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To evaluate the local actual queueing delay in general single server queue-
ing networks with non-correlated successive service times for the same cus-

tomer, we start from a recent work using the tandem queue effect, when
two successive local arrivals are not separated by "premature departures".
In that case, two assumptions were made: busy periods not broken up,
and there are limited variations for successive service times. These assump-
tions are given up after having crossed two stages. The local arrivals be-
come indistinguishable for the sojourn time inside a given busy period. It
is then proved that the local sojourn time of this tandem queue effect may
be considered as the sum of two components: the first (independent of the
local interarrival time) corresponding to the case where upstream, succes-
sive service times are supposed to be identical to the local service time,
and the second (negligible after having crossed 2 or 3 stages) depending on
local interarrival times increasing because of broken up busy periods. The
consequence is the possible occurrence of the agglutination phenomenon of
indistinguishable customers in the buffers (when there are limited "prema-
ture departures"), due to a stronger impact of long service times upon the
local actual queueing delay, which is not consistent with the traditional
concept of local traffic source only generating distinguishable customers.

Key words: Queueing Networks, Tandem Queues, Tandem Queue
Effect, Non-Correlated Successive Service Times, Local Queueing Delay,
Agglutination Phenomenon, Buffer Overload, Local Traffic Source Con-
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1. Introduction

In a recent work (see Le Gall [6]) utilizing renewal input, intermediate queues and
local "first come-first served" discipline, we evaluated the local queue in single server
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queueing networks using the tandem queue effect as presented in Le Gall [4]. When
two successive local arrivals come from the same upstream traffic stream, the local
queueing delay.is strongly dependent on the upstream service time, since the local
interarrival time is equal to the upstream service time in case of congestion. In that
case, the sum of the upstream service time and of the local queueing delay is equal to
the local sojourn time of the preceding customer (for successive service times correlat-
ed or not for the same customer). But we used two restrictive assumptions: busy per-
iods not broken up and there are limited variations for successive service times. In
that case, interferences with other traffic streams crossing upstream could be neglect-
ed. Now, when successive service times of the same customer are not correlated, we

intend to give up these assumptions when customers have already crossed two stages.
It will be proved (for this tandem queue effect) that, when added to the service time
of the customer initiating the busy period, the local sojourn time may be considered
as the sum of two supplementary components:

The first component corresponds to the case of equivalent upstream service times
being identical to the local service time, which leads to our earlier results (with the
agglutination phenomenon of indistinguishable customers in the buffers), but with a

lower number of equivalent upstream stages.
The second component (which is specific for a given customer and may be neglect

after having crossed 2 or 3 stages) corresponds to an actual queueing delay generated
by a GI/G/1 server, where interarrival times are increasing (from stage-to-stage) due
to broken up busy periods, and where service times are rapidly decreasing, correspond-
ing to the supplementary part compared with these new interarrival times.

Network behavior will appear similar to our earlier work, with a stronger impact
of long service times, but with a great difference: we now suppose that successive ser-

vice times (for the same customer) are not correlated. Consequently, from stage-to-
stage, busy periods will amalgamate more slowly. For example, in the M/M/1 case

and compared with Jackson’s queueing network theory, the increase in mean local
queueing delay may be detected after having crossed approximately 20 stages. But in
the case of different populations of packet traffics (with highly varying packet
lengths), this increase may be faster, still leading (in case of a predominant traffic
stream) to a strong agglutination phenomenon of indistinguishable customers in the
buffers (due to the identical sojourn times inside a given busy period), which may be-
come congested even for a slight load (when half of this load comes from the same up-
stream traffic stream). Markovian theories are not appropriate to evaluate congestion
in buffers.

In this paper, we assume that customers only gain access to a downstream queue
after completion of upstream service. We will begin evaluating the tandem queue
effect. In Section 2, we define our notation and assumptions. In Section 3, we out-
line our earlier studies in single server tandem queues. In Section 4, we consider tan-
dem queues with non-correlated successive service times. In Section 5, we consider
single server queueing networks and buffers in the case of non-correlated successive ser-
vice times.
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2. Notations and Assumptions for Single Server Tandem Queues

2.1 The Tandem Queue

The tandem queue is made of (m+ 1) successive stages of single servers, with the
following notations for the hth customer at stage k 1,..., m + 1)"

local queueing delay: w;
local service time: T;
local sojourn time: s w + T;
interarrival interval [between customers (h- 1) and hi" Y_ l;

occasional idle period [during Y_I]: e-1.
In other words, we may write

k-1Ykh -1 T nt eh (1)

Moreover, we let for k 2,..., m + 1:

Tlh +... + Tkh T’h(k),
+ +

(2)

For the hth customer, T’h(k is the overall service time from stage 1 to stage k, and

Sh(i,k is the overall sojourn time from stage to stage k.

2.2 Assumptions

We assume the system is in the stationary regime. The arrival process (at the entry)
is renewal. At each stage, there is an intermediate queue using a "first come-first
servecP discipline. There are no intermediate arrivals.

The arrival rate is:

A-(I/EYe_a), (k l,...,m + l). (3)

Fo(t) is the distribution function of the interarrival intervals. Fk(t), (k 1,...,
m + 1) is the distribution function of the service time at stage k, independent of the
considered customer. All successive service times (for the same customer) are mutual-
ly independent. They are also independent of the arrival process and of the service
times related to other customers. At stage k, the load traffic intensity) is:

Pk AE(T) < 1. (4)
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3. Preliminary Results in Single Server Tandem Queues

3.1 Case of the General Distribution for Service Times

In Le Gall [1], we gave the fundamental stochastic recurrence relation for the sojourn
time in any single server tandem queue (Formula 3.5):

m+l rn+l
Exp(- E zisin)- I] 1 1 1 )duk- (Z Uk

q- uk tk + li=1 k=l k
+0

x EP(ulYln 1)" EP(- ZlT1 (zkTn uTnn
k=2

x Exp( 7, UkSn- 1
k=l

with: 0 < R(uk + 1) < l{(Uk) < n(Zk), ] 1,...,m q- 1;um + 2 O.

The symbol I-I denotes a repeated integral in the (ul,...,urn + 1) successive planes.
We use (Cauchy) contour integrals along the imaginary axis in the complex planes
uk. If the contour (followed from the bottom to the top) is to the right of the
imaginary axis (the contour being closed at infinity to the right), we write f +0" If
the contour is to the left of the imaginary axis, we write f 0" If it is not necessary
to define the side, we may simply write f 0"

If, in the successive planes uk (k > 1), the following condition
k > k-1 k-2. m+l (6)Sn-1-- Tn ,"

is satisfied, the kernel in (5) is holomorphic for n(uk)> 0 (k > 1). Now set zk z

(k 1,...,m + 1). The poles U1 Z1 and uk + 1 Uk (k 1,...,m) remain. We can
thus apply the residue theorem at the preceding poles uk (k 2,...,m + 1), and we
deduce the following stochastic relation, with notation (2):

Sn(1,rn + 1) Max[T’n(rn + 1), Sn_ l(1,m + 1)+T + 1 rln 1]" (r)
At stage i (i 1,...,m), we may write in the same way, with notation (1):

Sn(i rn + 1) Max[Tin +... + Tn + 1 S m +1n-l(i’rn+l)q-Tn -Yn-1],
or using expression (1)"

Sn(i rn + 1) Max[Tin + ’ Tmn + Sn_ l (i, m + 1) + (Tnm + 1 Thi- 1)_eni- ].

(8)

In Le ?all !61, we used an assumption to simplify (hypothesis [2])to delete the term
(Tnm + Tn-1)in the right-hand side, corresponding to a limitation on successive
service time variations. In the present paper, we intend to give up this simplification
and condition (6) after having crossed several stages.

The key point in stochastic relations (7) and (9) is to note that a customer
initiating a busy period at stage (m + 1), and corresponding to the first member in
brackets, does not wait upstream: he also initiates the upstream busy periods. This
point has not yet been detected in classical theories, in particular, for the tandem
queue M/M/1 --+M/1. Note, on the contrary, that a customer initiating a busy
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period at stage i may experience some queues downstream.

3.2 Case of Identical Successive Service Times

3.2.1 Equation and equivalence

In Le Gall [1], we solved the case of identical successive service times for the same
customer. Stochastic relation (9), with notation (2), becomes (for i- 2)"

Sn(2, rn+ 1)- Max[Tn(m),Sn_l(2, rn+ 1) eln],
with: T’n(m) Tln + + Tr m. Tm + l (10)

When we used this relation (10), even in the case of non-identical successive service
times, as an approximation of relation (9) for i= 2, we stressed in Le Gall [2] that
the local sojourn time distribution is practically defined by the two first moments,
and finally by YarT’n(m). Consequently, in Le Gall [3], we introduced the
parameter mo such as:

m20" Var(Tm + 1) Var(mo" T + 1) VarTn(m)n (11)

when excluding the case of T + 1 and T’n(m constant. When mo is between two
successive integers, we will use an interpolation between the delays related to these
integers, or directly the possible fractional mo in formulae. Thus, the local sojourn
time is practically the same as for a single server packet tandem queue of (m0 + 1)
stages, and corresponding to identical successive service times: Tin =...= Tnm + 1

Tnm + 1, when mo is an integer. When mo is not an integer, the distribution function
may be used with this new value mo.
3.2.2 Local sojourn time distribution

In Le Gall [5], w evaluated the local sojourn time distribution at stage (m + 1), in the
case of a stationary regime and successive service times identical to the local service
time rm + 1, with Fm + l(t) being the distribution function. For R(z) >_ O, we set"

po(Z)- / e-ztdro(t),
o (12)

99m .. l(Z, t) / e- ZCdrm q_ l(Ct),
0

(I)
m + 1(2) Exp( 1

+1
-0

Qm + 1(t) Exp(- 1 log[1 --0(- t)99m -t- l(U’ t)]-)’ and

-0

Qm+l Qm + 1(c)
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And we introduce the following expressions, using (12):

Qrn+l
Frn (t)Vo(t)-Qrn+l(t) +1

l Frn + l(V)dv.v(t, f -((-v) )’Q, rn+

urn(t u) vo(t)[v(t u)]rn, and

e (t, f
0

t +
m -1 rn" 1 ’u)"

(13)

Finally, the distribution function of the local sojourn time U(m+ 1),
(m + 1)and for an arbitrary customer is, with expressions (12) and (13):

a) Case of a renewal input:

U(t m + 1) 1 / o(- U)Om + l(U)drn(t,u)_.- Q, rnnt. 1
+o

at stage

(14)

b) Case of Poisson input:

U(t, m + 1) dm(t, A) vo(t)[v( A)]TM (15)

In the case of finite support for Fm + l(t), we stressed the influence of the longest
service time (i.e., length TN) corresponding to a load traffic intensity):

PN ANTN < 1. (16)

This influence is due to the "agglutination phenomenon" in the buffers. Due to this
long service time upstream, the queue disappears downstream and customer no does
not wait downstream; rather, he initiates a busy period. In case of congestion

1-0 in relation (10), and we deduce during this busyupstream, we may write en
period:

Sn(2,rn + 1)- Sn_l(2,rn + 1)-...- Sn0(2,rn + 1) TN.

Finally, all successive local sojourn times of the local busy period are equal to the
long service time TN, with the customers becoming indistinguishable in the buffer.
Based on the increase of the busy period duration (from stage-to-stage), it follows
that the busy periods tend to amalgamate with subsequent busy periods. The
phenomenon is amplified when m increases, leading to a strong impact of the longest
service times. We deduced the following practical approximation for expression (15),
i.e., for the local sojourn time distribution of an arbitrary customer, at stage (m + 1),
and in case of Poisson input:
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for 0 < t <_ TN:

pN)EXp --rnPN [1
1 flrn +Ul(t, rn + l) (1- (- +1 ))1--(Pro+l-- m

for t> TN:

]);

Ul(t,m+l)-l, (17)

where Pm + 1 is the total load traffic intensity) at stage (m + 1).

4. Single Server Tandem Queues with Non-Correlated Successive Service
Times

4.1 Equations and Rults

When successive service times (for the same customer) are non-correlated, it will
appear as a supplementary local queueing delay. In that case, it is useful to intro-
duce a relation due to Pollaczek [7], Formula (15) for u 1,...,n and R(z) >_ O"

n 1 / duu. n

Exp( zMax + xu) Hi- _ff_u )Exp( xuuu z
n

,= u=l Z-- tu+0
u=l

with: Max + (xu) Max(O, Xl,... Xn) U 1,..., n, (18)

n
o < (),R(E )< R(z).

--1

In our case, we have R(Xl)> 0. We may apply the residue theorem at pole:
]n For z u and u 1, n we deduce:tt1 Z-- 2tt

n 1 / duuExp( uMax(xl,..., Xn)
u=HI --u )tt Exp( -u_12 xuttu)

+o
with uu u.

(19)

We let"

otnn +1 Max(Tin,..., Tmn + 1). (20)

We deduce from expression (19):

m / dukExp( ttlOnrn -}-I)-(H 1 Exp[ (ltk 1-- tk)rkn -1] ttk ttk)
+0

(tt21_t_)Exp[- (ttrn + 1" Tnn -t- 1)] (21)

with: 0 < R(um +1)<"" < /i(t/1)"
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Let us consider the basic relation (5), on writing"

m+l
Exp[ zlTln E (zkTkn-- ukTkn 1)]-k-2

m+l m+l
Exp[ E (Zk-- ttk)Tkn] Exp[ E (ttk--ttk-t-1)Tkn]

k=l k=l

with" um -F 2 O.

(22)

In relation (5), the kernel becomes the product of two quantities:

m+l m+l
A Exp(u1Y1 1)" Exp[- (zl uk)Tk] Exp[- E tkSn-1

k=l k=l

m+l
B UlEXp[- E (Uk-- Uk + l)Tkn]

k--1

(23)

As in expression (5), we set: zk=z(k=l,...,m+l). For 0<R(Ul)<5, where6isa
positive number sufficiently low, the kernel in (5) is holomorphic. Consequently, in
the planes uk (k 2,...,m + 1), we only find the poles u/ + 1 --ttk" We may apply
the residue theorem and put uk =uI (k=2,...,m+l) in expression A above.
Expression B is, in fact, the kernel in expression (21). Finally, the basic relation (5)
becomes, on using (20):

Exp[- zSn(1, m + 1)] 1 / Exp[- (z Ul)T’n(m + 1)]
+o

Exp[- u1(0m + 1 y1

zdu1x Exp[ UlSn_ l(1,m + 1)]. rz Ul)U1’

(24)

with: 0 < R(Ul)< R(z).

This expression corresponds to the following stochastic relationship, and is valid
even when the successive service times (of the same customer) are correlated:

Sn(1,m + 1) Max[T’n(m + 1), Sn l(1,m + 1) + 0nTM + 1 -Yn-1]’l (25)

Note that variables T’n(m + 1) and 0nTM +1 are correlated. Compared with relation
(7), the first member between brackets has not changed. It is the same for customer
no initiating a busy period at stage (m + 1). On the contrary, during a busy period
(see the second member between brackets), the term TnTM + 1 is replaced by 0nm + 1,
which is not correlated with Tno(m + 1). Let us use the relations:

{ 1 1Sn(1, m + 1) w, + Tn + Sn(2, m + 1),
(26)

Sn_ l(1,m+ 1)-Y_ (wln-eln) + Sn_ l(2, rn-+- 1).



During a busy period, we may write from the second term in expression (25):

qn(2 m)-- Sn 1(2 m) nt-IOnm-Tln]-eI

or:

0TMn n- 1 -t-[Sn(2m on 1(2m)]. (27)

When we consider the case of upstream service times identical to Tnm + 1, the term
[0nm- TI] does not exist, leading to a first component for the sojourn time at stage
(m + 1). Moreover, inside the busy periods, the non-correlation between successive
upstream service times leads to a local interarrival time 0nTM at stage (m + 1), as given
by expression (27). Besides, the term above (between brackets)is now existing and

m+l m+l mleads to a local service time rn -On -On. At this stage, from expression
(25), this quantity generates a supplementary local queueing delay corresponding to a

GI/G/1 server defined by the set n,rn during busy periods. To evaluate the
local actual queueing delay we may summarize for a single server tandem queue:

Proposition 1: (The two components of the local sojourn time) At stage (m + 1)
m + 1 i8 the sum of twoin stationary regime (m > 1), the local sojourn time sn

components:
First component U+1 corresponds to the case of successive upstream service

times supposed to be identical to the local service time Tn + 1, with the number of
stages (mo+l) being defined by expression (11), and the local sojourn time
distribution being given by expressions (14), (15) or (17);

Second component g’ +1 corresponds to the queueing delay generated by a

GI/G/1 server, defined by service time:

m+l m+l m m+l m
% -0n-[T -0hi+,

and by the local interarrival lime On during busy periods, where Omn is defined by
expression (20) and where Tn+l and O are not correlated when no correlations
exist between successive service times.

In fact, the first component corresponds to any customer inside the entire busy
period and is independent of the local interarrival time 0nm. On the contrary, the
second component is specific for a given customer. The case of stage 2 is considered
in Annex 1. For m > 1 in case of Poisson input, the 2nd component Vnm+l is
evaluated in Annex 2a when successive service times are not correlated, and in Annex
2b when successive service times are correlated. Consequently, Proposition 1 is valid
even in the case of correlations.

Notes: a) We note that the concept of local traffic source cannot exist. At stage
2, the local interarrival time is given by relation (1). When the downstream queue is
empty (during the upstream busy period), the downstream busy period may be
broken up when T2n < 1Tn. In fact, for the following customer, no change appears if
we suppose T2n- Tn. Consequently, for evaluation of the local, actual queueing
delay (at stage 3), we may consider that the busy period (at stage 2) is not broken up
(during the busy period at stage 1). If T2n > Tln, [T2n- Tin] + may be considered as a

service time generating a supplementary GI/G/1 server.

Finally, at stage 3 we may introduce two kinds of interarrival times: an actual
idle period equal to (02n +e2n), and a virtual idle period (when the busy period is
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broken up) equal to 02n More generally at stage (rn + 1), the interarrival time
(during busy periods) may be considered as equal to 0nTM, not influencing the first
component Unm + 1 and avoiding the impact of broken up busy periods if we combine

rn + This comment (concerning the evaluationthese periods with the service time -n
of the actual queueing delay), valid even when successive service times for the same
customer are correlated, is consistent with relation (25), but not with classical
tandem queue theories, since we have to consider these busy periods as not broken up
(at stage > 2).

Proposition 1 avoids the difficulty of distinguishing the two cases of idle periods in
order to evaluate the actual queueing delay. We may keep the assumption of busy
periods not broken up as in our recent work (see Le Gall [6]). The agglutination
phenomenon appears, and the phenomenon of amalgam (or coalescence) of busy
periods amplifies from stage-to-stage. Note that, at stage 2, the server may be
considered as a classical GI/G/1 server, since the concept of virtual idle period cannot
exist at stage 1 (see in Annex 1).

b) When k kTn T is deterministic, (25) leads to a very known result: the overall
waiting time corresponds to the GI/G/1 queue defined by he se (0 +l,Yl_a),
when ,.E(O + < 1.

c) When Tkn is not deterministic, we find ,.E(On) > 1 after having crossed 2 or 3
stages. Since the moments of 0nm increase when m increases, the second component
will rapidly decrease, when the distribution function of Tnm + is independent of rn.

Finally, after having crossed several stages (e.g., 3 stages) and in order to evaluate
the actual queueing delay, the local queue may be considered as generated by a

tandem queue (not influenced by 0nTM) with identical successive service times for the
same customer. Practically, we may apply relation (9) (for e.g., i= 4)in which:

(Tnm +1 T/n 1)._+(0am -t-1 0i- 1)
__

0rt

As already mentioned in Section 3.2.2, the customers become indistinguishable since
all the sojourn times are identical insider the local busy period.

Finally, when we consider any busy period as not broken up, an important
consequence is" a customer, initiating a busy period at stage (m + 1), also initiates
the upstream busy periods. A strong correlation appears between the successive local
sojourn times for the same customer, in spite of the non-correlation between the
successive service times. And this strong correlation allows us to eliminate the
possible interferences with the other upstream cross-traffic streams.

d) As a consequence, when we observe a local queue directly, we cannot detect
this correlation. We observe a virtual local queueing delay not experienced by the
customer, due to the impact of the virtual idle period. To get a correct observation it
is necessary to observe, for the same customer, the two successive (upstream and
local) overall sojourn times, directly, in order to avoid observing the virtual idle
periods. This is a consequence of the non-existence of the concept of local traffic
source: this concept does not take into account the difference in correlations between
the occupancy state and the idle period.

4.2 Case of the M/M/1-M/1 Tandem Queue and of Other Queues

The results above may be surprising since the tandem queue M/M/I--M/1 has been
considered as a succession of mutually independent M/M/1 queues from a long time,
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leading to an overall sojourn time considered as the sum of independent local sojourn
times. In fact, the negative exponential service time distribution frequently does not
generate long service times. Let us consider an example with E(Tm + 1) 1.
We set, in stationary regime and for R(z) >_ O:

/ 1m+l(z)-m+l(z,e)- e ZCdFm+l(c)-l+z,
0

1 21_(1+ 1 z) (29)2(Z)-l+z 1+
m

,(z)-E(e zO ), with m >_ 2.

After stage 3, we may neglect the influence of the 2nd component V+1 in
Proposition 1, as defined in Annex 2. For the distribution function of Uk

n, we start
from the numerical value of the sojourn time deduced from (11) and (15). In our

example, we consider the case of an arrival rate A( p)= 0.7. We get, at stage
(m + 1), for E(s + 1):

Stage 1:

Stage 2:

Stage 5:

Stage 10:

E(sl)- 3.3,

E(s2n)- 3.3, (see in Annex 1, Proposition 2.a);

E(sb)- 3.4,

z(sl) 3.7,

Stage 20: ) 4.0,

E 100,s 4.8.
Jackson’s queueing theory, in which departure process at stage k is

Stage 100:
With classical

equal to arrival process at stage (k+ 1), we get E(skn)- 3.3 at any stage for the
virtual local sojourn time (as observed directly at a given stage by an external
observer). For the mean actual local sojourn time (as experienced by the customer),
the discrepancy may only be observed after having crossed 10 or 20 stages, despite
the high increase (from stage 3) of the local interarrival time 0nm. But, when the long
service times occur more frequently, the discrepancy with Markovian (or product
form) theories appears more rapidly. For instance, in Le Gall [6], we mentioned that
the service time Pareto distribution cannot be handled: when t increases indefinitely,
the complementary distribution function decreases asymptotically as (at)-a(a > 2),
only, instead of a negative exponential decrease. And now, when successive service
times of the same customer are not correlated, the result is unchanged, the service
time Pareto distribution cannot yet be handled.

In the case of finite support for the service time distribution T1 and TN denote the
shortest and the longest service times, respectively. To avoid significant congestion
in the buffers due to the "agglutination phenomenon", Le Gall [6] mentioned the need
for the buffer capacity K (in number of customers) to satisfy the condition:

(30)K>T1.
Since Markovian theories cannot detect the
appropriate to dimension the buffers.

agglutination phenomenon", they are not
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Single Server Queueing Networks with Non-Correlated Successive
Service Times

With the same assumptions as above in the case of non-correlated successive service
times for the same customer, when he has already crossed two stages, we may apply
our recent results in Le Gall [6] to consider single server queueing networks. A signifi-
cant impact of upstream traffic streams appears when they are distributed, or not (at
the adjacent upstream stage) towards different downstream directions, with this distri-
bution generating indistinguishable "premature departures". The basic property used
(see Le Gall [4]), considered the possibility of correlation or non-correlation between
the local interarrival time and the upstream service time. When two successive local
arrivals are separated by "premature departures" in the same upstream traffic
stream, this correlation cannot exist. The local queue appears as a single GI/G/1
queue; the total arrival process is considered at the entry to the network. Note that
it is the result traditionally used, but is justified by the concept of a local traffic
source. This argument is wrong since these local traffic sources do not exist and could
lead to significant errors in evaluating the influence of the upstream part of the net-
work.
When these two successive arrivals are coming from the same upstream traffic

stream without being separated by "premature departures", we are in the case of a
tandem queue, which was considered in the preceding sections. Due to the fact that a
local arrival, having already crossed two or several stages, and initiating a busy
period, has also initiated the upstream busy periods in this tandem queue (on
excluding other cross-traffic streams), the assumption of non-influence of the other
traffic streams crossing upstream is justified. We have seen that, after having crossed
three stages, we again find the equivalence with the case of identical successive service
times. The concept of an equivalent tandem queue may be used with equivalence
relation (11) in the case of successive local arrivals coming from different incoming
paths (and consequently, not separated by premature departures). Finally, we deduce
the second proposition"

Proposition 2: (Network with non-correlated successive service times) In the case

of a stationary regime, and after having crossed three stages in a single server queue-
ing network with non-correlated successive service times for the same customer, the
local actual queueing delay may be considered generated as in the case of hypothetical
successive upstream service times supposed to be identical to the local service lime,
with the equivalent number of stages being defined by relation (11).

Notes: a) This equivalence allows use of the solution given in Le Gall [6], in the
case of identical successive service times for the same customer. In the local queue
when not separated by "premature departures", the customers (and the incoming
paths) become indistinguishable since all sojourn times become identical inside the
local busy period. The traditional concept of local traffic source (generating distin-
guishable arrival epochs and queueing delays) disappears, sweeping away traditional
theories.

b) However, in the relation of equivalence (11), VarT’n(m is proportional to m2

in the case of identical successive service times. But, in the case of non-correlated
successive service times, VarT’n(m is proportional only to m. So the parameter m0,
obtained in the case of identical successive service times, is equal to a/o only in the
case of non-correlated successive service times. Consequently, fror -stage-to-stage,
busy periods amalgamate slowly, and the mean local queueing delay may be slow to
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increase.

c) This is not the case when service time durations vary highly, leading to a signi-
ficant congestion in buffers generated by the "agglutination phenomenon" of indistin-
guishable customers (due to the identical sojourn times inside a given busy period),
even when the local load (= traffic intensity) is slight, where half of the local load
corresponds to two successive local arrivals not separated by "premature departures".
It is necessary to satisfy condition (30) for buffer dimensioning, even when successive
service times are non-correlated.

d) Proposition 2 relates to the evaluation of the local actual queueing delay
(dependent on upstream stages). For the evaluation of the local virtual queueing de-
lay (at a given stage), it is sufficient to apply classical theories.

6. Conclusion

Due to the relation of equivalence (11) and to Propositions 1 and 2, it was simple to
refer to our recent work given in Le Gall [6] and prove that classical theories are not

appropriate for the evaluation of the local actual queueing delay (as experienced by
the customer) and for buffer dimensioning, even when successive service times (for the
same customer) are non-correlated.

This discrepancy corresponds to the case of two successive local arrivals not
separated by "premature departures", leading to the combination of indistinguishable
customers (due to identical sojourn times inside the upstream busy period), which is
not consistent with traditional assumptions. Consequently, two successive sojourn
times (of the same customer) are correlated as in packet traffic (i.e., with successive
identical service times). After having crossed three stages, the tandem queue effect
appears with the non-influence of the local interarrival time and with the
agglutination phenomenon in buffers, which is not detected in Markovian theories.
Due to the amalgam (or coalescence) of busy periods from stage-to-stage, the
customer is waiting more after having crossed several stages, which cannot be
detected by an external observer considering a specific single stage, without
distinguishing virtual and actual idle periods.

Moreover, due to this tandem queue effect, the impact of the longest service times
is stronger than in Markovian theories, particularly in large networks in case of over-

load in a given incoming path (even for a slight total local load). But, to observe
this phenomenon, it is necessary to apply the method as recommended in Section 4.1,
Note (d), because classical and local observation methods are appropriate to observe
the broken up busy periods and the local virtual queueing delay, only. In other
words, it is necessary to follow the customer instead of observing directly the local
queue concerned, because a broken up busy period cannot be perceived by the custom-
er. Finally, the customer can perceive busy periods much longer and he can find buff-
er occupancies much higher.

Finally, when there are not many premature departures, the concept of local actual
queueing delay is not consistent with the traditional concept of local traffic source,
generating distinguishable customers influenced by the local interarrival time, as

usually considered in large queueing networks, following our comments in Section 4.1,
Note (a). Due to relation (25) with expression (20) to increase the interarrival time
of distinguishable local arrivals during congestion, their influence decreases and gives
place to the impact of the sojourn time of the distinguishable customer initiating the
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actual busy period and depending on the actual idle period, only. In particular, we

may observe a curious phenomenon in concentration nodes, where each output buffer
is serving a single (and different) direction, working with the tandem queue effect
(since there are no premature departures). In that case, the downstream input
buffer, receiving different links from similar concentration nodes and combining indis-
tinguishable customers, also generates an equivalent tandem queue with indistinguish-
able customers. Due to the agglutination phenomenon, this input buffer may be per-
manently congested even at slight load when the local service times are highly vary-
ing, and when condition (30) is not satisfied. This phenomenon needs to standardize
service time variations and define more appropriate structures in the network, which
is not yet clearly understood by engineers accustomed to traditional Markovian theor-
ies, particularly when applied to. distinguishable customers. On the contrary, when
condition (30) is satisfied, leading to larger buffer capacities (in number of custom-
ers), the classical theories may be used again. A double faced traffic modeling ap-
pears, as for Janus divinity: a tandem queue effect for small buffers and indistinguish-
able customers, and a traditional process for large buffers and distinguishable custom-
ers.

This double faced traffic modeling cannot be detected by simplified traffic simula-
tion methods. Instead of separately observing each customer from stage-to-stage, it
may be faster to globally manage (at a given stage) all the local arrivals on writing
the similarity between the departure process of preceding customers and the process
formed at the beginning of service of next customers. Unhappily, it is not true in the
case of a customer served a long time upstream and not waiting downstream: the
virtual idle period and the increase of the interarrival time (see expression (27))
cannot be detected, evading the impact of the longer upstream service times.
Consequently, this kind of simplified simulation leads to the principle of indepen-
dence of stages, removing the impact of upstream link overloads and of long service
times, i.e., liquidating the tandem queue effect that appears due to some incoming
link overloads.

Annex 1. Two-Stage Tandem Queues with Poisson Input

Proposition 1 cannot be applied to the second stage in single server tandem queues,
because (at stage 2) the local interarrival time satisfies relation (1), independent of
expression (20). To simplify, we assume a Poisson input at stage 1 (with stationary
regime) and evaluate the actual queueing delay at stage 2. In that case, the concept
of a virtual idle period (see Section 4.1, Note (a)) does not exist at stage 1. The load
(i.e., traffic intensity) at stage i is denoted Pi"

a) The Arrival Process at Stage 2: From relation (1) and for the nth customer,
1 In the case of busy server 1, this time isthe interarrival time at stage 2 is: Tln-t-en.

Tn only, even when the busy period is broken up at stage 2. In the case of an idle
1 isA.period (at stage 1), this time is (TI + en), where the density of arrivals in en

We let:

-0)- 1 fllQo Prb(wn (la)

1In this case of Poisson input (at stage 1), we note that the sequences Tln and en are

independent and that each sequence is identically distributed. Consequently, the
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arrival process (at stage 2) is regenerative and, using notations of Section 2.1, we may
write for an arbitrary arrival"

Prob(Y2 <x)-(1-Qo).Fl(X)/Qo. Fl(X),(1-e -Ax)n-1 (2a)

From the notations of Section 2.2 and from (12), the Laplace-Stieltjes transform
for this distribution is:

72(z) (1 Q0)" 991(z) + QO" 1(z) , + Z’

or

A + (1- Qo)Z
with 0 < Qo < 1. (3a)")’2(Z) (ill(Z) A + Z

We deduce"
Proposition la: In the case of Poisson input at stage 1 and a stationary regime,

the actual queueing delay (of an arbitrary customer) at stage 2 is governed by the

GI/G/1 server [72(z),72(z)] with 72(z) being defined by (3a) and 992(z) by Coection
2.2.

Notes: We assume that service times are not deterministic and an arbitrary
customer at stage 2 means that he can wait or not at stage 1.

2. As for expressions (12), we refer to Pollaczek [8] tob) The Distribution of wn-
define the Laplace-Stieltjes transform (I)0(z) of the distribution of the actual queueing

2 From Proposition la for a stationary regime, we may write:delay, wn.

(o(Z) Ee ZWn Exp [z u + ] log[1 72( u). 2(u)]. du (4a)
-0

From Pollaczek [8], we deduce the probability of a (virtual or actual) idle period at
stage 2"

( 1 J" log[l-72(-u).2(u)].-)<1 (5a)Q1 Exp
-0

2.We get the rth cumulant of the distribution of the actual queueing delay wn.

C (-1)r

/ du
r 2ri log[1 72(tt). y)2(u)]

tt
r + 1"

-o

(6a)

In particular, we get:

E(W2n) C1, Var(W2n) C2. (7a)

c) Case of Negative Exponential Service Time Distributions: In the case of

negative exponential service time distributions, we may write from (3a)"

E(Tln)- -’ /91 1; 72(z)- "1 +z
E,T)

1 A
#2’ P2 #2"

+ (1 Qo)z
A+z (8a)
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Expression (3a) becomes:

(9a)72(z)- ,+ z

We again find the same Poisson input at stage 2 as at stage 1. We may conclude:
Proposition 2a: (Case of identical successive service time distribution functions)

For the tandem queue M/M/1-M/1, in stationary regime, the actual queueing delay
of an arbitrary customer at stage 2 is governed by an M/M/1 server.

For more general tandem queues, the actual queueing delay and the virtual
queueing delay (at stage 2) are different. Proposition 2a is not valid at stages > 2
(see Annex 2), which is not consistent with Jackson’s theory: the concept of traffic
source is not valid in this downstream stages (see our comments in Section 4.1, Note
(a)). Finally, Proposition 1 is much easier to apply.

Notes: In this text, to avoid some misunderstanding, we used the term "queueing
delay" because the term "waiting time" sometimes includes the service time.

Annex 2. (m + 1)-Stage Tandem Queues with Poisson Input

In this case of single server tandem queue with Poisson input, we want to evaluate
(Section a) the second component V+1 in Proposition 1, at stage (m + 1) with
m > 1, and we will give a simple extension to the more general case of correlated
successive service times (Section b).

a) Evaluation of the 2nd Component V+ 1 in Proposition 1 (m > 1): We want
to extend expression (3a)of 72(z). In the stationary regime, we let:

Qm + 1 Prob(w + 1 0), (lb)

corresponding to an actual idle period and given by the first component U+1 in
Proposition 1. Due to this component, the actual idle period at stage (m + 1)
corresponds to the actual idle period at upstream stages. Thus, we have (at
stationary regime)"

Qm + 1 Wm + 1(0), (2b)

where Wm + l(t) is the distribution function of the unitary queueing delay per stage
(i.e., the overall queueing delay divided by the number of stages, excluding the first
stage). In Le Gall [2], Annex B, for the distribution of the corresponding sojourn
time, when the limt_t[1 Fm + l(t)] 0, or when TnTM + 1 has a finite support
(notations of Section 3.2.2), we gave:

Sm+l(t) I 1-p tm1-PFo(t)
with

+1

Fm+l(t), (3b)

p ,. E(Tn + 1),

Fo(t 1 /[1 g
m + l(tt)], dtt.

E(Tn+ 1)
0

(4b)
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rn + and the queueing delayDue to the stochastic relation between the sojourn time sn
rn+lwn we get:

m+l m+l_Tra+lWn 8n n

We deduce the expression:
o m-l-1

Wm + x(t) - 1 PFo(t + u
0

dr.+(), ()

and, consequently from (2b)

Qm +1 1 fi(u)J
0

dFm+l(U). (6b)

To evaluate the arrival process we note that, not considering the existence of broken
up busy periods by considering an interarrival time 0m during busy periods then
arrival process is still regenerative as in Annex 1. Let

%(z) E;(- zOm)rt (7b)

From (3a), the L-S transform of the interarrival distribution, at stage (m+ 1)
becomes:

A+(1-Qm+l)Z (8)")’rn + 1(z) 2m(Z) + Z

with Qm + 1 being given by expression (6b). The actual local queueing delay of the
second component V*+1 corresponds to the L-S transform of this delay, deduced
from (4a)"

(I)
m + l(Z) Eexp( zwn + 1)

(9b)
1Exp( 27ri / [z !u + ] log[1 7m + 1( tt)" tim + l(tt)] "du),

-0

where tim + 1(z) Eexp[- zrm + 1] is defined by (28).
b) Case of Correlated Successive Service Times: Proposition 1 is still valid when

successive service times Tnm +1 (n fixed)are correlated. But now, TnTM +1 and 0nTM are
correlated. In expression (9b), using expression (Sb), we have to make the
substitution

Cm( z). tim + l(Z)--Eexp( zErnTM + 1 on]). (lOb)
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