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1. Introduction

Recall that a compact operator A: EE defined on a Banach space E is a continuous
operator which maps every bounded set of E into a relatively compact set. Equa-
tions involving compact operators arise naturally in the study of differential
equations, integral equations and in many other applications. The spectrum of a

compact operator A in a Banach space E has a simple structure analogous to that of
an operator in a finite-dimensional space. It consists of at most a countable set, each
element of the spectrum is an eigenvalue, and its only possible accumulation point is
0 (see Theorem 5.5-G, [9]). In particular, the number of eigenvalues of a compact
operator outside any given circle centered at the origin in the complex plane is finite.

However, various applications of functional analysis involve operators which are

not compact, i.e., operators which map bounded sets into sets with non-compact cl-
osure, for example, in the theory of delay differential equations of neutral type [2].
Some of these operators reduce the ’degree’ of non-compactness, which in turn can be
measured by different types of measure of non-compactness, such as Hausdorff mea-

sure of non-compactness and Kuratowski measure of non-compactness. For more in-
formation about different types of measures of noncompactness, see [1, Chapter 1]. A
more general example of non-compact operators are condensing operators with respect
to a specific measure of non-compactness , and the X-C-contracting operators, where
0 < X < 1. It was proved in [7] that the spectrum of a X-C-contracting operator A
(where here denotes the Kuratowski measure of non-compactness) outside the circle
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z > 2 II A II (see the next section for the definition of C-norm) looks very similar
to the spectrum of a compact operator. In this paper, we give a direct proof to the
fact that the spectrum of a given X-C-contracting operator, where is the Hausdorff
measure of non-compactness, outside any circle of the form I,l > X + e consists only
of eigenvalues with finite multiplicities and the number of such values is finite. De-
finitions and some properties of condensing and contracting operators will be given in
the next section. The main result and some lemmas will be given in Section 3. Sec-
tion 4 will be devoted to the proof of the main theorem.

2. Condensing Operators and Contractions

Let E be a Banach space with the norm II II E" The Hausdorff measure of non-com-
pactness (M) of a nonempty bounded subset M of E is defined by

(M) -inf{r > 0: M can be covered by finitely many balls of radius r}.

Note that (M)- 0 if and only if M is relatively compact.
that follow from the definition include the following:

Some properties of

(i) monotonicity" if M1 C M2, then (M1) _< (M2);
(ii) sub-additivity" (M1 + M2) _< b(M1) + b(M2);
(iii) semi-additivity" (M1 tO M2) max{(M1)
(iv) homogeneity" (kM)- [k[(M), k E N.

Here M, M1 and M2 are nonempty bounded subsets of E. These properties are taken
from [1] (see also [3]). For the following important property, see [1, Theorem 1.1.5].

(v) (conv(M)) (M), where conv(M) denotes the closed convex hull of M.
Let X be a subset of E. A continuous mapping f:XE is said to be -condens-

ing on X if
(f(M)) < (M)

whenever M C X is bounded and not relatively compact.
on X is called X--contracting on X, where 0 _< X < 1, if

A condensing mapping f

(f(M)) < x(M)

for all bounded subsets M of X.
defined to be

Finally, the C-norm of the operator A:E--E is

l] A [I -inf{k: M C E bounded implies A(M) bounded and (A(M)) _< k(M)}

or equivalently [1],

II A II -sup{(A(M))’M C E bounded and (M)- 1}.

Clearly IIAII -0 if and only if A is compact.
the. operator A are listed in [1, Lemma 2.6.7].

Some properties of the C-norm of
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3. Main Result

Recall from [1] that a continuous linear operator B’EE is said to be a Fredholm
operator if it satisfies the following properties"

(i) c dim N(B) < co, where N(B) {x E E" Bx 0};

(ii) BE- BE, (where the overline denotes closure);

(iii) fl- codim BE < co;

(iv) the number ind B-/3- c, called the index of B, is equal to zero.

The Fredholm spectrum ero(B) of the operator B is the set of complex numbers A
such that the operator B-A1 is not a Fredholm operator. Set R(B)= sup{IA[:

%(,)}.
We mention the following result of [1] which involves the spectral theory of Fred-

holm operators
Theorem 1: [1] Let E be a Banach space and A: E-+E a continuous linear opera-

tor. Then for each complex number A with A > R,(A), the operator A- AI is a Fred-
holm operator of index zero.
A detailed statement about the spectral properties of a x-b-contracting operator

with X < 1 is given in the following main result of this paper.
Theorem 2: Let E be a Banach space and A: E--+E a continuous linear operator

which is x-Jz-contracting on E with X < 1. For each > O, let

ere(A) {A

Then

(ii)

(gig)

each A ere(A) is an eigenvalue of A;
the set ere(A is finite;

each ), ere(A is of finite multiplicity.

The proof of this theorem requires the following lemmas.
Lemma 1: (Riesz’s Lemma) Let D be a closed proper subspace of the normal

space E and let p G(0,1). Then there exists a unit vector zG E such that

[[x--z[lE>_Pfor all x G D.
The proof of the following lemma follows that of Lemma 5.2 in [7] with a slight

modification, so it will be omitted.
Lelnma 2: Let A’E---E be a continuous linear operator which is x-b-contracting

with X<I and let A ere(A If A-AI is injective, then A-AI is surjective and
(A-I)-1 is continuous and linear.

The following two lemmas are standard results, see Theorem 7.4-3 in [6] and
Proposition 9.6 in [3].
Lemma 3: Let {Ak:k > 1} be a set of distinct eigenvalues of the operator A:E--E.

For each k> 1, let xk be a nonzero eigenvcctor corresponding to Ak. Then the set
{Xl,gg2,...,Xk} is linearly independent for each k >_ 1.
Lemma4: Let a be a continuous linear operator on a Banach space (E, 11" lIE)"

Then, for every 7 > O, there exists an equivalent norm I1" II. on ch that

II A II. _< r(A) + r, where r(A) denotes the spectral radius of A.
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4. Proof of Theorem 2

Proof of (i)- Let A E oe(A) be given and suppose that it is not an eigenvalue of A.
Then the operator A- ,I is injective and by Lemma 2, the operator (A- ,I)- 1 is

continuous, that is, , cannot belong to the continuous spectrum of A. By Lemma 2
again, the operator (A- ,I)- 1 is surjective and hence the range of A- hi is dense in
E, that is, , cannot belong to the residual spectrum of A. This contradicts the fact
that the spectrum of an operator consists of three disjoint sets" eigenvalues, contin-
uous spectrum and residual spectrum. Therefore , must be an eigenvalue of A.

Proof of (ii): Suppose that (re(A) is infinite, and let {’kk}---1 be any sequence of
distinct eigenvalues of A taken from re(A). For each k >_ 1, let xk be a nonzero

eigenvector corresponding to the eigenvalue "k" By Lemma 3, the set

{xi:i- 1,2,...,k} is linearly independent. If Mk denotes the linear subspace of E
spanned by {xi:i- 1,2,...,k}, then Mk_ 1 is a closed, proper subspace of Mk. Let p

be such that x ooZk}k 1< p < 1. By Lemma 1, there exists a sequence { of unit

vectors such that zk Mk and II -zkll >_P for all x G Mk_ 1. Note that

I1Zk- zk- I1 2 fl, and hence

p _< [{zk’k > 1}] _< 1. (4.1)

Let x Mk, then x- ki laixi, where a is a constant for every i- 1,2,..., k, we
also have

Ax-
k k

E aiAxi- E aiixi,
=1 i=1

and
k k k k-1

(A- ,kI)X (A- kI)E aixi E aiixi- E aikXi E ai(Ai- "k)xi"
i=1 i-1 i=1 i=1

This shows that

AMk C Mk and (A ,kI)Mk C Mk 1"

Note that (Azj- .jzj) Mj_ and Azk Mk imply (Azj- ,kjzj)- Azk Mj_
-Mk. It follows that for j > k >_ 1, we have Mj_ 1- Mk C Mj_ 1 and hence

II Azj- Azk II ]l (Azj- )jzj- Azk) +,jzj II

t)jl II -)7 l(AzJ-’XJZJ- Azk)- zj II

Thus by inequality (4.1) and property (iii)of b, we have

ga[A({zk" k >_ 1})] >_ (X + c)p > X >_ Xg’[{zk" k >_ 1}],
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which contradicts the fact that [A({zk:k >_ 1})] _< X[{zk:k >_ 1)].
Proof of (iii): Since the set (re(A) is finite, it is sufficient to show that the geomet-

ric multiplicity of the generalized eigenspace Ek corresponding to a fixed eigenvalue

Ak of the set (re(A) is finite. For each 6 > 0, let

B(, 5) {z C: z- 1 < ).

Choose 6 > 0 and c > 0 such that B(Ak,5) NB(1j,5 -0 for j =fi k, and B(Ak, 5) N
{z 6 C: z _> X} . This is possible since (re(A) is finite. So the spectrum (r(A) of
A consists of two disjoint sets (r(A)= {1k} U((r(A)\{Ak})" By the Decomposition
Theorem [4, Theorem 6.17, p. 178], the space E can be decomposed into a direct sum

such that Ek- and Ek+ are invariant under A and the spectrum (r(A]E[) of the

restriction is {Ak}; whereas, the spectrum (r(AIE,_+) is (r(A)\{Ak}. The theorem

also ensures the existence of bounded projections P- of E onto Ek- and P + of E
onto Ek+. i,Xk +x

A.Let c- 2 and consider the operator A" For any bounded subset M
of E with (M) > 0, we have

[ (M)]- I(A(M)) _< cX--(M),
xand hence the operator A is (-)--contracting with w < 1. The spectrum of the

restriction A E- consists of one point, namely

( I-) I(A -) .
Note also that the inverse -1

Ek-- exists with spectral radius satisfying

r( -1 c)- <1.

By Lemma 4, for each > 0 there exists an equivalent norm ]l" II r in E such that

Choose r > 0 small enough such that II -1 is/- II. < 1; hence, the operator A ]E
expanding in the new norm I1" II ,.

Let U be the unit ball in E-. Since AlE- is expanding, then U C_ AlE-(U)
and thus

(u) _< [2 I (u)] _< (u). (4.2)

Note that we have used the same symbol here to represent the new Hausdorff
measure of non-compactness defined by means of the new equivalent norm I1" II ,.
It follows from inequality (4.2) that (U)-0 since x<1. This means that U is
compact and hence the space E- is finite-dimensional. This completes the proof of
(iii) and hence the theorem. VI
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Remark: It was shown in Proposition 5.8 of [7], that for r > 0, if rr(A {A E
r(A): I,[ >_ r} and if r > 2 II A II c, then (rr(A) is finite (or empty) and each member
of rr(A is an eigenvalue of A. Here ct denotes the Kuratowski measure of non-com-

pactness which is defined for the set M as

c(M) -inf{r > 0" M can be covered by finitely many sets of diameter < r},

and II A II c denotes the c-norm of A. Our result differs from this result in that it is
valid for any spectral value I,1 > ).
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