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The notion of a .-nonexpansive multivalued map is different from that of
a continuous map. In this paper we prove some fixed point theorems for
.-nonexpansive multivalued random operators in the setup of Banach
spaces and Frchet spaces. Our work generalizes, refines and improves the
earlier results of a number of authors.
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1. Introduction

Probabilistic functional analysis is an important mathematical discipline because of
its applications to probabilistic models in applied problems. Random operators lie at
the heart of this discipline and their theory is needed for the study of various classes
of random equations. The study of random fixed point theorems was initiated by the
Prague school of probabilists in the 1950s. The generalization of these theorems from
self maps to nonself maps has gained tremendous importance after the papers by Beg
[2], Beg and Shahzad [3-5], Lin [12, 13], Sehgal and Singh [16], Shahzad [18] and Tan
and Yuan [19, 20]. In particular, Lin [12], Shahzad [18] and Tan and Yuan [19]
studied random fixed points of 1-set-contractive maps. The class of 1-set-contractive
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random maps includes condensing, nonexpansive and other interesting random maps
such as locally almost nonexpansive (LANE) and semicontractive random maps. The
purpose of this paper is to study the random fixed point theory of ,-nonexpansive
multivalued operators (which are not continuous) defined on convex and star-shaped
subsets of Banach spaces as well as Frchet spaces. Recent results of Beg [2],
Shahzad [18] and Tan and Yuan [19]. follow as a special case from our results. An
error in Theorem 2.2 of Yi and Zhao [24] is pointed out and corrected.

2. Prehminaries

Throughout this paper, (f,A) denotes a measurable space with A a a-algebra of sub-
sets of f unless stated otherwise. Let X be a normed space (or a Frfichet space), C a

subset of X, 2x the family of all subsets of X, K(X) the family of all nonempty com-
pact subsets of X, CK(X) the family of all nonempty convex, compact subsets of X,
WK(X) the family of all nonempty weakly compact subsets of X and CB(X) the
family of all closed bounded subsets of X. A mapping T’f--,2x is called measurable
if for any open subset B of X, T-l(B)-{c0ea:T(co)flB#q)}eA. A mapping
:a---X is said to be a measurable selector (el. [7, 10]) of a measurable mapping
T:a--2X if is measurable and for any  ea, A mapping
T: f x C2x is said to be a random operator if for any x E C, T(., x) is measurable.
A mapping " f---,C is said to be

(i) a deterministic fixed point of T if (co) e T(co, ((co)) for all co e a and
(ii) a random fixed point of T if ( is a measurable map such that for every

co e a, (co) e T(co,
A mapping T: C-.2X is said to be

(i) upper (lower) semicontinuous if for any closed (open) subset B of X,
T-I(B) is closed (open); if T is both upper and lower semicontinuous, then
T is called a continuous map,

(ii) demiclosed at 0 if the conditions xn C, xn--,x weakly, Yn Txn’ Yn--*0
strongly imply 0 Tx. A mapping T: C--.CB(X) is a contraction if for any
x,yC, H(Tx, Ty)<_kllx-yll where H is the nausdorff metric on

CB(X) and 0 _< k < 1. If k- 1, then T is called a nonexpansive map.
A mapping T: C--,X is called condensing if T is continuous and for any bounded

subset B of C with a(B) > 0, a(T(B)) < a(B), where a(B) -inf{ > 0"B can be
covered by a finite number of sets of diameter _< }. The number a(B) is called the
(set-) measure of noncompactness of B. If there exists k, 0 _< k _< 1, such that for
each nonempty bounded subset B of C we have a(T(B)) <_ ka(B), then a continuous
map T:C---,X is called a k-set-contractive map. In case C is a convex subset of X,
the map T:CX is affine if T(,kx + (1 ,k)y) ATx + (1 ,k)Ty for all x, y C and
0 <,< 1.

Let (X,d) be a metrizable locally convex space. A ball B(0)-{z X"
d(z,O) < v} with radius r and centered at 0 is said to be compressible if for every, >1 there is t> v such that Bt(O C IBm(O). If every ball B(0)in (X,d)is
compressible (resp. convex), then we say that d is compressible (resp. convex) (see
[21]).
A mapping T: C---.2X is said to be
(i) weakly nouezpansive (cf. [8, 22]) if given x e C and ux e Tx there is a
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uy @ Ty for each y G C such that d(ux, uy) < d(x,y),
(ii) ,-nonexpansive (cf. [8, 22]) if for all x, y G C and ux G Tx with d(x, ux)

d(x, Tx)- inf{d(x, z): z E Tx}, there exists uy Ty with d(y, uy) d(y, Ty)
such that d(u, uu) < d(x, y),

(iii) hemicompact if each sequence {Xn} in C has a convergent subsequence
whenever d(xn, Txn)---*O as n-oc.

For the above map T and each x C, we follow Xu [22] to define the set (possibly
empty)

PT(X) {uz Tz" d(x, Ux) d(x, Tx) }.

A random operator T: f x C--,2X is said to
(i) be continuous (nonexpansive, hemicompact, ,-nonexpansive, etc.)if for each

w f, T(w, is continuous (nonexpansive, hemicompact, ,-nonexpansive,
etc.),

(ii) be weakly inward if for each w f, T(w,x) Ccl Ic(x for x E C where cl
denotes closure and Ic(x)-{zX:z-x+a(y-x) for some yC and
a>0},

(iii) satisfy the Leray-Schauder condition (in case C has a nonempty interior) if
there is a point z in the interior of C (depending on w) such that for each

uT(w,y),
u z 5 m(y z) (1)

for all y OC (the boundary of C) and m > 1.
A Banach space X satisfies Opial’s condition if for each x E X and each sequence

{xn} converging weakly to x, limninf I[ xn-Y II > limninf II Xn- x II holds for all y :/= x
in X.
A ,-nonexpansive multivalued mapping is different from a continuous mapping as

is clear from the following example.
Example 2.1: Let X- 2 be equipped with Euclidean norm and C- {(a, 0):

1 < a < 1} U {(0 0)}. Define T:C--,2x by

T(a, 0) { (0,1) if a - 0

L the line segment [(0, 1), (1, 0)] if a 0.

Then PT(a,O)- {(0, 1)} for all (a,0)e C with a # 0 and PT(O,O)- (1/2,1/2).
Clearly T is a ,-nonexpansive discontinuous multifunction (cf. [15, p. 537]).

Moreover, for given x- (0,0) and uz (1,0) Tx, there does not exist y :/: x in C
and u Ty such that

Recall that for yTx in C, u- (0,1) and lUx-Ul- I(1,0)-(0,1)l-
> d(x,y). So T is not weakly nonexpansive.
Pmarks 2.2" (i) In view of Example 2.1, the statement "each ,-nonexpansive

map is weakly nonexpansive" in [8, p. 389] is not valid.
(ii) It follows from the definition of Hausdorff metric that a weakly nonexpansive

map is nonexpansive. The converse holds for compact-valued maps. For if T" C2X
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is a compact-valued nonexpansive map, then for any x E C and ux Tx, we can find
some uy Ty for all y in C by compactness of Ty such that

d(ux, uu) <_ sup{d(u, Tu): u Tx} <_ H(Tx, Tu) <_ d(x, y).

So T is weakly nonexpansive (also see Proposition 1 [22]).
(iii) ,-nonexpansiveness and nonexpansiveness are two different concepts for

multivalued mappings.

3. Random Fixed Points in Banach Spaces

A general fixed point theorem for a class of discontinuous multivalued random
operators is established in the following.

Theorem 3.1: Let C be a nonempty closed, bounded, convex, separable subset with
nonempty interior of a strictly-convex, reflexive Banach space X satisfying Opial’s
condition. Suppose that T:C--2X is a closed, convex-valued, ,-nonexpansive
random operator that either

(i) is weakly inward
or

(ii) satisfies the Leray-Schauder condition.

If PT is a random operator, then T has a random fixed point.
Proof: Suppose that assumption (i) is satisfied. As X is strictly convex so each

T(w, x) is a Chebyshev set. Therefore for all 0 and all x C,

{ux} PT(W, x) T(w, x).

Also for each w fl and each x, y C,

d(PT(W x), PT(W, y)) d(ux, uy)

_
d(x, y).

This implies that PT:XC--X is a nonexpansive random operator. Further,
PT(,x) T(,x)C cl(Ic(x)) for all x C and any E so it follows that PT is
weakly inward. We can easily show as in the proof of Theorems 3.1, 3.2 [11] that
I-PT(O,.) is demiclosed at 0 for each 0 . By Theorem 3.1 [2], PT has a
random fixed point. That is, there is a measurable map : fl-C such that

() PT(W, (w)) for all w e a.

Since PT(W,x)T(w,x) for all w and for all xEC, it follows that (w)
T(w, (w)) for all w f, as desired.

Suppose that assumption (ii) holds. By the arguments used in case (i), PT:
f C--,X is a nonexpansive random operator such that I PT(W, is demiclosed at
0 for each w. Since PT(Cz, y)T(cz, y) for all wE and for all yOC and T
satisfies the Leray-Schauder condition, it follows from (1) that PT also satisfies the
Leray-Schauder condition. By Theorem 3.3 [2], PT and hence T has a random fixed
point. U

Remarks 3.2: (i) Since ,-nonexpansive multivalued maps are not necessarily
continuous, Theorem 3.1 cannot be implied by the results of Beg and Shahzad in [3-5]
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and Tan and Yuan in [20].
(ii) If I- T(w,. is demiclosed at 0 for each co f and PT is weakly continuous

in Theorem 3.1, then I- PT(W,. is demiclosed at 0 as follows:
Let zn-0 weakly and I-PT(W,.)(zn)O strongly for any co f2. Now I--

PT(W, ")(n)eI-T(w,’)(xn) and I-T(w,.) is demiclosed at 0 so 0e I-
T(w,. )(). Since Pr:a x C--X is weakly continuous so I PT(,.)(zn)x0-
PT(w, ZO) weakly. Also I-PT(W ")(zn)0 weakly. Hence by the Hausdorff
property of weak topology, we have that 0 I- PT(W,. )(0)"

(iii) A continuous affine map is weakly continuous.
From Theorem 3.1, we now obtain:
Theorem 3.3: Let C be a nonempty closed, bounded, convex, separable subset with

nonempty interior of a strictly-convex, reflexive Banach space X. Suppose that T:
Ftx C--,2X is a closed, convex-valued, ,-nonexpansive random operator that either

(i) is weakly/inward
Or

(ii) satisfies the Leray-Schauder condition.

If I-T(w,.) is demiclosed at 0 for each w and PT is an affine random
operator, then T has a random fixed point.
We observe that if X is a uniformly convex space in Theorem 3.1, then the

theorem holds (with the same proof) because in this case, the demiclosedness of
I--PT(W .) follows as in Browder’s Theorem 3 [6]. Consequently, we get the
following corollary which extends Theorem 2.6 of Itoh [9], Theorem (6) (ii)of Lin
[13] and Theorem 4 of Xu [23].

Corollary 3.4: [18, Corollary 3.4] Let X be a uniformly-convex Banach space and
let C (with nonempty interior) be a nonempty closed, bounded, convex, separable
subset of X. If T: x C-,X is a nonexpansive random operator that either

(i) is weakly inward
Or

(ii) satisfies the Leray-Schauder condition,
then T has a random fixed point.

The following simple example contradicts the validity of Theorem 2.2 and hence
Theorem 3.2 in [24].

Example 3.5: Let X be th set of real numbers with the usual metric and
C= {0,1}. Define T:C---X by T(0)= 1 and T(1)=0. Then T is nonexpansive,
weakly inward and (I- T)(C)= {- 1, 1} is a closed set. But T has no fixed point.
Similarly we may obtain that T has no random fixed point where T is defined on a

suitable subset of a complete (r-finite measure space (, t, #).
We assume in the remainder of this section that (f,t,#) is a complete r-finite

measure space.
A combination of some sort of convexity in C, Theorem 2.1 and Lemma 3.1 (due

to Yi and Zhao [24]) provide the following affirmative result.
Theorem 3.6: Let C be a nonempty closed, star-shaped subset of a separable

Banach space X and let T:fxC---,K(X) be a weakly inward nonexpansive random
operator. If for each w E f, T(co, C) is bounded and (I- T)(w,C) is closed, then T
has a random fixed point.
We will consider a weaker assumption on C in the next result to establish an exten-

sion of Theorem 3.6 for ,-nonexpansive random operators.
Theorem 3.7: Let C be a nonempty, weakly-closed, star-shaped subset of a

separable Banach space X which satisfies Opial’s condition and let T:fx C--K(X)
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be a weakly inward ,-nonexpansive random operator such that for each w

T(w,C) C B for some weakly compact subset B of X. If PT is a random operator,
then T has a random fixed point.

Proof: As before, PT:f x C--,2X is a compact-valued, weakly inward nonexpan-
siva random map (see also proof of Theorem 2 [22]). We shall show that for each
w f, (I- PT)(W,. )(C) is closed. Let w f be fixed and y be a limit point of I-
PT(W, )(C). Then there is a sequence {Yn} with Yn (I- PT)(W, xn) for some xn
C and yny. Hence xn -Yn e PT(W, xn) and yny. Since {xn- y,} e PT(W, xn)
T(w,x,) C_ B, there is b e B and a subsequence {xm- Ym} of {xn- y,} such that

Xrn-Ym---b weakly. As ymy weakly, it follows that XrnY-b weakly. Let
z y- b. As C is weakly-closed, z C. Without loss of generality, we may assume
that xn converges weakly to z. By Remarks 2.2 (ii), a compact-valued, nonexpansive
map is weakly nonexpansive and so we obtain that PT is weakly nonexpansive.
Hence for each xn -Yn e Pr(w, xn), there is a zn e PT(W,z) such that

The set PT(W, z) is compact so Zn---u e PT(W, z) and Yn + zn-Y + u.
It now follows from (2) that

Hence by Opial’s condition, we have y + u z and so y z- u C (I- PT)(W,. )(C)
for each w f, as desired. Thus by Theorem 3.6, PT and hence T has a random
fixed point. VI

For single-valued maps, the concepts of ,-nonexpansive and nonexpansive coincide.
Hence the following two results generalize Corollary 3.5 of Tan and Yuan [19] to
weakly-closed and star-shaped sets in the context of Opial spaces.

Corollary 3.8: Let C be a nonempty, weakly-closed, star-shaped subset of a

separable Banach space X satisfying Opial’s condition and let T:ftx C--X be a

nonexpansive random operator such that for each w ft, T(w,C)C B for some

weakly compact subset B of X. If T is weakly inward, then T has a random fixed
point.

Corollary 3.9: Let C be a nonempty, weakly-compact, star-shaped subset of a
separable Banach space X satisfying Opial’s condition and let T:xC--C be a

nonexpansive random operator. Then T has a random fixed point.
We remark that in Corollary 3.9, the conditions (the fixed point property of C, the

convexity of C and strict convexity of X needed in Theorem 1 by Xu [23]) are
relaxed.

4. Random Fixed Points in Fr6chet Spaces

Fixed point results in the context of Frchet spaces have been studied in [14, 17]. In
this section, we prove fixed point theorems for ,-nonexpansive operators defined on a
subset of a Frfichet space.
We shall need the following results.
Theorem A: [17, Theorem 3.3] Let C be a nonempty, weakly-compact, convex

subset of a separable Frchet space X and let T’fxC--,X be 1-set contractive
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random operator that either

(i) is weakly inward
or

(ii) satisfies the ieray-Schauder condition.

If for any E , T(,C) is bounded and I- T(w, is demiclosed at O, then T has a

random fixed point.
Theorem B: [21, Theorem 2.1] Let (X,d) be a locally convex, metrizable

topological vector space with d as convex and compressible metric. Then every weak
sequentially compact subset K of X is proximinal.

Theorem C: [1, Theorem 2] Every convex proximinal set in a strictly-convex
metric linear space is Chebyshev.

The following result extends Theorem 3.1 from Banach spaces to Frchet spaces.
Theorem 4.1: Let C be a nonempty, closed, bounded, convex subset with nonempty

interior of a uniformly-convex separable Frchet space X and let T:f C--2X be a

closed, convex-valued, ,-nonexpansive random operator that either

(i) is weakly inward
or

(ii) satisfies the Leray-Schauder condition.

If for each , I-T(w,.) is demiclosed at 0 and PT is an affine random
operator, then T has a random fixed point.

Proof: It is well known that a closed, convex subset of a uniformly-convex Frchet
space is Chebyshev (see [1, Corollary a]). So we may obtain as in the proof of
Theorem 3.1 that PT:f C--X is a nonexpansive random operator and I- PT(W,.
is demiclosed at 0 for each w . Moreover, the class of 1-set contractive operators
includes nonexpansive operators. By Theorem A, PT and hence T has a random
fixed point. I-!

Corollary 4.2: [19, Corollary 3.5] Let C be a nonempty, weakly-compact, convex

subset of a separable, uniformly-convex Banach space X and let T:x C-X be a

nonexpansive random operator. If T is weakly inward, then T has a random fixed
point.
An extension of Theorem 4.1 to the case of strictly-convex Frchet spaces is

obtained in the following.
Theorem 4.3: Let C be a nonempty, weakly-compact, convex subset with nonempty

interior of a strictly-convex separable Frchet space X with convex and compressible
metric d and let T:xC--2X be a weakly sequentially compact, convex-valued, ,-

nonexpansive random operator that either

(i) is weakly inward
or

(ii) satisfies the Leray-Schauder condition.

If for each w , I-T(w,.) is demiclosed at 0 and PT is affine random operator,
then T has a random fixed point.

Proof: Theorems B and C imply that each T(w,x) is Chebyshev. Thus, as before,
PT: x C--X is a nonexpansive random operator that either

(i) is weakly inward
or

(ii) satisfies the Leray-Schauder condition.
Moreover, as in Remarks 3.2 (ii), we obtain that I- PT(,,. )is demiclosed at 0 for
each f. The conclusion follows from Theorem A. V1

A related random fixed point theorem for hemicompact operators is given below



348 A.R. KHAN and N. HUSSAIN

(see Theorems 4.8 and 4.9 in [19]).

Theorem 4.4: Let C be a nonempty, closed, separable subset of a Frchet space X
with convex and compressible metric d. Suppose T:Q x C---,2X is a weakly sequential-
ly, compact-valued, ,-nonexpansive hemicompact random operator. If for each
w E , G(w) {x C:x T(w,x)} is nonempty and PT is a random operator, then
T has a random fixed point.

Proof: As before, PT: C--,2X is a nonexpansive random operator. We show
that PT is hemicompact. Let {xn} be any sequence in C such that d(xn, PT(Xn))--O
as n--oc. By definition of PT, we have

d(xn, PT(W, xn)) <_ d(xn, ux d(xn, Txn) <_ d(xn, PT(W, xn)).
n

(3)

So d(xn, Tx )40 as ncx. The hemicompactness of T implies that {xn} has a co.n-
vergent subsequence. Hence PT is hemicompact. From (3) it follows that x is a
fixed point of T(w,.) iff x is a fixed point of PT(W,.). Thus F(w)= {x C:
x PT(W,x)} # for each w . By Theorem 3.1 [3] or Theorem 2.3 [20], PT and
therefore T has a random fixed point.
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