A-MONOTONICITY AND APPLICATIONS TO NONLINEAR VARIATIONAL INCLUSION PROBLEMS

RAM U. VERMA

Received 2 March 2004

A new notion of the *A*-monotonicity is introduced, which generalizes the *H*-monotonicity. Since the *A*-monotonicity originates from hemivariational inequalities, and hemivariational inequalities are connected with nonconvex energy functions, it turns out to be a useful tool proving the existence of solutions of nonconvex constrained problems as well.

Recently, Fang and Huang [1] introduced a new class of mappings-h-monotone mappings-in the context of solving a system of variational inclusions involving a combination of *h-monotone* and strongly monotone mappings based on the resolvent operator technique. The notion of the *h-monotonicity* has revitalized the theory of maximal monotone mappings in several directions, especially in the domain of applications. Here we announce the notion of the A-monotone mappings and its applications to the solvability of systems of nonlinear variational inclusions. The class of the A-monotone mappings generalizes the *h*-monotonicity. On the top of that, *A*-monotonicity originates from hemivariational inequalities, and emerges as a major contributor to the solvability of nonlinear variational problems on nonconvex settings. As a matter of fact, some nice examples on A-monotone (or generalized maximal monotone) mappings can be found in Naniewicz and Panagiotopoulos [2] and Verma [4]. Hemivariational inequalities-initiated and developed by Panagiotopoulos [3]-are connected with nonconvex energy functions and turned out to be useful tools proving the existence of solutions of nonconvex constrained problems. We note that the A-monotonicity is defined in terms of relaxed monotone mappings—a more general notion than the monotonicity/strong monotonicity—which gives a significant edge over the *h*-monotonicity.

Definition 1 [1]. Let $h: H \to H$ and $M: H \to 2^H$ be any two mappings on H. The map M is said to be *h*-monotone if M is monotone and $(h + \rho M)(H) = H$ holds for $\rho > 0$. This is equivalent to stating that M is *h*-monotone if M is monotone and $(h + \rho M)$ is maximal monotone.

Journal of Applied Mathematics and Stochastic Analysis 2004:2 (2004) 193–195 2000 Mathematics Subject Classification: 49J40, 47J20 URL: http://dx.doi.org/10.1155/S1048953304403013

Copyright © 2004 Hindawi Publishing Corporation

194 Variational inclusion problems

Let *X* denote a reflexive Banach space and X^* its dual. Inspired by [2, 4], we introduce the notion of the *A*-monotonicity as follows.

Definition 2. Let $A: X \to X^*$ and $M: X \to 2^{X^*}$ be any mappings on X. The map M is said to be *A*-monotone if M is *m*-relaxed monotone and $(A + \rho M)$ is maximal monotone for $\rho > 0$.

LEMMA 3. Let $A: H \to H$ be *r*-strongly monotone and $M: H \to 2^H$ be A-monotone. Then the resolvent operator $J_{A,M}^{\rho}: H \to H$ is $(1/(r - \rho m))$ -Lipschitz continuous for $0 < \rho < r/m$.

Example 4 [2, Lemma 7.11]. Let $A : X \to X^*$ be (*m*)-*strongly* monotone and $f : X \to R$ be locally Lipschitz such that ∂f is (α)-*relaxed* monotone. Then ∂f is *A*-*monotone*, that is, $A + \partial f$ is maximal monotone for $m - \alpha > 0$, where $m, \alpha > 0$.

Example 5 [4, Theorem 4.1]. Let $A : X \to X^*$ be (*m*)-*strongly* monotone and let $B : X \to X^*$ be (*c*)-*strongly* Lipschitz continuous. Let $f : X \to R$ be locally Lipschitz such that ∂f is (*α*)-*relaxed* monotone. Then ∂f is (*A* – *B*)-*monotone*.

Let H_1 and H_2 be two real Hilbert spaces and K_1 and K_2 , respectively, be nonempty closed convex subsets of H_1 and H_2 . Let $A : H_1 \to H_1$, $B : H_2 \to H_2$, $M : H_1 \to 2^{H_1}$, and $N : H_2 \to 2^{H_2}$ be nonlinear mappings. Let $S : H_1 \times H_2 \to H_1$ and $T : H_1 \times H_2 \to H_2$ be any two multivalued mappings. Then the problem of finding $(a, b) \in H_1 \times H_2$ such that

$$0 \in S(a,b) + M(a), \qquad 0 \in T(a,b) + N(b)$$
 (1)

is called the system of nonlinear variational inclusion (SNVI) problems.

When $M(x) = \partial_{K_1}(x)$ and $N(y) = \partial_{K_2}(y)$ for all $x \in K_1$ and $y \in K_2$, where K_1 and K_2 , respectively, are nonempty closed convex subsets of H_1 and H_2 , and ∂_{K_1} and ∂_{K_2} denote indicator functions of K_1 and K_2 , respectively, the SNVI (1) reduces to determine an element $(a, b) \in K_1 \times K_2$ such that

$$\langle S(a,b), x-a \rangle \ge 0 \quad \forall x \in K_1,$$
 (2)

$$\langle T(a,b), y-b \rangle \ge 0 \quad \forall y \in K_2.$$
 (3)

LEMMA 6. Let H_1 and H_2 be two real Hilbert spaces. Let $A : H_1 \to H_1$ and $B : H_2 \to H_2$ be strictly monotone, let $M : H_1 \to 2^{H_1}$ be A-monotone, and let $N : H_2 \to 2^{H_2}$ be B-monotone. Let $S : H_1 \times H_2 \to H_1$ and $T : H_1 \times H_2 \to H_2$ be any two multivalued mappings. Then a given element $(a,b) \in H_1 \times H_2$ is a solution to the SNVI (1) problem if and only if (a,b)satisfies

$$a = J^{\rho}_{A,M}(A(a) - \rho S(a,b)), \qquad b = J^{\eta}_{B,N}(B(b) - \eta T(a,b)).$$
(4)

THEOREM 7. Let H_1 and H_2 be two real Hilbert spaces. Let $A : H_1 \to H_1$ be (r_1) -strongly monotone and (α_1) -Lipschitz continuous, and let $B : H_2 \to H_2$ be (r_2) -strongly monotone and (α_2) -Lipschitz continuous. Let $M : H_1 \to 2^{H_1}$ be A-monotone and let $N : H_2 \to 2^{H_2}$ be B-monotone. Let $S : H_1 \times H_2 \to H_1$ be such that $S(\cdot, y)$ is (y, r)-relaxed cocoercive and (μ) -Lipschitz continuous in the first variable and $S(x, \cdot)$ is (ν) -Lipschitz continuous in the second variable for all $(x, y) \in H_1 \times H_2$. Let $T : H_1 \times H_2 \to H_2$ be such that $T(u, \cdot)$ is (λ, s) -relaxed cocoercive and (β) -Lipschitz continuous in the second variable and $T(\cdot, v)$ is (τ) -Lipschitz continuous in the first variable for all $(u, v) \in H_1 \times H_2$. If, in addition, there exist positive constants ρ and η such that

$$\sqrt{\alpha_1 - 2\rho r + 2\rho \gamma \mu^2 + \rho^2 \mu^2} + \eta \tau < r_1,$$

$$\sqrt{\alpha_2 - 2\eta s + 2\eta \lambda \beta^2 + \eta^2 \beta^2} + \rho \nu < r_2,$$
(5)

then the SNVI (1) problem has a unique solution.

References

- [1] Y. P. Fang and N. J. Huang, *H-monotone operators and system of variational inclusions*, Comm. Appl. Nonlinear Anal. **11** (2004), no. 1, 93–101.
- [2] Z. Naniewicz and P. D. Panagiotopoulos, *Mathematical Theory of Hemivariational Inequalities and Applications*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 188, Marcel Dekker, New York, 1995.
- [3] P. D. Panagiotopoulos, *Hemivariational Inequalities. Applications in Mechanics and Engineering*, Springer-Verlag, Berlin, 1993.
- [4] R. U. Verma, Nonlinear variational and constrained hemivariational inequalities involving relaxed operators, ZAMM Z. Angew. Math. Mech. 77 (1997), no. 5, 387–391.

Ram U. Verma: International Publications, 5066 Jamieson Drive, Suite B-9, Toledo, OH 43613, USA

E-mail address: rverma@internationalpubls.com