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Necessary and sufficient conditions are found for existence of at least one

bounded nonoscillatory solution of a class of impulsive differential equa-
tions of third order and fixed moments of impulse effect. Some asympto-
tic properties of the nonoscillating solutions are investigated.
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1. Introduction

The impulsive differential equations with deviating argument are adequate mathe-
matical models of numerous processes and phenomena in physics, biology and elec-
trical engineering. In spite of wide possibilities for their application, the theory of
these equations is developing rather slowly because of considerable difficulties in tech-
nical and theoretical character related to their study.

In the recent twenty years, the number of investigations devoted to the oscillatory
and nonoscillatory behavior of the solutions of functional differential equations has
considerably increased. A large part of the works of this subject published in 1977 is
presented in [5]. In monographs [2] and [3], published in 1987 and 1991, respectively,
the oscillatory and asymptotic properties of the solutions of various classes of func-
tional differential equations were systematically studied. A pioneering work devoted
to the investigation of the oscillatory properties of the solutions of impulsive differen-
tial equations with deviating argument was rendered by Gopalsamy and Zhang [1].

In the present paper, necessary and sufficient conditions are found for existence of
at least one bounded nonoscillatory solution of a class of impulsive differential
equations of third order and fixed moments of impulse effect. Some asymptotic
properties of the nonoscillating solutions are investigated.
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2. Preliminary Notes

Consider the impulsive differential equation

y’"(t) + f(t,y(t)) O, 5 rk, k E N,

x"(,) + f(()) 0, e N, (1)

zx’()- a()- 0, e N

with initial conditions
()(0) , (2)

where Yi R, O, 1,2.
Here Ay"(’k) y"(rk + O)- y"(rk -0). We suppose that y(vk -O)= y(rk);

y’(vk --0) y’(7"k); R + (0, + oc); 7"1, 72,... are the moments of impulse effect.
Introduce the following conditions:
111. 0
1t2. f

for I"11 < I"1,"1," e , t e R+.
113. fk C(R,R), ufk(u > 0 for u :/= 0 and fk(ul) <_ fk(u2) for

Definition 1: A function y C(R+,R) is called a solution of the equation (1)
with initial conditions (2) if it satisfies the following conditions"

(a) If 0 r0

_ _
rl, then the function y coincides with the solution of the

equation
y’"(t)+f(t,y(t))=O

with initial conditions (2).
If vk < t <_ 7k+l, then the function y coincides with the solution of the
equation

y’"(t)+f(t,y(t))-O
with initial conditions

Y"(’k + O) Y"(’k O) fk(y(-k)),

’(+0) ’( 0) (),

( + 0) (,- 0) (,).

Definition 2: The nonzero solution y(t) of the problem (1), (2) is said to be
nonoscillatory if there exists a point o >_ 0 such that y(t) has a constant sign for
>_ to. Otherwise, the solution y(t) is said to oscillate.
Definition 3: ([4]) A set of real-valued functions defined on the interval

[to, + oe) is said to be equiconvergent at oc if all functions in are convergent in R
as t---oc and for any c > 0 there exists t _> o such that for each function f G f, the
inequality If(t)- lims_ocf(s) < c is valid for >_ t.
Lemma 1" ([4]) Let f be uniformly bounded and an equicontinuous subset of the

Banach space B([t0, oc)) and let f be equiconvergent at oc. then the set f is rela-
tively compact.
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3. Main Results

Theorem 1" Let the following conditions hold:
(a) Conditions H1-H3 are met.
(b) There exists a point T >_ 0 such that

T T<rk

for some constant c :/: O.
Then every bounded solution y(t) of the equation (1) either oscillates or

lim y(t)=lim y’(t)=lim y"(t)-O.
t--- + c t + o t + o

Let y(t) be a positive and bounded solution of the equation (1) for
From condition 1t3, fk(y(-k)) > 0 for rk _> t 1. Then

Ay"(-k) < O, 7k >_ 1. (3)

From y(t) > O, >_ t I and condition H2 implies f(t,y(t)) > 0, t > t1. Therefore,

From (3) and (4) it follows that y"(t)is a decreasing function for t _> t1.
The following two cases are possible:
Case 1: y"(t) > 0 for t >_ t1. Then y’(t) is an increasing function for t >_ t 1.
1.1" If y’(t) > 0 for t _> t2 _> tl, then y’(t) >_ y’(t2) > 0. We integrate the last

inequality from t2 to t(t >_ t2) and conclude

y(t) >_ y’(t2)(t- t) + y(t).

It follows from the above inequality as t + oc, that limty(t + oc which
contradicts the assumption that y is a bounded solution of the equation (1).

1.2: If y’(t)< 0 for >_ t >_ 1. Then y(t) is decreasing and bounded, so there
exists a limit, limt__ + cy(t) c1 >_ O. From y"(t) > 0, Ay’(rk) 0 for t, rk >_ t1 to
see that y’(t) is an increasing negative function. Therefore, limt + y’(t)- c2 <_ O.

Let us suppose c2<0. Then there exists a constant ca<0 and a point 3>_t2
such that y’(t) _< ca for >_ 3. Now, we integrate the above inequality from t3 to t,
(t >_ t3) and arrive at the inequality y(t)<_ cat + y(t3). It follows from the above
inequality after taking the limit as t + oc, that limt__ + y(t) cx, which
contradicts the assumption that y is a positive bounded solution of the equation (1).
Therefore,

lim y’(t) O.

From y’"(t) < 0, Ay"(-k) < 0 for t, k >- tl we see that y"(t) is a decreasing
positive function. Therefore, limt__+y"(t -c4 >_ O. We want to prove that
c4-0. Assume that c4>0. Then there exists aconstant c5>0 and apoint 4_>t1
such that y"(t) > c5 for >_ 4. Now, we integrate the above inequality from 4 to t,
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(t >_ t4) and arrive at the inequality

y’(t)

_
c5(t- t4)/ y’(t4).

It follows from (5) and after taking the limit as t + , that limt +y’(t)-
+ cx, which contradicts that limt_ + y’(t) O. Therefore,

lim y"(t) O.

Let us suppose limt_ + cy(t) c > O. But y is a bounded, continuous, decreasing
and positive function. Thus, there exists constants c > 0, c6 > 0 and point 5 >_ t 1
such that c <_ y(t) <_ c6 for _> t 5.
We integrate (1) from t to + cx, (t >_ t5) and arrive at the equality

y"(t) y"(t) E AY"(rk) / / f(u y(u))dulim 0.
t- + oc

Vk>-t

From y(t) >_ c for >_ t5 and conditions 1t2 and 113, we have

y"(t)

_
/ f(u,c)du / fk(c).

rk>-t

We integrate the last inequality from s to oc and conclude

lim
t-, T cx j j

s Vk>-t

i.e.

(6)

Integrating (6) from T to t, (t >_ T), we obtain

or

(X)

T rk>_s

T T-rk-t

T

(’- T)2fk(c).
T<_rk
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The last inequality contradicts condition 2 of Theorem 1. Therefore,

lim y(t O.

Case 2" y"(t)<Ofor t>_t1.
It is easy to see that limt__++My(t)

y(t) > 0. The proof is complete.
Theorem 2: Let the following conditions hold:
(1) Conditions 111-1t3 are met.
(2)

This contradicts the assumption

t2 f(t, c) dt + ’2k f(c)] < + c
k-1

for some constant c 7 O.
Then the equation (1) has a bounded nonoscillatory solution.
Proof: From condition (2), one can find a sufficiently large T >_ 0 such that

T rkT
(7)

Let X be the space of bounded continuous functions on [T, oe). Let Y C X be de-
fined by

Y {y E X; -- <_ y signc _< c

Then Y is a bounded convex closed subset of X.
Define the operator S: Y---,X as follows"

(sv)(t)
c 1 2f 1 t)2f+ - f (s t) (s, y(s))ds + E rk > t(rk k(y(-k)), t _> T

c- + - f (s T)2f(s, y(s ds + ,
’k > T(k T)2fk(Y(k)) 0 <_ <_ T.

T

(a) maps Y into itself. In fact

due to conditions 1t2, tl3 and (7).
(b) S is continuous. To prove this, let {Yn} be a Cauchy sequence in Y, and let

limt--+ + c [[ Y,- Y [[ 0. Because Y is closed, y E Y. To prove the continuity of S,
we see that

(8)
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Set
r(s) s2 f(s, y(s))- f(s, y(s))

Ln(,r-k) 7"2k fk(yn(Z’k))-

Then (8) reduces to

rk>-t

noting the fact that (s- t)2 _< s2 for s > >_ O. It is obvious that

r() 821f(8,c) 1, L(k) 2T2 fk(c) (10)

From the definition of Gn, Ln and conditions 1t2, 1t3, we obtain

lira Fn s O, li__,rnL, ’k O. (11)

From (9), (10), (11)and the Lebesgue convergence theorem, we have

which means that S is continuous.

(c) To show SY is precompact, we see that (Sy)(t), y e Y, is uniformly
bounded. Now we will prove that coy is an equicontinuous family of functions on

R+.
For y E Y and t2 > 1 > 0, we have

(Sy)(t2)- (Sy)(tl)

< (s- t2)2f(s V(s))ds- (s- 1

2 I

+ 1/21 E (’k t2)2fk(Y(k))- E (k tl)fk(Y(k))[
rk >_ 2 vk >_

Vk>-tl1

<_ / s21f(s,c) lds/ lf(c) l.
rk-tl

For any given > 0, there exists T > T such that
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T rk >- T1

Hence, for any 2 > >_ T1, from (8), we have
pY.

For T tl < t7 T,

(y)(t)- ()(t)

<- (s- t2)2f(s y(s))ds- (s- f(s, y(s))ds

2

+1/21 (- t2)2I(u())- (- tl)2fk(Y(Tk))l
vk _> 2 rk _> 1

cx t2 c

2 I I

’k -> t2 tl -< ’k < t2
(7- k tl)2fk(Y(’rk))- )2fk(Y(rE (’rk--tl k

t2 <_vk

cx t2
_< 1/21 [(.- (s y(s))ds + 1/2 ( t1 If(s, y(s)) ds

2

-t-1/2 E [(7"k t2)2 (7"k tl)2]fk(Y(Yk))1 mr- E
vk >_ 2 1 <_ rk <_ 2

(- tl)21f(V(r))

<_ It2-ta i[j s21f(s,c) Ids+ rlf(c) l]

2 ’k >- t2

2

+ i s21f(s’c) lds+ rlf(c)
tl <- "rk < t2

2

<MIt-tll+l s21f(s’c) lds+
tl _< vk < 2

Hence, for any given c > 0, there exists a 5 > 0 such that

(Sy)(t2)-(SY)(tl) < C, It2- tl < 5,

for all yEY.
That is, the interval IT, + oo) can be divided into a finite number of subintervals
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on which every (Sy)(t), y E Y, has oscillation less than
Therefore, SY is an equicontinuous family on [T,
We prove that the set SY is equiconvergent to
The definition of the operator S implies

c

rk>-t
(12)

rk>-t

Hence, for any given > 0, there exists a point T, > T such that

s: f(s,c)
Te

ds +

_
lfa(c) < 2. (13)

rk >_Te

From (12) and (13), for t >_ Te we get I(Sy)(t)-l < e for all y E Y. Therefore
SY is equiconvergent at oe. Lemma 1 implies that the set SY is relatively compact.

According to the Schauder fixed point theorem, there exists a y Y such that
y- SY. This y is a bounded nonoscillatory solution of (1). The proof is complete.

Theorem 3" Assume that conditions H1-H3 hold. Then condition

talf(t,c) ldt+ < +T fk(c)
0 k-1

for some constant c : 0 is necessary and sufficient for the existence of
oscillatory solution y such that limtoy(t d, d :/: O.

a bounded
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