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Weak laws of large numbers for arrays of rowwise negatively dependent
random variables are obtained in this paper. The more general hypothesis
of negative dependence relaxes the usual assumption of independence. The
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bounded condition also provides a generalization of the usual distribution-
al assumptions.
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1. Introduction

The history and literature on laws of large numbers is vast and rich as this concept is
crucial in probability and statistical theory. The literature on concepts of negative de-
pendence is much more limited but still very interesting. Lehmann [6] provides an ex-

tensive introductory overview of various concepts of positive and negative depen-
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dence in the bivariate case. Negative dependence has been particularly useful in ob-
taining strong laws of large numbers (cf., Matula [7], Qi [8], Chandra and Ghosal [3],
Bozorgnia, Patterson and Taylor [1, 2]). Weak laws of large numbers for negatively
dependent random variables are obtained in this paper.

2. Prehminaries

Section 2 will contain some background materials on negative dependence which will
be used in obtaining the major weak laws of large numbers (WLLNs) in Section 3.

Definition 2.1: Random variables X and Y are said to be negatively dependent
(ND) if

P[X <_ x,Y <_ y] <_ P[X <_ x]P[Y <_ y] (2.1)

for all x,y E R. A collection of random variables is said to be pairwise ND if every
pair of random variables in the collection satisfies (2.1).

It is important to note that (2.1) implies

P[X > x,Y > y] <_ P[X > x]P[Y > y] (2.2)

for all x,y e R. Moreover, it follows that (2.2)implies (2.1), and hence, (2.1) and
(2.2) are equivalent. Ebrahimi and Ghosh [5] showed that (2.1) and (2.2) are not
equivalent for a collection of 3 or more random variables. They considered random
variables X1, X2 and X3 where (X1, X2, .X3) assumed the values (0, 1, 1), (1, 0, 1),
(1, 1,0) and (0,0,0) each with probability 1/4. The random variables X1,X2 and X3
are pairwise independent, and hence, satisfy both (2.1) and (2.2) for all pairs.
However,

P[X1 > Zl,X2 > x2,x3 > x3] _< P[X1 > Xl]P[X2 > x2]P[X3 > (2.3)

for all xl, z2 and x3, but

P[X1 < 0, X2 < 0, X3 < 0]- 1/4 > - P[X1 < 0]P[X2 < 0]P[X3 < 0]. (2.4)

Placing probability 1/4 on each of the other vertices {(1,0,0),(0,1,0),(0,0,1),(1,1,1)}
provides the converse example of pairwise independent random variables which will
not satisfy (2.3) with x- 0, x2 -0 and x3- 0 but where the desired ’<’ in (2.5)
hold for all Xl,X2 and x3. Consequently, the following definition is needed to define
sequences of negatively dependent random variables.

Definition 2.2: The random variables X, X2,... are said to be
(a) lower negatively dependent (END) if for each n >_ 2

P[X1 <- Xl"’"Xn <- Xn] <- l-I P[Xi <- xi] (2.5)
i=1

for all Xl,...,xn G R,
(b) upper negative dependent (UND) if for each n >_ 2

n

P[X1 > Xl"’"Xn > Xn] <- H P[Xi > xi] (2.6)
i=1
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for all Xl,Xn C I,
(c) negatively dependent (ND)if both (2.5) and (2.6) hold.
Note that the example proved by Ebrahimi and Ghosh shows that UND can hold

without LND and conversely. Any of the < ’s or > ’s can be consistently replaced
by <’sor >’s. A simple example of ND for two variables is to let Y- -X when
X is a non-degenerate random variable. A second practical example is to let X1,...
Xn denote items sampled without replacement from {1,2,..., N} where n < N. First,
for al,...,an C R with a > l for all l<i<n,

P[X1

_
al,..., Xn

_
an

n

Hi-i+lN-i+l
i=1

n

H P[Xi <ai] (2.7)
i--1

where i min{[a(i)],N}, and where a(1 <_... _< a(n denote the ordered values of

al,...,a and [] denotes the greatest integer function. )Thus, LND follows from (2.7)
since (2.7) trivially hold if a < 1 for some i, 1 _< _< n. In a similar fashion

n

P[X1 > al"’"Xn > an] - H P[Xi > ai]
i=1

follows for UND. Hence, ND is achieved for sampling without replacement from
{1, 2, ., N}. Several other stronger (more restrictive) definitions for forms of nega-
tive dependence are given in Lehmann [6] but will not be considered in this paper.

The following four properties are listed for reference in obtaining the main result in
the next section. Detailed proofs can be found in the previously cited literature.
Lemma 2.1: If X1,...,Xn are pairwise ND random variables, then
(a) E(XiXj)

_
E(Xi)E(Xj) i j

(b) Cov(Xi, X;) < 0 j.
Lemma 2.2: (a) If-{X} is a equence of LND UND) random variables and {/,}

is a sequence of monotone increasing, Borel functions, then {f(Xn)} is a sequence of
LND UND) random variables.

(b) If {Xn} is a sequence of UND (LND) random variables and {fn} is a se-

quence of monotone decreasing, Borel functions, then {fn(Xn)} is a sequence of LND
UND) random variables.
Corollary 2.1: /f {Xn} is a sequence of ND random variables and {fn} is a

sequence of Borel functions all of which are monotone increasing (or all monotone
decreasing), then {fn(Xn)} is a sequence of ND random variables.

Corollary 2.2: If X1, X2,..., Xn are LND UND) random variables, then for any
real numbers {al,...,an} and {bl,...,bn} such that a < bi, 1 < < n,

(a) {I(_ < xi < bi), 1 < < n} are UND (LND),

(b) {Yi, 1 < < n} are LND UND)
where Yi XiI[a <_ X <_ 5i] + biI[x > bi] + aiI[x < ai]"

For ND random variables, a major problem occurs with attempting to apply the
usual methods of proof (i.e., the methods for independent random variables) to
obtain laws of large numbers since truncated (and absolute values of ND random
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variables do not remain ND even when the random variables are identically distri-
buted. For example, let f {a, b, c, d}, let at be all subsets of f and let P assign pro-
bability 1/4 to each outcome. Then the random variables X and Y defined on the
probability space (f, at, P) by

x()

Y(co)

a b c d

2 1 0 -2

-2 1 0 2

are ND,fbut X() Y(co) for all co @ a and XI[IxI <_ 1]() YI[IY < lj for
all co E Hence, absolute value8 and truncation to compact subsets can transform
ND random variables to positive (highly) dependent random variables. However,
Corollary 2.2(b) provide8 a method of truncation which preserve8 ND and will be
useful in obtaining law8 of large numbers in the next section.

The next two lemmas will be needed in the proofs of the WLLN’8 in the next
section. The lemmas will only be stated since they are well known.
Lemma 2.3: For any random variable X and r >_ 1, E IX[ r < oc if and only if

Enr-lp[Ixl > n] < c.
n=l

More precisely,

r2-r+l_,nr-lp[lx >n]<_ElXlr<_l+r2-ln-lp[lxI >n].
n=2 n--1

and

Lemma 2.4: For any random variable X, r >_ 1 and p > O,

E(IXII p]) < r/[IXl _<1/
0

lip

t-IP[IX > t]dt

E(IXII 1/Pp[ x > nl/p] q- / P[IXI > t]dt.
X > nl/p]) rt

nl/P
A family of random variables (Xc} is said to be stochastically bounded by a

random variable X if

supP[ X > t] _< P[IxI > t] for all n.

3. Weak Law of Large Numbers for Arrays

In this section WLLNs are obtained for arrays of rowwise ND random variables.
Many of the WLLNs for sequences can be obtained for arrays with similar
hypotheses. For strong laws of large numbers, the array results typically require
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stronger moment conditions than the results for sequences. The basic truncation
technique for arrays (el. (3.4) and (3.5) in the proof of Theorem 3.1) makes use of
Corollary 2.2(a) and is the same for arrays or sequences. Theorem 3.1 extends
Feller’s WLLN for sequences of i.i.d, random variables (el., Chow and Teicher [4, p.
126]) to arrays of random variables which are pairwise ND in each row.

Theorem 3.1: Let {Xni;1 <_ <_ n,n >_ 1} be an array of random variables which
are pairwise ND in each row and which have distribution functions {Fni} and con

n Xni=1
Suppose that

and
(ii)

Then setting

the WLLN

Let {bn, n>_l} be a given sequence of real numbers increasing to o.

E P[lXni > bn]- o(1) (3.1)
i=1

1 x2F,i(x) o(1). (3.2)
1 [Ixl _<bn]

an- E xdFni(X)’n >- 1,
1 [Ixl bn]

n( COn an) P--O

obtains.
Proof: Define forn>land l<i<n

Yni XniI[ X,i <_ bn] + b,I[x, > b,] bnI[xni < bn]

and Tn ’= 1Yni. By (3.1)
n

P[Tn : Sn] <- E P[Yni =/= Xni]
--1

n

i--1

=o(1). (3.4)

Next,

ETn E EYni

t n

E E(XniI[lx,il <_ bn]) -t- bnE P[Xi >
i--1 --1

n

1 i--1 xdFni(X --bnE dgni(X)
[Ixl <_bn]

i=1 [x>bn]
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n

[: < b]

an + o(bn)

by (3.1). Corollary 2.2(b)and Lemma 2.1(b)provide
n yVar(-)

_
__lVar(f)

b EX{I[ x,{ < ,] + P[ X > b]
/=1 /=1

=o(1)

by (3.1)and (3.2).
From (3.4) and (3.6), it follows that for arbitrary c > 0

Sn ETn T.- ETn > c, Sn Tnl

(3.5)

(3.6)

Sn- ETn
bn

--+0 as

Hence,

Sn- ET

and the conclusion follows by (3.5). D
The next result is a WLLN that uses a pth moment, 1 < p < 2, and a stochastic

boundedness condition on the array of rowwise ND random variables. Certain
aspects of Theorem 3.1 follow in Theorem 3.2, for example (3.7)implies (3.1) with
bn nlip. However, the corresponding verification of (3.2) requires use of Lemmas
2.3 and 2.4, and the centering constants an in Theorem 3.1 are zero for p > 1 and

EXnk 0 in Theorem 3.2.
Theorem 3.2: Let {Xni;1

_
_n,n >_ 1} be an array of random variables which

are pairwise ND in each row with EXnk- 0 and which are stochastically bounded by
a random variable X such that

nP[ X p > ]o fo so,e 1 < p < 2. (3.7)

Then
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1 E XI 0.
1/Pk= 1

lip.Proof: First, (3.7)implies (3.1)with bn -n
3.1, for arbitrary c > 0, choose A(c) so that

P[lXI >t]_
e(p- 1)

tp

To establish (3.2) in Theorem

for all t >_ A(e)- A. Thus, from Lemma 2.4 and (3.8) for all n >_ Ap

n

E E(X2nkI
k --1 Xnk <_ nl /p]

nl/P

k-1 0

tP[ X,k > t]dt

A nlip

< 2n/ tP[IX > t]dt + 2n/ t
e(p- 1)dt

tp
0 A

<_ hA2-+ 2e(2Ps )n[(nl/p)2- p (A)2 p]

2(;- 1).n2/p (3.9)(_ nA2 + 2--Z--Then (3.2) follows from (3.9) since e is arbitrary and 2/p > 1. Theorem 3.1 applies
and

Sn an P01/pn

where
n

an- E E(XnkI nl/P] )"
k-1 []Xnk] -Hence, the proof will be complete by showing that

liP E(XnkI l/p])-40n k-1 [[Xnk
as n--. Since EXnk O,

(3.10)

E(X,kI lip )l
[Ixkl <

By Lemma 2.4
Xnk > nl /p]) (3.11)

1 _, (IXII lip1/p [[ Xnk > nn k-1

1 ( rtl/PP[IXkI > rtllP]-Jr- E P[ X, > t]dt)1/p
rt k-- k-- lnl/P
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< nP[iXi > rtl/p] _[_ rt / P[IXI > t]dt (3.12)nl/P
/p

Since nP[IX > rt1/p] nP[IXl p > n] 0 recalling (3.7), the first term of (3.12)
goes to 0 as n-oc. Next, for arbitrary e > 0 and for all n >_ Ap, it follows from (3.8)
that

n / P[]X > t]dtl/p
lip

<_ hi../ p (p 1)pdt
nl/P

n-/pe(p- 1)(nl/P)1-p
;-1

=e (3.13)

implying that the second term of (3.12) goes to 0 as ncx. Hence, (3.10) follows
from (3.11)and (3.12).

The exclusion of p- 1 (cf., (3.7)) in Theorem 3.2 is interesting and relates to the
proof of the sequence of centering constants. Inequalities (3.8), (3.9) and (3.13)in
the proof of Theorem 3.2 depend on p > 1. A second major consideration is that
uP[IX > n]0 as n--,oc can occur without the existence of a first moment (which
is assumed to be 0 in Theorem 3.2). However, a corresponding (p-1) WLLN is
available via a different proof and different centering conditions, and is given as

Theorem 3.3. Again, (3.14)implies (3.1) of Theorem 3.1 (with bn -n), and the
major difficult in the proof of Theorem 3.3 is the corresponding verification of a trun-
cated variance condition similar to (3.2).

Theorem 3.3: Let {Xni;1

_ _
n,n >_ 1} be an array of random variables which

are pairwise ND in each row and which are stochastically bounded by a random vari-
able X such that

nP[IX >n]--O as (3.14)

Then

1 (Xni cni)O in probability
--1

where cni E(XniI[ Xni < n])"
Proof: As noted, (3.14) yields (3.1) of Theorem 3.1 with bn

consider
n. For (3.2)

n

XiI[ x,i <_ ])
i--1

i=1 j--1
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< E EJ2(P[IXni <j]-P[IXni[ <j-l])
i=1 j=l

E E J2(P[IX,k > J- 1]-P[IXiI > j])
i--1 j--1

n

E (P[ Xni > 0]- P[ Xi > ]

n-1

E ((J + 1)2
2--1

j2)p[ Xni >j])

n n-1

_< (1 + (2j + 1)P[]Xi > j])
=1 j-1

n-1 n-1

<_n+2nEjP[IXI >j]+nEP[IX[ >j]
3=1

which is o(n2) by (3.14) since convergence implies Cesro convergence. Hence,
Theorem 3.1 yields the desired result.

Corollary 3.4: Let {Xn} be a sequence of identically distributed, pairwise ND
random variables. If

nP[lXll > n]0 (3.15)

as n--oc, then

E i=1
n ---0 (3.16)

where cn E(XII[Ix1 _< n]) + o(1),n >_ 1.

Proof: Identical distributions provide the stochastic boundedness condition.
Remarks: (a) Via Corollary 3.4, it is easy to see that Theorem 3.3 is sharp since

for the independent case, (3.15) and (3.16) are equivalent (Feller’s i.i.d. WLLN).
(b) By examining the proof of Theorem 3.3, it can be seen that condition (3.14)

and stochastic boundedness can be replaced by the weaker condition

n ( sup P[lXmil >n])-+O.
1/p(c) The case 0 < p < 1 is interesting since the magnitude of the divisor n

allows nP[lXI p > n] ---+ 0 to yield

1 ExiP__+O1/prz i=1

without any assumptions on the joint distribution of the random variables {X,i; 1 <_
i_<n}. The key step is that

1 7(IxlI lip )’-0rll/P i=1 [IXni <_n
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can be obtained by using similar arguments as in (3.9).
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