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The optimal filtering problem for multidimensional continuous possibly
non-Markovian, Gaussian processes, observed through a linear channel
driven by a Brownian motion, is revisited. Explicit Volterra type filtering
equations involving the covariance function of the filtered process are deriv-
ed both for the conditional mean and for the covariance of the filtering
error. The solution of the filtering problem is applied to obtain a

Cameron-Martin type formula for Laplace transforms of a quadratic func-
tional of the process. Particular cases for which the results can be further
elaborated are investigated.
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1. Introduction

The Kalman-Bucy theory of optimal filtering is well-known for Gaussian linear sys-
tems driven by Brownian motions. Various extensions of this theory for possibly
non-Gaussian Markov processes and semimartingales have been given a great deal of
interest over the last decades. (see Davis [1], Liptser and Shiryaev [8, 9], Kallianpur
[3], Elliot [3], and Pardoux [10]). As far as we know, there are few contributions for
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systems generating non-Markovian processes or processes which are not semimartin-
gales (e.g., [3]). Yet, for processes governed by for It6-Volterra type equations,
Kleptsyna and Veretennikov [7] provide a technique to overcome many of the
difficulties of non-Markovian and non-semimartingale processes. Recently, a similar
approach has been applied in several specific one-dimensional non-Markovian
continuous Gaussian filtering problems (see Kleptsyna et al. [4-6], and references
therein).

In this paper, we deal with a signal process X (Xt, t > 0) which is an arbitrary
p-dimensional continuous Gaussian process and an observation process
Y (Yt, t > 0) in Nq governed by the linear equation

Yt i R(s)Xsds + Nt’ t > O, (1)
0

(see [3, Chap. 10] for a similar setting). The function R -(R(s),s > 0) is continuous
with values in the set of q x p matrices, and N (Nt, t > 0) denotes a q-dimensional
Brownian motion, independent of X, with covariance function (N)- ((N)t,t > 0).
Clearly, the pair (X, Y) is Gaussian but, in general, is neither Markovian nor a semi-
martingale. If only Y is observed and one wishes to known X, the above reduces to
the classical problem of filtering the signal X at time t from the observation of Y up
to time t. The solution to this problem is the conditional distribution of X given
the r-field q’Jt- r({Ys, 0 < s <_ t}) which is called the optimal filter. Of course, here
the optimal filter is a Gaussian distribution and it is completely determined by the
conditional mean 7rt(X of X given t and by the conditional covariances 7xx(t) of
the filtering error, which is actually deterministic, i.e.,

 t(x) " xx(t)

Our first aim is to show that the solution can be completely described. That is, the
characteristics of the optimal filter are obtained as the solution of a closed form sys-
tem of Volterra-type equations which can be reduced to the Kalman-Busy equations
when the signal process X is a Gauss-Markov process. Our second aim is to extend
the filtering approach for one-dimensional processes presented in [6], to obtain a
Cameron-Martin type formula for the Laplace transform of a quadratic functional of
the process. That is, for q p,

.L(,)- Eexp{-1/2i
0

X’d(N)sXs). (3)

This paper is organized as follows. In Section 2, we derive the solution of the filter-
ing problems where explicit Volterra-type equations, involving the covariance func-
tion of the filtered process, are derived for the first and second-order moments of the
optimal filter. The application to quadratic functionals of the process is reported in
Section 3 where a filtering problem is given and the Laplace transform is computed.
Finally, in Section 4, we investigate some specific cases where the results can be
further elaborated.



Optimal Linear Filtering 217

2. Solution of the Filtering Problem

In what follows, all random variables and processes are defined on the stochastic basis
(a, ff,(ft),P where the usual conditions are satisfied and where processes are (fit)-
adapted. We consider a NP-valued continuous Gaussian process X (Xt, _> 0) with
mean function ru (rut, t >_ 0) and covariance function K -(K(t,s),t >_ O,s >_ 0).
That is,

Ext ,t, E(x,- )(x- ,)’ tt’(t, ), t >_ o, >_ o.

For any process Z- (Zt; t e [0, T])such that [EIZ < + oe, the notation 7rt(Z is
used for the conditional expectation of Z given the r-field ckJ t"

,(z)- (z,/,).

Here, we set Q(s)= d(N)s/ds where the derivative is understood in the sense of
absolute continuity. Thus Q(s) is a non-negative symmetric q x q matrix assumed to
be non-singular. Recall that the solution of the filtering problem of signal X from
observation Y defined in (1) can be reduced to the equations for the conditional mean
and covariance of the filtering error. The following theorem provides these equations.

Theorem 1: The conditional mean 7rt(X and the covariance of the filtering error

7xx(t) defined by (2) are given by the equations

7rt(X) rut A- j 7(t, s)R’(s)Q- l(s)[dYs- R(s)7rs(X)ds], t > O, (4)
0

"xx(t) -(t, t), t >_ o, (5)

where 7 is the solution of the Riccati-Volterra equation

"/(t, S) K(t, s)- / ")’(t, tt)/i’(tt)- l(tt)/(tt)’"(s, tt)dtt,
o

O<_s<_t. (6)

Proofi The difficulty is that in general, X is not a semimartingale. In order to
apply the well-known filtering theory for semimartingales (see [2, 8, 9], for a fixed
t >_ 0, we introduce the process X (Xts, 0 <_ s <_ t) as"

x’ e[x/({x, o < < })], o < < t.

By definition, the process X is a continuous martingale (with mean rut) and

X- Xt. Moreover, the pair (X, Xt) is Gaussian and independent of N so the distri-
bution of (x, xt, y) is still Gaussian. In particular, the conditional covariance
7(t, s) E[(Xts- rs(Xt))(Xs- rs(X))’/s] is deterministic. Hence, setting

s Xt6x()- x- (x) nd ()- X- ), 0 _< _< t,

we may write
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-(t, ) :5:()(), o < < t. ()

Since X- X which implies that 5tx(t)- 5x(t), then for s- t, equality (7) reduces
to equation (5).
We now introduce the innovation process u (ut, t _> 0) defined as

ut- Yt- / R(s)rs(X)ds, >_ O,
0

which plays a central role in general filtering theory (see [9]). Applying the funda-
mental filtering theorem to the pair of semimartingales (xt, y), we immediately
obtain

$

(xt) "t + / 7(t, )n’(,-)- ()d,, 0 < _< t. (9)
0

Again, since X- X and from definition (8), for s- t, equation (O) reduces to
equation (4).

Therefore, to complete the proof of the first part of the theorem, we need only to
show that function 7 defined by equation (7) is the solution of equation (6). From
equation (9), and using equations (1) and (8), we can write

8

5tx(s) (xts- mr)- J 7(t, r)R’(r)Q- l(r)[dNr -t- l(r)Sx(r)dr], 0 <_ s <_ t.

o
(10)

Then, letting 0 <_ s <_ t, we apply It8 formula to obtain the semimartingale
decomposition of the process (5(u)(5((u))’, 0 _< u <_ s):

5((u)(5(u))’ / 5tx(r){dXSr 7(s, r)l’(r)Q- l(r)[dNr + R(r)x(r)dr]}’
o

u

+ J 5Sx(r){dXtr 7(t, r)R’(r)Q l(r)[dNr + R(r)Sx(r)dr]}’
0

u

+ (x ., x )+ / (t, )’(r)0- l()(r)’(, )d.
0

(11)

Let us point out that due to the Gaussian property of the pair of martingales
(Xt, XS), the bracket (Xt- mr, Xs- ms}u is given by

and in particular, for u- s,

(X rot, Xs ms)s K(t, s).
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Now let u s in equation (11) and compute the expectation of each side using the
martingale property of Xt, Xs and N and definition (7). It is easy to check that 7
defined in (7) satisfies equation (6). This completes the proof of the theorem. V1

Remark 1: Theorem 1 provides further elaboration of the solution of the filtering
problem given in [3, Chap. 10]. Theorem 1 can also be viewed as a partial extension
to the non-Markovian setting of the filtering theorem for general linear systems
driven by Gaussian martingales, as proved in Liptser and Shiryaev [9].

3. The Cameron-Martin Type Formula

Here, we start with a p-dimensional Gaussian process X, as before, and a given
arbitrary increasing absolutely-continuous deterministic function (N)= ((N)t,t _> 0)
with values in the set of non-negative symmetric p x p matrices. We want to
compute the Laplace transform (t) defined by (3). Extending the filtering approach
for one-dimensional processes given in [6], we can prove the following statement.

Theorem 2: For any t >_ O, the following equality holds for the Laplace transform
(t) defined in (3):

(t)- exp(-1/2/[z’(s)Q(s)z(s) + tr(7(s,s)Q(s))]ds), (12)
0

where 3’- (7(t,s),0 <_ s <_ t) is the unique solution of the Riccati-Volterra equation
(6) with Q(s) in place of R’(s)Q-1(8)/i(8), and z- (Zs, 8 >_ O) is the unique solution

of the integral equation

z m / 7(s, u)Q(u)zudu, s >_ O. (13)
0

The key point in the proof of this theorem is to describe an appropriate filtering
problem of the type studied above and to extend the analysis beyond Theorem 1.
We take q p and we choose N (Nt, t >_ 0), with No 0, as a NP-valued Brownian
motion with covariance function (N) that is independent of the given process X. We
also choose R(s)= Q(s), where, again, the notation d(N)s Q(s)ds is used, and we

define the NP-valued observation process Y + (Yt, _> 0) by the corresponding equa-
tion (1), i.e.,

Yt / Q(s)Xsds + Nt, t >_ O.
0

Finally, we define the auxiliary process ( (t, >_ 0) by

(t- / X’dYs, > O, (14)
0

and set
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(15)

We now state the following key result.
Lemma 1: For any t >_ O, the following equality holds.

(t) exp{ --1/2 i (rs(X) ?x(S))’Q(s)(Trs(X) 7x(s))ds}
0

x exp{ -1/2 i tr[Q(s)Txx(s)]ds}"
0

(16)

Before presenting the proof of Lemma 1, it should be mentioned that equality (16)
states that the difference %(X)-Tx(S) is itself deterministic. Moreover, from a
comparison of equations (12) and. (16), it is clear from Lemma 1 that to prove
Theorem 2, it is only necessary to show that the quantities 7xx(S) and
rs(X - 7x(S are just 7(s,s) and zs, where 7(s,s) and zs ar given by equations 96)
with R (s)Q- (s)R(s) replaced by Q(s) and (13) respectively. These steps are now
used to prove Lemma 1.

Proof of Lemma 1: It is easy to check that the function is absolutely continuous
and that the corresponding derivative is -L/2, where

L(t) EXQ(t)Xte- It; I

Therefore, the following representation holds.

(t)- exp( __1/2/(s)ds).L(s)_
0

(1)

Now, for a fixed t >_ 0, define the random variable t by

(18)

Since X and V are independent, it is easy to check that =e-Ct_ 1 thus we define

the new probability t-e-tP" The Girsanov Theorem states that ((Xs, Ys)
0 <_ s <_ t) under Pt (where Y is given by (10)) and 9(Xs, Ns),0 _< s <_ t) under P have
the same distributions. Therefore, denoting the expectation computed with respect to

Pt by =t, we obtain

It; L(t) _tXtQ(t)Xte- It(t) Ere
In particular, since X and Y are independent under Pt, the above expectations can

be replaced by the conditional expectations given ctJ under Pt, so that
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(t) _t(e- It/t); L(t) t(XQ(t)Xte- It/ckJt).
However, from Bayes formula, these equalities can be rewritten as

z(t)
:(e- Ite-t/qJt)

and L(t)
E(XiQ(t)Xte- Ite-(t/q’Jt)

E(e Ct/q.Jt E(e CtlcLJt
From definitions (1), (14) and (18), we have t- It + Ct" Hence, it follows that

L(t) e(XiO(t)X- /J)
z(t) e( /j)

(19)

Now, observe that the joint distribution under P of (X, Y) is Gaussian. Moreover,
from equation (14), given Y the variable t for any t >_ 0 is a linear functional of X.
Consequently, the conditional distribution of (Xt,t) given the a-field qJt is also
Gaussian. However, for a Gaussian pair (U,V) in NPx N and a non-negative p x p
matrix Q, we have

EU’QUe -v tr[TuuQ] + [rnu 7uv]’Q[rnu 7uv],Ee-V
where rnU is the mean of U, and 7uu and 7uv are the covariances of U and the cross

covariance of U and V respectively. Therefore, from (19), we get

(t)
(t) tr[vxx(t)Q(t)] + (rrt(X) 7xf(t))Q(t)(vrt(X) 7xf(t))’"

Substituting this into (17) gives equation (16) and completes the proof of the lemma.

We now present the proof of Theorem 2.
Proof of Theorem 2: Note that since R= R’=Q, in (6), the quantity

R’(s)Q-l(s)R(s) is just Q(s). To complete the proof, we find (X)- 7x().
Using the complementary notation

5e()- - (), 0 < < t,

we define

? (t,,) E(ev(,)ee(,)/qJ,), 0 < < t.

Because X- Xt, we simply have 7x((t) (t,t). From (1) and (14) the process
is a semimartingale with decomposition

Hence, the fundamental filtering theorem gives

0 o
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From the two previous equations and (8), it follows that for 0 _< s _< t,

5(t) / (X’sQ(s)X8 s(X’QX))ds
0

] 5’x(s)Q(s)(rs(X)+ 7x(s))ds + f (Sx(S)-Tx(S))’dN.
0 0

(20)

Using equations (10) and (20), applying the It6 formula to the process 5tx6 and
applying the fundamental filtering theorem, we obtain

? (t, ) f (t, )Q()[?x(r) + (X)]d
0

8

+ / r((X’QX- r(X’QX)6x)dr
0

(21)

8

+ / [7(t,r)+ 7rr(56X6’x)]dur.
0

Recall that the conditional distribution of (Xs,x) given qJs is Gaussian. But the
third order centered moments of Gaussian distributions are equal to zero, and for the
Gaussian pair (U, V) in [P x , and a non-negative p p matrix Q, we have

:[U’QU FU’QU][V my] 27uuQmy.

Applying these properties and from (21), (4) and (8), we get

$

(x) ?x() " f "(,")Q(")[(x) ?x()]d.
0

Thus, rr(X - (r)- z, where z is the solution of equation (13) and so the proof of
the proposition is complete.

4. Particular Cases

In the one-dimensional case, specific cases of Markovian and non-Markovian Gaussian
processes for which the above results about filtering and Cameron-Martin type
formulas can be applied, have been reported in [6] (see therein for further references
of contributions around Laplace transforms of quadratic functionals). We now
discuss some multidimensional examples where our results can be further elaborated.
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4.1 Gauss-Markov Processes

First we discuss the standard Gauss-Markov case where the NP-valued process X is
governed by the stochastic differential equation

dX A(t)Xtdt + dWt, >_ O; X0, (22)

where A (A(t), t >_ O) is a V x p matrix-valued continuous function, W (Wt, t > O)
is a Brownian motion in Np such that d(W)t- D(t)dt, and X0 is a Gaussian initial
condition independent on W such that [ZXo-m and Z(Xo-m)(Xo-m)’-A.
Now, denote the solution of the differential equation Is- A(s)I-Is, s >_ O, with the
initial condition I-I0 Ip (p x p identity matrix) by I]s. Then by I-Is, we have

-1K(s s) 0 <_ s <_ t,ms I-I sTM, K(t,s) I] 1-I
where K(s,s) is a solution to the Lyapunov differential equation

-sh’(s, s) A(s)K(s, s) + h’(s, s)A’(s) + D(s), s >_ O, K(O, O) A.

In the filtering problem, it is well-known from the Kalman-Bucy theory that the
covariance 7xx(s) of the filtering error is just the unique nonnegative solution of the
Riccati differential equation

4/(s) A(s)7(s) + 7(s)A’(s) 7(s)R’(s)Q- l(s)t(s)’)/(S) -- D(s), 0 <_ s <_ t, (23)

with initial condition 7xx(0)- A. It then follows that the function 7(t,s), where
7(t,s)- I-Itl-I-lTxx(S)is the solution of equation (6) and that equation (4), for
the conditional mean, can be reduced to the usual

drs(X A(s)rs(X)ds + 7xx(S)R’(s)Q- l(s)[dy R(s)rs(X)ds],

>_ o, o(X) m.

Now, concerning the Laplace transform (t), we take q-p and R- Q.
Riccati equation (23) for 7xx(S)reduces to

Then the

4/(s) A(s)7(s) + 7(s)A’(s) 7(s)Q(s)7(s) + D(s), 0 <_ s <_ t. (24)

Moreover, defining Z (Z(s),O <_ s <_ t) as the unique solution of the differential
equation

2(s)- [A(s)- 7xx(s)Q(s)]Z(s), s >_ O, Z(O) Ip,

it is readily seen that the function z(s), where z(s)- Z(s)m, is the solution of the
equation (13). Finally, inserting this into equation (12), we obtain

(t) exp{-1/2/[m’Z’(s)Q(s)Z(s)m + tr(Txx(s)Q(s))]ds}.
0

(25)
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Notice that in the present Gauss-Markov case, when X0 0 (and hence Zm 0),
Yashin [11] obtained an alternative expression of (25) using the backward Riccati
equation instead of the forward equation (24). Actually, a direct link between these
two representations can be shown without a probabilistic argument. This will be
explained in a forthcoming paper where the link will be viewed within the scope of
the usual mathematical duality between optimal control and optimal filtering.

4.2 Iterated Integrals of a Brownian Motion

Here we deal with the specific case of successive iterated integrals Jn, n >_ 1, of a one-
dimensional standard Brownian motion B, i.e., the processes Jn, n > 1 are defined for
n_>l andt_>0by

0

Given a real number #, we want to compute the Laplace transform

t2n + 2

(t;)-xp{-
0

Of course, introducing the (n 4-1)-dimensional processes W=(0,...,0, B)’ and
X (J0,...,Jn)’, we can think of Jn as the last component of the solution of the
(n + 1)-dimensional equation (22) with constant (n + 1)x (n + 1)matrices A and D,
where

0 0 0 0 1 0 0

1 0 0 0
A- D-

0 1 0 0 0 0 0

0 0 1 0 0 0 0

Since m 0 (and hence Zm 0), A 0 andand X0 -0 as the initial condition.

also

t2n 4- 2j2
n X’Qt,X where Qp is the constant (n + 1)x (n + 1) matrix

0 0 0

Q"-
0 0 0

0 0 t2hA-2

Then from (25), we get

Ln(t; #) exp{ 1/2 / tr(7.(s)Q,)ds},
o
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where, because of (24), 7, is the solution of the Riccati equation

a/u(s ATu(s + 7u(s)A’- 7u(s)QuTu(s) + D, 0 <_ s <_ t; 7u(0 0.

We apply the linearization method to this equation and define the pair

(Au(s), V u(s)) of (n + 1)x (n + 1) matrices as the solution of the differential system

(hu(s), 7 u(s))- (Au(s), V u(s))ru; (Au(0), V u(0))- (I,0),

where

Then

-AD)ru A’

and, since tr(A)- 0,

0 0

log det(Au(t)).

Observing that r2n +2=(-1)n#2n+I2n+2 it is easily checked that Au(t)-
Al(#t where 5 is the solution of the (2n + 2)-th order differential equation

6(2n+2)(s)-(-1)nS(s); 6(0)-1, 5(k)(0)-0, k--l,...,2n+l,

and the (i, j)-entry of A1 is given by

(-1)J-is(j-i), j>_i,
5iJ (- 1)n + i- js(2n + 2 + j), > j.

Finally, the function 5, which is just
2n+2

1 eZ2n + 2,

=1

where the Z2n + 2, ’s are the 2n + 2 roots of the equation z2n + 2 1)n, allows the
representation

n(t; p) n(#t; 1), n(t; 1) [det(A(t))]- 1/2.

For example, taking, n- 1, for the integral al(t)- f toBsds it can be seen that

=exp{ - a2(s)ds} ,v/{cosh2 +cos2 t} -112

o
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