
and (3.12b), we see that for t [to + T1, to + T2]

Similarly, using (H2) (3.17)

a2( (t) _> V(t,m(t)) >_ p(t, to, V(to,(to)

>_ p(t, to, b2( Xo )) _> p(t, to, 20) > 5 -> a2(2), (3.20)

which yields that z(t) > 2, to+T1 < t < to+T2. Thus (3.19) and (3.20) yield
that 2 < x(t) < el, for t e [to + T1,to + T2] whenever 520 < Zol < 61o. Thus
the proof is complete.

References

[1] Lakshmikantham, V. and Leela, S., Differential and Integral Inequalities Vol. 1,
Academic Press, New York 1969.

[2] Lakshmikantham, V., Sivasundaram, S. and Kaymakcalan, B., Dynamic
Systems on Measure Chains, Kluwer Academic Publishers, The Netherlands
1996.

[3] Rajalakshmi, S. and Sivasundaram, S., Variational Lyapunov second method,
Dyn. Sys. and Appl. 2 (1993), 485-490.


