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Vacation time queues with Markovian arrival process (MAP) are mainly useful in mod-
eling and performance analysis of telecommunication networks based on asynchronous
transfer mode (ATM) environment. This paper analyzes a single-server finite capacity
queue wherein service is performed in batches of maximum size “b” with a minimum
threshold “a” and arrivals are governed by MAP. The server takes a single vacation when
he finds less than “a” customers after service completion. The distributions of buffer con-
tents at various epochs (service completion, vacation termination, departure, arbitrary
and pre-arrival) have been obtained. Finally, some performance measures such as loss
probability and average queue length are discussed. Numerical results are also presented
in some cases.

1. Introduction

Queueing systems with single and multiple vacation(s) have wide applications in many
areas including computer communications and manufacturing systems. An excellent sur-
vey on this topic can be found in [5]. In this connection, see also the books by Takagi
[20, 21, 22] and the references therein. Most of the studies on such queues have been car-
ried out in the past by assuming Poisson input and considering infinite capacity. However,
in recent years, there has been a growing interest to analyze queues with Markovian ar-
rival process (MAP) as input process which is a very good representation of the bursty and
correlated traffic arising in telecommunication networks based on asynchronous transfer
mode (ATM), and is a rich class of point processes containing many familiar arrival pro-
cesses such as Poisson process, PH-renewal process, Markov-modulated Poisson process
(MMPP), and so forth. For more details on these point processes and their importance in
stochastic modeling, see Neuts [16, 17]. The MAP/G/1 queue with vacation(s) has been
analyzed by several authors; see, for example, Lucantoni et al. [12], Kasahara et al. [9],
and Lee et al. [11]. Few authors, such as Matendo [14, 15], Ferrandiz [6], Schellhaas [19],
and so forth, have studied queueing systems with vacation(s) assuming input as a batch
Markovian arrival process (BMAP).

Copyright © 2004 Hindawi Publishing Corporation
Journal of Applied Mathematics and Stochastic Analysis 2004:4 (2004) 337–357
2000 Mathematics Subject Classification: 60K25, 90B22
URL: http://dx.doi.org/10.1155/S1048953304403025

http://dx.doi.org/10.1155/S1048953304403025


338 Bulk service queue with single vacation

Finite-buffer queues are more realistic in real-life situations and the need to analyze
such queues has been stressed upon from time to time by practitioners of queueing the-
ory. For example, in telecommunication networks, messages/packets are stored in the
system if a server is busy. In such situations, one of the main concerns of the system de-
signer is the estimation of blocking probability which, in general, is kept small to avoid
loss of packets. Blondia [1] analyzed the MAP/G/1/N queue with multiple vacations and
obtained the queue length distributions at departure epochs and arbitrary and pre-arrival
epochs. He discussed two types of vacation models: (i) exhaustive service discipline and
(ii) limited service discipline. Further, he obtained the Laplace-Stieltjes transform (LST)
of virtual and actual waiting time distributions. A more general MAP/G/1/N queue with
single (multiple) vacation(s) along with setup and close-down times has been discussed
by Niu and Takahashi [18] using supplementary variable technique whereby they ob-
tained queue length distributions at arbitrary epochs and the LST of virtual and actual
waiting time distributions.

Most queueing models assume that customers are served singly. But this assumption
is far from the truth when we consider those numerous real-world situations in which
customers are served in batches. In such queues, customers are served by a single server
(multiple servers) in batches of maximum size “b” with a minimum threshold value “a.”
Such type of service rule is referred to as general bulk service (GBS) rule. The bulk service
queues have potential applications in many areas, for example, in loading and unload-
ing of cargoes at a seaport, in traffic signal systems, and in computer networks, jobs are
processed in batches with a limit on the number of jobs taken at a time for processing.
However, there are many instances where, after the completion of the service of a batch,
if the server finds less than “a” customers in the queue, he leaves for a vacation. This
time may be utilized by the server to carry out some additional work. On return from
a vacation, if he finds “a” or more customers waiting, he takes them for service. Other-
wise, he may remain idle (dormant) and continue to do so until the queue length reaches
“a.” In queueing literature, such types of queues are known as bulk service queues with
single vacation. Bulk service queues are, generally speaking, hard to analyze. Often the
finite capacities in the bulk service queues increase the complexities of the solution and
it becomes more complex if vacation(s) is taken into consideration. The MAP/G/1 bulk
service finite capacity queue has been discussed by Chakravarthy [2] and Gupta and Vi-
jaya Laxmi [8]. It may be mentioned here that analysis of the M/G(a,b)/1/N queue with
single vacation has been recently carried out by Gupta and Sikdar [7].

In this paper, we consider the MAP/G(a,b)/1/N queue with single vacation. The ana-
lytic analysis of this queue is carried out and the distributions of the number of customers
in the queue at service completion, vacation termination, and departure epochs have
been obtained using the imbedded Markov chain technique. The supplementary variable
(with remaining service time of a batch in service and remaining vacation time of the
server as supplementary variables) method is used to develop the relations between the
queue length distributions when the server is busy or on vacation at arbitrary and service
completion/vacation termination epochs. These relations can also be obtained using
other methods, such as renewal theory; see, for example, [1]. The advantage of using
the supplementary variable method over other methods is that one can obtain several
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other results as a by-product by using simple algebraic manipulation of transform equa-
tions. One such result is the mean length of the idle period which has been discussed
in the appendix. Moreover, one can derive relations among the queue length distribu-
tions at various epochs in a simple, elegant, and straightforward manner without involv-
ing any integration. For more advantages of the supplementary variable technique, see,
[18, page 2] and [4, page 87].

The rest of the paper is organized as follows. Section 2 gives a brief review of MAP.
Afterwards, in Sections 3 and 4, we discuss the model, develop the steady-state matrix
differential equations, and obtain the queue distributions at various epochs. Some useful
performance measures and computational procedures are presented in Sections 5 and 6,
respectively. We end this paper by presenting some numerical results.

2. Markovian arrival process

The MAP is a generalization of the Poisson process where the arrivals are governed by
an underlying m-state Markov chain. Let ci j , i �= j, 1 ≤ i, j ≤m, be the state transition
rate from state i to state j in the underlying Markov chain without an arrival, and let di j ,
1 ≤ i, j ≤m, be the state transition rate from state i to state j in the underlying Markov
chain with an arrival. The matrix C= [ci j] has nonnegative off-diagonal and negative di-
agonal elements, and the matrix D= [di j] has nonnegative elements. Let A(t) denote the
number of customers arriving in (0, t] and let J(t) be the state of the underlying Markov
chain at time t with state space {i : 1 ≤ i ≤m}. Then {A(t), J(t)} is a two-dimensional
Markov process with state space {(n, i) : n≥ 0, 1≤ i≤m}. The infinitesimal generator of
the above Markov process is given by

Q=




C D 0 0 ···
0 C D 0 ···
0 0 C D ···
...

...
...

...
. . .


 . (2.1)

Then {A(t), J(t)} is called the MAP. Since Q is the infinitesimal generator of the MAP,
we have

(C + D)e= 0, (2.2)

where e is anm× 1 vector with all its elements equal to 1. Since (C + D) is the infinitesimal
generator of the underlying Markov chain {J(t)}, there exists a stationary probability
vector π such that

π(C + D)= 0, πe= 1. (2.3)

The fundamental arrival rate of the above Markov process is given by λ∗ = πDe.
Further, we define {P(n, t), n≥ 0, t ≥ 0} as an m×m matrix whose (i, j)th element is

the conditional probability defined as

Pi, j(n, t)= Pr
{
A(t)= n, J(t)= j | A(0)= 0, J(0)= i

}
. (2.4)
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These matrices satisfy the following system of difference-differential equations:

d

dt
P(0, t)= P(0, t)C,

d

dt
P(n, t)= P(n, t)C + P(n− 1, t)D, n≥ 1,

(2.5)

with P(0,0)= I. The matrix-generating function P∗(z, t), defined by

P∗(z, t)=
∞∑
n=0

P(n, t)zn, |z| ≤ 1, (2.6)

satisfies

d

dt
P∗(z, t)= P∗(z, t)(C + zD),

P∗(z,0)= I.
(2.7)

Solving the above matrix-differential equation, we get

P∗(z, t)= e(C+zD)t, |z| ≤ 1, t ≥ 0. (2.8)

In the following section, we discuss the model and develop associated equations.

3. Modeling, analysis, and basic results

We consider a single-server queue, where the input process is the MAP characterized by
the m×m matrices C and D. The customers are served by a single server in batches of
maximum size “b” with a minimum threshold value “a.” Let S(x), {s(x)}, [S∗(θ)] be the
distribution function (DF), probability density function (pdf), the LST of the service time
S of a typical batch. When the server finishes serving a batch and finds less than “a” cus-
tomers in the queue, the server leaves for a vacation of random length V . On return from
a vacation, if he finds “a” or more customers waiting, he takes maximum “b” customers
for service. Otherwise, he remains idle (dormant) until the queue length reaches “a.” The
system has finite buffer (queue) capacity of size N (≥ b), that is, the maximum number
of customers allowed in the system at any time is (N + b). Let V(x), {v(x)}, [V∗(θ)] be
the DF, pdf, the LST of a typical vacation time V . The mean service [vacation] time is
θs =−S∗(1)(0) [θv =−V∗(1)(0)], where f ∗( j)(d) is the jth ( j ≥ 1) derivative of f ∗(φ) at
φ = d. The traffic intensity is given by ρ = λ∗θs/b. Further, let ρ′ be the probability that
the server is busy. It may be noted that in the case of finite buffer queues, ρ and ρ′ are dif-
ferent. For the sake of convenience, we denote the model by MAP/G(a,b)/1/N/SV , where
SV stands for “single vacation.” The state of the system at time t is described by random
variables, namely,

(i) ξ(t)= 2, 1, or 0 if the server is busy , on vacation, or in dormancy,
(ii) Nq(t)= number of customers present in the queue not counting those in service,

(iii) J(t)= state of the underlying Markov chain of the MAP,
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(iv) S(t)= remaining service time of the batch in service,
(v) V(t)= remaining vacation time of the server who is on vacation.

We define, for 1≤ i≤m,

πi(n,x; t)∆x = Pr
{
Nq(t)= n, J(t)= i, x < S(t)≤ x+∆x, ξ(t)= 2

}
, 0≤ n≤N , x ≥ 0,

ωi(n,x; t)∆x = Pr
{
Nq(t)= n, J(t)= i, x < V(t)≤ x+∆x, ξ(t)= 1

}
, 0≤ n≤N , x ≥ 0,

νi(n; t)= Pr
{
Nq(t)= n, J(t)= i, ξ(t)= 0

}
, 0≤ n≤ a− 1.

(3.1)

In the limiting case, that is, when t → ∞, the above probabilities will be denoted by
πi(n,x), ωi(n,x), and νi(n), respectively. We further define the row vectors

π(n,x)= [
π1(n,x),π2(n,x), . . . ,πm(n,x)

]
, 0≤ n≤N ,

ω(n,x)= [
ω1(n,x),ω2(n,x), . . . ,ωm(n,x)

]
, 0≤ n≤N ,

ν(n)= [
ν1(n),ν2(n), . . . ,νm(n)

]
, 0≤ n≤ a− 1.

(3.2)

Relating the states of the system at two consecutive time epochs t and t +∆t and using
probabilistic arguments, we obtain a set of partial differential equations for 1 ≤ i ≤m.
Assuming that steady state exists and using matrices and vectors, those equations can be
written as

0= ν(0)C +ω(0,0), (3.3)

0= ν(n)C + ν(n− 1)D +ω(n,0), 1≤ n≤ a− 1, (3.4)

− d

dx
π(0,x)= π(0,x)C + s(x)

b∑
n=a

(
π(n,0) +ω(n,0)

)
+ s(x)ν(a− 1)D, (3.5)

− d

dx
π(n,x)= π(n,x)C +π(n− 1,x)D + s(x)

(
π(n+ b,0) +ω(n+ b,0)

)
, 1≤ n≤N − b,

(3.6)

− d

dx
π(n,x)= π(n,x)C +π(n− 1,x)D, N − b+ 1≤ n≤N − 1, (3.7)

− d

dx
π(N ,x)= π(N − 1,x)D +π(N ,x)(C + D), (3.8)

− d

dx
ω(0,x)= ω(0,x)C + v(x)π(0,0), (3.9)

− d

dx
ω(n,x)= ω(n,x)C +ω(n− 1,x)D + v(x)π(n,0), 1≤ n≤ a− 1, (3.10)

− d

dx
ω(n,x)= ω(n,x)C +ω(n− 1,x)D, a≤ n≤N − 1, (3.11)

− d

dx
ω(N ,x)= ω(N − 1,x)D +ω(N ,x)(C + D). (3.12)
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We define the Laplace transforms of π(n,x) and ω(n,x) as

π∗(n,s)=
∫∞

0
e−sxπ(n,x)dx, ω∗(n,s)=

∫∞
0
e−sxω(n,x)dx, 0≤ n≤N , Res≥ 0,

(3.13)

so that

π(n)≡ π∗(n,0)=
∫∞

0
π(n,x)dx, ω(n)≡ ω∗(n,0)=

∫∞
0
ω(n,x)dx, 0≤ n≤N ,

(3.14)

where π(n) (ω(n)), 0≤ n≤N , is the 1×m vector whose ith component is πi(n) (ωi(n))
and it denotes the joint probability that there are n customers in the queue and the state
of the arrival process is i (1 ≤ i ≤m) when the server is busy (on vacation) at arbitrary
time.

Multiplying equations (3.5)–(3.12) by e−sx and integrating with respect to x over 0 to
∞, we have

−sπ∗(0,s)+π(0,0)=π∗(0,s)C+S∗(s)
b∑

n=a

(
π(n,0)+ω(n,0)

)
+S∗(s)ν(a− 1)D, (3.15)

−sπ∗(n,s) +π(n,0)= π∗(n,s)C +π∗(n− 1,s)D

+ S∗(s)
(
π(n+ b,0) +ω(n+ b,0)

)
, 1≤ n≤N − b,

(3.16)

−sπ∗(n,s) +π(n,0)= π∗(n,s)C +π∗(n− 1,s)D, N − b+ 1≤ n≤N − 1, (3.17)

−sπ∗(N ,s) +π(N ,0)= π∗(N − 1,s)D +π∗(N ,s)(C + D), (3.18)

−sω∗(0,s) +ω(0,0)= ω∗(0,s)C +V∗(s)π(0,0), (3.19)

−sω∗(n,s) +ω(n,0)= ω∗(n,s)C +ω∗(n− 1,s)D

+V∗(s)π(n,0), 1≤ n≤ a− 1,
(3.20)

−sω∗(n,s) +ω(n,0)= ω∗(n,s)C +ω∗(n− 1,s)D, a≤ n≤N − 1, (3.21)

−sω∗(N ,s) +ω(N ,0)= ω∗(N − 1,s)D +ω∗(N ,s)(C + D). (3.22)

Now, using equations (3.3)-(3.4) and (3.15)–(3.22), we will first derive certain results in
the form of lemmas and theorems.

Lemma 3.1.

−ν(n)Ce=
n∑
j=0

ω( j,0)e, 0≤ n≤ a− 1. (3.23)

It may be noted here that the left-hand side represents the number of escapes from the dor-
mancy state n per unit time, while the right-hand side represents the number of entrances
into the dormancy state n per unit time.
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Proof. Setting n= 1 in (3.4), postmultiplying it by e, and using (C + D)e= 0 and ν(0)Ce +
ω(0,0)e= 0 (from (3.3)), we get ν(1)Ce +

∑1
j=0ω( j,0)e= 0. Recursively, for n= 2,3, . . . ,

a− 1, from (3.4) after simplification, we get the result of Lemma 3.1. �

Lemma 3.2.

a−1∑
n=0

π(n,0)e=
N∑
n=0

ω(n,0)e. (3.24)

The left-hand side represents the entering rate to vacation state, while the right-hand side
represents the departure rate from the vacation state.

Proof. Setting s= 0 in (3.15), (3.16), (3.17), and (3.18) and using (3.14), we get

π(0,0)= π(0)C +
b∑

n=a

(
π(n,0) +ω(n,0)

)
+ ν(a− 1)D, (3.25)

π(n,0)= π(n)C +π(n− 1)D +π(n+ b,0) +ω(n+ b,0), 1≤ n≤N − b, (3.26)

π(n,0)= π(n)C +π(n− 1)D, N − b+ 1≤ n≤N − 1, (3.27)

π(N ,0)= π(N − 1)D +π(N)(C + D). (3.28)

Postmultiplying (3.25), (3.26), (3.27), and (3.28) by e, adding over all possible values
of n, and using Lemma 3.1 and (C + D)e= 0, after simplification, we obtain the result of
Lemma 3.2. �

Theorem 3.3.

θs

N∑
n=0

π(n,0)e + θv

N∑
n=0

ω(n,0)e +
a−1∑
n=0

ν(n)e= 1. (3.29)

It may be noted here that the first term of the left-hand side represents the probability that
the server is busy. The sum of the second and third terms is the probability that the server
is idle. That is, θs

∑N
n=0π(n,0)e =∑N

n=0π(n)e = ρ′ and θv
∑N

n=0ω(n,0)e +
∑a−1

n=0 ν(n)e =∑N
n=0ω(n)e +

∑a−1
n=0 ν(n)e= 1− ρ′ (for proof, see the appendix). The expression of ρ′ is given

in Lemma 3.4.

Proof. Postmultiplying (3.15)–(3.22) by e, adding over all possible values of n, and using
Lemma 3.1 and (C + D)e= 0, we obtain

N∑
n=0

(
π∗(n,s) +ω∗(n,s)

)
e

= 1− S∗(s)
s

N∑
n=0

(
π(n,0) +ω(n,0)

)
e +

S∗(s)−V∗(s)
s

a−1∑
n=0

π(n,0)e.

(3.30)
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Taking the limit as s→ 0 in (3.30) and using the normalization condition
∑N

n=0(π(n) +
ω(n))e +

∑a−1
n=0 ν(n)e = 1 and Lemma 3.2, after simplification, we get the desired result.

�

Lemma 3.4. The probability that the server is busy is given by

ρ′ = θs
θs + θvK1 +K2

, (3.31)

where K1 =
∑a−1

n=0 p+(n)e, K2 =
∑a−1

n=0

∑n
j=0

∑ j
k=0 p+( j − k)V(k)D

n− j
(−C)−1e, and p+(n),

0≤ n≤N , is the 1×m vector whose ith component is p+
i (n) and it denotes the joint proba-

bility that there are n customers in the queue and the state of the arrival process is i (1≤ i≤
m) immediately after departure of a batch. Note that the (i, j)th element of D= (−C)−1D
is the conditional probability that, given that it was in state i at the arrival time of the last
customer, the MAP is in state j at the time of a customer’s arrival. Therefore, the factor D

n

represents the state transition matrix during the interarrival time of n customers; see Niu
and Takahashi [18, page 8].

Proof. Let Θb (resp., Θi/Θd) be the random variable denoting the length of a busy
(resp., idle/dormant) period and let θb (resp., θi/θd) be the mean length of a busy
(resp., idle/dormant) period; then we have

ρ′ = θb
θb + θi

. (3.32)

Following the argument given in [3, page 334], one can easily show that θb = θs/K1. Fur-
ther, θi = θv +K2/K1 (for proof, see the appendix); substituting these in (3.32), after sim-
plification, we get the result of Lemma 3.4. �

One may note here that in single vacation, the idle period may consist of vacation (V)
and dormant (Θd) periods, that is, Θi =V +Θd and θi = θv + θd.

4. Queue length distributions at various epochs

4.1. Queue length distributions at service completion, vacation termination, and de-
parture epochs. Let π+(n) (resp., ω+(n)) (0 ≤ n ≤ N) denote the row vector whose ith
element represents the probability that there are n customers in the queue and the state
of the arrival process is i (1≤ i≤m) at the service completion (resp., vacation termina-
tion) epoch. As

∑N
n=0(π+(n) +ω+(n))e= 1, it can be easily seen that π+(n) (ω+(n)) and

π(n,0) (ω(n,0)) are connected by the relations

π+(n)= 1
σ
π(n,0), ω+(n)= 1

σ
ω(n,0), 0≤ n≤N , (4.1)

where σ =∑N
n=0(π(n,0) +ω(n,0))e. The expression of σ in terms of ρ′ is given in Lemma

4.2. In the following lemma, we will first obtain the value of
∑N

n=0ω(n,0)e as it is needed
to get σ .



U. C. Gupta and K. Sikdar 345

Lemma 4.1.

N∑
n=0

ω(n,0)e= (1− ρ′)K1

θvK1 +K2
. (4.2)

Proof.

P (server is in dormancy)= P (server is idle)P (server is in dormancy/server is idle)

= (1− ρ′)
[
θd
θi

]

= (1− ρ′)
K2

θvK1 +K2
.

(4.3)

Again, we have

P (server is in dormancy)=
a−1∑
n=0

ν(n)e. (4.4)

Comparing (4.3) and (4.4) and using θv
∑N

n=0ω(n,0)e +
∑a−1

n=0 ν(n)e = 1− ρ′ (Theorem
3.3), after simplification, we get the result of Lemma 4.1. �

Lemma 4.2.

σ = ρ′
(
θvK1 +K2

)
+ θs(1− ρ′)K1

θs
(
θvK1 +K2

) . (4.5)

Proof. As
∑N

n=0π(n,0)e = ρ′/θs (from Theorem 3.3) and
∑N

n=0ω(n,0)e is known from
Lemma 4.1, using them in σ =∑N

n=0(π(n,0) +ω(n,0))e, after simplification, we obtain
the result. �

It can be seen from (4.1) that to get π+(n) and ω+(n), we need to find out π(n,0) and
ω(n,0). As π(n,0) and ω(n,0) are cumbersome to evaluate directly from (3.15)–(3.22),
we obtain them using imbedded Markov chain technique. However, we will make use
of (4.1) to derive relations between the distributions of the number of customers in the
queue at service completion (vacation termination) and arbitrary epochs; see Section 4.2.

To obtain π+(n) and ω+(n) using imbedded Markov chain technique, we first set up
some necessary notation and establish some preliminary results.

Lemma 4.3.

∫∞
0

P(n, t)Ddt =D
n+1

, n≥ 0. (4.6)

Proof. The proof follows from (2.8). �
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Next, consider A(n,x), V(n,x), and B(n,k,x), x ≥ 0, as the m×m matrices of mass
functions defined by

A(n,x)=
∫ x

0
P(n, t)dS(t), 0≤ n≤N − 1,

A′(n,x)=
∞∑
k=n

A(k,x), b ≤ n≤N ,

V(n,x)=
∫ x

0
P(n, t)dV(t), 0≤ n≤N − 1,

V′(n,x)=
∞∑
k=n

V(k,x), N − a+ 1≤ n≤N ,

B(n,k,x)=
∫ x

0
P(a− 1−n,x−u)DA(k,u)du, 0≤ n≤ a− 1, 0≤ k ≤N − 1,

B′(n,N ,x)=
∞∑

k=N
B(n,k,x), 0≤ n≤ a− 1,

(4.7)

whose (i, j)th elements are given by

(1) ai j(n,x)= P{given a departure at time 0, which left at least “a” customers in the
queue and the arrival process in phase i, the next departure occurs no later than
time x with the arrival process in phase j, and during that service, there were n
(0≤ n≤N − 1) arrivals},

(2) vi j(n,x)= P{given a departure at time 0, which left n (0≤ n≤ a− 1) customers
in the queue, vacation begins and also the arrival process in phase i; the end of
the vacation occurs no later than time x with the arrival process in phase j, and
during that vacation, there were n (0≤ n≤N − 1) arrivals},

(3) bi j(n,k,x)= P{given that the dormant period begins at time 0, there were n (0≤
n ≤ a− 1) customers in the queue and the arrival process in phase i; during the
dormant period, say x− u (0 ≤ u ≤ x, where x is the total time of dormant and
service periods), there are a− 1−n (0≤ n≤ a− 1) arrivals and service occurs no
later than time u (0≤ u≤ x) with the arrival process in phase j, and during that
service period, there were k (0≤ k ≤N − 1) arrivals}.

Further, we define

A(n)= A(n,∞), 0≤ n≤N − 1,

A′(n)= A′(n,∞)=
∞∑
k=n

A(k), b ≤ n≤N ,
(4.8)

V(n)=V(n,∞), 0≤ n≤N − 1,

V′(n)=V′(n,∞)=
∞∑
k=n

V(k), N − a+ 1≤ n≤N ,
(4.9)

B(n,k)= B(n,k,∞)=D
a−n

A(k), 0≤ n≤ a− 1, 0≤ k ≤N − 1, (4.10)

B′(n,N)= B′(n,N ,∞)=D
a−n

A′(N), 0≤ n≤ a− 1. (4.11)
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The results in (4.10) and (4.11) can be easily obtained using the expression of B(n,k,x),
B′(n,N ,x) and Lemma 4.3.

Now, observing two consecutive service completion and vacation termination epochs,
using probabilistic arguments, and further using matrices and vectors notations, we get
the following equations:

π+(0)=
a−1∑
k=0

ω+(k)B(k,0) +
b∑

k=a

(
π+(k) +ω+(k)

)
A(0), (4.12)

π+(n)=
a−1∑
k=0

ω+(k)B(k,n) +
b∑

k=a

(
π+(k) +ω+(k)

)
A(n)

+
n∑

k=1

(
π+(b+ k) +ω+(b+ k)

)
A(n− k), 1≤ n≤N − b,

(4.13)

π+(n)=
a−1∑
k=0

ω+(k)B(k,n) +
b∑

k=a

(
π+(k) +ω+(k)

)
A(n)

+
N−(b+1)∑

k=0

(
π+(N − k) +ω+(N − k)

)
A
(
n− (N − b) + k

)
, N − b+ 1≤n≤N − 1,

(4.14)

π+(N)=
a−1∑
k=0

ω+(k)B′(k,N) +
b∑

k=a

(
π+(k) +ω+(k)

)
A′(N)

+
N−(b+1)∑

k=0

(
π+(N − k) +ω+(N − k)

)
A′(b+ k),

(4.15)

and

ω+(n)=
n∑

k=0

π+(n− k)V(k), 0≤ n≤ a− 1, (4.16)

ω+(n)=
a∑

k=1

π+(a− k)V(n− a+ k), a≤ n≤N − 1, (4.17)

ω+(N)=
a−1∑
k=0

π+(k)V′(N − k), (4.18)

where
∑N

n=0(π+(n) +ω+(n))e= 1 is the normalization condition. Our aim is to find π+(n)
and ω+(n) (0≤ n≤N), so that we can get π(n) and ω(n) (0≤ n≤N), using the relations
to be developed in Section 4.2.

As evaluation of π+(n) (0 ≤ n ≤ N) is dependent on ω+(n) (0 ≤ n ≤ N), therefore
we first need to evaluate ω+(n) (0 ≤ n ≤ N) using (4.16), (4.17), and (4.18). It is fur-
ther seen that to get ω+(n) (0 ≤ n ≤ N) from (4.16), (4.17), and (4.18), we need to find
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π+(n) (0 ≤ n ≤ a− 1). Finally, it may be noted here that getting π+(n) (0≤ n≤ a− 1)
from (4.12)-(4.13) is difficult, if not impossible, as it involves

∑b
n=aπ+(n) and other terms.

This problem is resolved in the following lemma.

Lemma 4.4. Let p+(n) (0≤ n≤N) be the 1×m vector whose ith component is p+
i (n) and

which denotes the joint probability that there are n customers in the queue and the state of the
arrival process is in phase i (1≤ i≤m) immediately after departure of a batch. The relation
between p+(n) and π+(n) (0≤ n≤N) is given by

p+(n)= σθs
ρ′

π+(n), 0≤ n≤N. (4.19)

Proof. As p+(n) and π+(n) differ by a constant term and
∑N

n=0 p+(n)e= 1, we get

p+(n)= π+(n)∑N
n=0π+(n)e

, 0≤ n≤N. (4.20)

As
∑N

n=0π(n,0)e= ρ′/θs (Theorem 3.3), dividing both sides by σ , we get

N∑
n=0

π+(n)e= ρ′

σθs
. (4.21)

Using (4.21) in (4.20), we obtain the result of Lemma 4.4. �

Now we will make use of (4.20) and π+(n)= p+(n)
∑N

n=0π
+(n)e to get π+(n) (0≤ n≤

N). From (4.21), it is seen that
∑N

n=0π
+(n)e can be obtained if ρ′ is known. Further, to get

ρ′ from (3.31), we need to know p+(n) (0 ≤ n ≤ a− 1). It is further seen that even after
getting

∑N
n=0π

+(n)e, π+(n) (0≤ n≤N) can be obtained if p+(n) (0≤ n≤N) is known.
The unknown quantities p+(n) (0≤ n≤N) can be obtained using the imbedded Markov
chain approach which is discussed below.

Now, let R(n,k,x) be the matrix whose element ri, j(n,k,x) is the conditional probabil-
ity that, given a departure at time 0, leaves the system with n customers (0 ≤ n ≤ a− 1)
and the arrival process in phase i; the next departure occurs no later than time x with
the arrival process in phase j and there were k (0≤ k ≤N − 1) arrivals during the service
time of that departure. We denote

R(n,k)= R(n,k,∞), 0≤ n≤ a− 1, 0≤ k ≤N − 1,

R′(n,N)=
∞∑

r=N
R(n,r), 0≤ n≤ a− 1.

(4.22)
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Then, considering all the possible cases, it can be easily seen that

R(n,k)=




a−1−n∑
i=0

V(i)B(n+ i,k) +
b−n∑
i=a−n

V(i)A(k), 0≤ n≤ a− 1, k = 0,

a−1−n∑
i=0

V(i)B(n+ i,k) +
b−n∑
i=a−n

V(i)A(k)

+
N−1∑

l=b−n+1

V(l)A(k− l+ b−n)

+V′(N)A(k−N + b−n), 0≤ n≤ a− 1, 1≤ k ≤N − 1,

k− l+ b−n≥ 0, k−N + b−n≥ 0,

R′(n,N)=
a−1−n∑
i=0

V(i)B′(n+ i,N) +
b−n∑
i=a−n

V(i)A′(N) +
N−1∑

l=b−n+1

V(l)A′(N − l+ b−n)

+ V′(N)A′(b−n), 0≤ n≤ a− 1, N − l+ b−n≥ 0, b−n≥ 0.
(4.23)

LetN+
n and J+

n denote, respectively, the number of customers in the queue and the phase of
the arrival process immediately after the nth departure. Then {(N+

n , J+
n ) : n≥ 0} is a bivari-

ate imbedded Markov chain with the state space {0,1,2, . . . ,N}× {1,2, . . . ,m}. Now, ob-
serving the system immediately after departures, the transition probability matrix (TPM)
is given by

�=




R(0,0) R(0,1) ··· R(0,N − b) ··· R(0,N − 1) R′(0,N)
R(1,0) R(1,1) ··· R(1,N − b) ··· R(1,N − 1) R′(1,N)

...
...

...
...

...
R(a− 1,0) R(a− 1,1) ··· R(a− 1,N − b) ··· R(a− 1,N − 1) R′(a− 1,N)

A(0) A(1) ··· A(N − b) ··· A(N − 1) A′(N)
...

...
...

...
...

A(0) A(1) ··· A(N − b) ··· A(N − 1) A′(N)
0 A(0) ··· A(N − b− 1) ··· A(N − 2) A′(N − 1)
...

...
...

...
...

0 0 ··· A(0) ··· A(b− 1) A′(b)




.

(4.24)

The unknown quantities p+(n) (0 ≤ n ≤ N) can be obtained by solving the system of
equations p+ = p+� with p+e=1, where p+=[p+(0),p+(1), . . . ,p+(N)] of order (N + 1)m.
Here, one may note that we have solved this system of equations using the Grassmann-
Taksar-Heyman (GTH) algorithm given in [10]. Once p+(n) (0 ≤ n ≤ N) are known,
π+(n) andω+(n) (0≤ n≤N) can be obtained using (4.19) and (4.16)–(4.18), respectively.
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4.2. Queue length distributions at arbitrary epoch. To obtain queue length distribu-
tions at arbitrary epoch, we will develop relations between distributions of the number
of customers in the queue at service completion (vacation termination) and arbitrary
epochs.

Lemma 4.5. The relation between ν(n) (0≤ n≤ a− 1) and ω+(n) (0≤ n≤ a− 1) is given
by

ν(n)= σ
n∑
j=0

ω+( j)D
n− j

(−C)−1, 0≤ n≤ a− 1. (4.25)

Proof. Multiplying (3.3) by 1/σ and using (4.1), after simplification, we get ν(0) =
σω+(0)(−C)−1.

Setting n= 1 in (3.4), multiplying it by 1/σ , and using (4.1) and ν(0)= σω+(0)(−C)−1,

we get ν(1)= σ
∑1

j=0ω
+( j)D

1− j
(−C)−1.

Proceeding in this way in general, we get the result of Lemma 4.5. �

Lemma 4.6. The relation betweenω(n) (0≤ n≤N − 1),ω+(n) (0≤ n≤N − 1), and π+(n)
(0≤ n≤ a− 1) is given by

ω(0)= σ
[
π+(0)−ω+(0)

]
(−C)−1, (4.26)

ω(n)= [
ω(n− 1)D + σ

(
π+(n)−ω+(n)

)]
(−C)−1, 1≤ n≤ a− 1, (4.27)

ω(n)= [
ω(n− 1)D− σω+(n)

]
(−C)−1, a≤ n≤N − 1. (4.28)

Proof. Setting s= 0 in (3.19), (3.20), and (3.21), we get

ω(0,0)= ω(0)C +π(0,0), (4.29)

ω(n,0)= ω(n)C +ω(n− 1)D +π(n,0), 1≤ n≤ a− 1, (4.30)

ω(n,0)= ω(n)C +ω(n− 1)D, a≤ n≤N − 1. (4.31)

Multiplying (4.29), (4.30), and (4.31) by 1/σ and using (4.1), after simplification, we get
(4.26), (4.27), and (4.28), respectively. �

Lemma 4.7. The relation between π(n) (0 ≤ n ≤ N − 1), π+(n) (0 ≤ n ≤ N), and ω+(n)
(a≤ n≤N) is given by

π(0)=
[

ν(a− 1)D + σ

( b∑
n=a

(
π+(n) +ω+(n)−π+(0)

))]
(−C)−1, (4.32)

π(n)= [
π(n− 1)D + σ

(
π+(n+ b) +ω+(n+ b)−π+(n)

)]
(−C)−1, 1≤ n≤N − b,

(4.33)

π(n)= [
π(n− 1)D− σπ+(n)

]
(−C)−1, N − b+ 1≤ n≤N − 1. (4.34)
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Proof. Multiplying (3.25), (3.26), and (3.27) by 1/σ and using (4.1), after simplification,
we get (4.32), (4.33), and (4.34), respectively. �

Lemma 4.8.

ω(N)e= (1− ρ′)

−
[N−2∑

n=0

ω(n)D + σ

( a−1∑
n=0

π+(n)−
N−1∑
n=0

ω+(n) +
a−1∑
n=0

n∑
j=0

ω+( j)D
n− j

)]
(−C)−1e,

(4.35)

π(N)e= ρ′ −
N−1∑
n=0

π(n)e. (4.36)

Proof. Postmultiplying (4.25) and (4.26), (4.27), (4.28) by e and using these in
∑N

n=0ω(n)e
+
∑a−1

n=0 ν(n)e= 1− ρ′, we get (4.35). Further, using
∑N

n=0π(n)e= ρ′, we get (4.36). �

Lemma 4.9. Let p(n) (0≤ n≤N) be the 1×m vector whose jth component pj(n) denotes
the probability that there are n customers in the queue at an arbitrary epoch and, at that
time, the arrival process is in state j. Then

p(n)= ν(n) +ω(n) +π(n), 0≤ n≤ a− 1, (4.37)

p(n)= ω(n) +π(n), a≤ n≤N − 1, (4.38)

p(N)= π −
a−1∑
n=0

ν(n)−
N−1∑
n=0

(
ω(n) +π(n)

)
. (4.39)

It may be noted here that, due to the singularity of (C + D), we cannot obtain π(N)
and ω(N) (from (3.18) and (3.22), after setting s = 0) whereas p(N) can be obtained
using the normalization condition. But if we find the row sums π(N)e and ω(N)e, then
these are enough for calculations of key performance measures; see Section 5. This has
also been pointed out by Niu and Takahashi [18, page 21].

4.3. Queue length distributions at pre-arrival epoch. Let p−(n) (0 ≤ n ≤ N) be the
1×m vector whose jth component is given by p−j (n) and which gives the steady-state
probability that an arrival finds n customers in the queue and the arrival process is in
state j. Then vector p−(n) is given by

p−(n)= p(n)D
λ∗

, 0≤ n≤N. (4.40)

As the distributions of the number of customers in the queue at arbitrary epoch are
known from (4.37), (4.38), and (4.39), one can easily evaluate the pre-arrival epoch prob-
abilities using (4.40).
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5. Performance measures

As the steady-state probabilities at service completion, vacation termination, and depar-
ture and arbitrary epochs are known, various performance measures such as the average
number of customers in the queue at any arbitrary epoch (Lq =∑N

i=0 ip(i)e), the average
number of customers in the queue when the server is busy (Lq2 =

∑N
i=0 iπ(i)e), the aver-

age number of customers in the queue when the server is on vacation (Lq1 =
∑N

i=0 iω(i)e),
and the average number of customers in the queue when the server is in dormancy
(Lq0 =

∑a−1
i=0 iν(i)e) can be easily obtained. The loss probability of a customer is given

by Ploss = p−(N)e= p(N)De/λ∗.

6. Computational procedures

In this section, we briefly discuss the necessary steps required for the computation of the
matrices A(n), V(n), B(n,k), and R(n,k). The evaluation of A(n) (V(n)), in general, for
arbitrary service (vacation) time distribution requires numerical integration and can be
carried out along the lines proposed by Neuts [16, pages 67–70] or by Lucantoni and
Ramaswami [13]. However, when the service time distribution is of phase type (PH-
distribution), these matrices can be evaluated without any numerical integration [16].
It may be noted here that PH-distribution is a rich class of distributions, and service
(vacation) time distributions arising in real-world queueing problems can be easily ap-
proximated using it. The following theorem gives a procedure for the computation of the
matrices A(n) and V(n).

Theorem 6.1. Let S(x) follow a PH-distribution with irreducible representation (β,S),
where β and S are of dimension γ1, and the matrices A(n) are given by

A(n)=M(n)
(

I⊗ S0), 0≤ n≤N − 1,

A′(n)=M′(n)
(

I⊗ S0), b ≤ n≤N ,
(6.1)

where

M(0)=−(I⊗β)[C⊗ I + I⊗ S]−1,

M(n)=−M(n− 1)(D⊗ I)[C⊗ I + I⊗ S]−1, 1≤ n≤N − 1,

M′(n)=−M(n− 1)(D⊗ I)
[
(C + D)⊗ I + I⊗ S

]−1
, b ≤ n≤N ,

(6.2)

and the symbol ⊗ denotes the Kronecker product of two matrices.
Similarly, let V(x) follow a PH-distribution with irreducible representation (α,T), where

α and T are of dimension γ2, and the matrices V(n) are given by

V(n)= E(n)
(

I⊗T0), 0≤ n≤N − 1, (6.3)

V′(n)= E′(n)
(

I⊗T0), N − a+ 1≤ n≤N , (6.4)
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where

E(0)=−(I⊗α)[C⊗ I + I⊗T]−1,

E(n)=−E(n− 1)(D⊗ I)[C⊗ I + I⊗T]−1, 1≤ n≤N − 1,

E′(n)=−E(n− 1)(D⊗ I)
[
(C + D)⊗ I + I⊗T

]−1
, N − a+ 1≤ n≤N.

(6.5)

For proof, see [2, 8, 16]. One may note here that for the sake of convenience, we use
the notation L(n) instead of the usual notation Ln for the representation of a matrix as
used in [2, 8, 16].

7. Numerical results

As the computation of the state probabilities at various epochs is heavily dependent on
algebraic manipulation of matrices, we have carried out extensive numerical work using
Matlab, but only a few selected results are presented here. To achieve the generic solution
using Matlab for multiple inputs, the programming language PERL has been used. The
initial PERL script is executed with desired inputs and it produces an output file with
Matlab format which has been used to produce numerical results. These results for certain
cases have been presented in self-explanatory Tables 7.1 and 7.2. We have presented state
probabilities only for a few values of n (0 ≤ n ≤ N) in various columns of the tables.
Also, various performance measures, such as average queue lengths Lq, Lq2, Lq1, Lq0, the
probability that the server is busy (ρ′), and the loss probability (Ploss), are presented below
the tables. In Table 7.1, results are given for variable batch size, whereas for fixed batch
size, that is, a= b, results are given in Table 7.2.

7.1. Numerical results for variable batch size. In Table 7.1, the results of MAP/PH(4,7)/
1/70 (vacation time follows E2 distribution) queue are given for the following input pa-

rameters. The MAP representation is taken as C=
[−1.625 0.250

0.875 −1.375

]
and D=

[
0.875 0.500
0.125 0.375

]
. For

service time and vacation time, PH representation is taken as β=[ 0.3 0.7 ], S=
[ −0.1 0.074

0.0575 −0.25

]
,

and E2 as α= [ 1.0 0.0 ], T=
[−γ γ

0.0 −γ
]

, where γ = 1.23.

7.2. Numerical results for fixed batch size. In Table 7.2, the results of MAP/E(8,8)
2 /1/60

(vacation time follows E2 distribution) queue are given for the same following parame-

ters. The MAP representation is taken as C=
[−1.625 0.250

0.875 −1.375

]
and D=

[
0.875 0.500
0.125 0.375

]
. For ser-

vice time and vacation time, PH representation is taken as β = [ 0.3 0.7 ], S=
[ −0.1 0.074

0.0575 −0.25

]
,

and E2 as α= [ 1.0 0.0 ], T=
[−γ γ

0.0 −γ
]

, where γ = 1.23.
It can be seen from Table 7.1 that ρ and ρ′ are different. Further, it is observed from

Table 7.2 that for fixed batch size and ρ < 1, ρ and ρ′ are equal when N is large. This con-
firms the validity of analytic analysis and accuracy of our results. It may be remarked here
that such an observation holds in case of nonvacation M/G(b,b)/1/∞ queue; see Chaudhry
and Templeton [3, page 224].
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Table 7.1. Distributions of number of customers in the queue at various epochs forMAP/PH (4,7)/1/70
(vacation time follows E2 distribution) queue with m = 2, λ∗ = 1.0, θs = 10, θv = 1.6260, and ρ =
1.4286.

n
p+(n) π+(n) ω+(n) π(n) ω(n) p(n) p−(n)∑m

k=1

∑m
k=1

∑m
k=1

∑m
k=1

∑m
k=1

∑m
k=1

∑m
k=1

0 0.0009 0.0009 0.0003 0.0006 0.0001 0.0007 0.0007

1 0.0009 0.0009 0.0005 0.0007 0.0001 0.0008 0.0008

2 0.0009 0.0009 0.0007 0.0007 0.0001 0.0009 0.0009

5 0.0009 0.0009 0.0003 0.0008 0.0000 0.0008 0.0008

6 0.0010 0.0010 0.0002 0.0009 0.0000 0.0009 0.0009

7 0.0010 0.0010 0.0001 0.0009 0.0000 0.0009 0.0009

8 0.0011 0.0011 0.0001 0.0010 0.0000 0.0010 0.0010

9 0.0011 0.0011 0.0000 0.0010 0.0000 0.0010 0.0010

10 0.0012 0.0012 0.0000 0.0011 0.0000 0.0011 0.0011

20 0.0022 0.0022 0.0000 0.0020 0.0000 0.0020 0.0020

30 0.0042 0.0042 0.0000 0.0039 0.0000 0.0039 0.0039

40 0.0080 0.0080 0.0000 0.0073 0.0000 0.0073 0.0073

50 0.0154 0.0153 0.0000 0.0140 0.0000 0.0140 0.0140

60 0.0269 0.0268 0.0000 0.0249 0.0000 0.0249 0.0249

70 0.2446 0.2437 0.0000 0.3024 0.0000 0.3024 0.3022

Sum 1.0000 0.9966 0.0034 0.9990 0.0006 1.0000 1.0000

ρ′ = 0.9990, ν(0)e= 0.0000, ν(1)e= 0.0000, ν(2)e= 0.0001, ν(3)e= 0.0002, Lq = 58.5464,
Lq2 = 58.5439, Lq1 = 0.0015, Lq0 = 9.9803e− 004, and Ploss = 0.3022.

Conclusions and future scope

In this paper, we have analyzed bulk service MAP/G(a,b)/1 queue with finite buffer and
single vacation. The analysis of the more general model BMAP/G(a,b)/1/N with single
and multiple vacations can be carried out using the procedure discussed in this paper.
The analysis of waiting time of bulk service queues with vacations is, in general, a difficult
task and is left for future investigation.

Appendix

Lemma A.1.

N∑
n=0

π(n)e= θs

N∑
n=0

π(n,0)e,
N∑
n=0

ω(n)e= θv

N∑
n=0

ω(n,0)e. (A.1)

Here,
∑N

n=0π(n,0)e is the number of service completion per unit of time, then multiplying
this by θs will give the probability that the server is busy, which must be equal to

∑N
n=0π(n)e=

ρ′. The second identity can also be interpreted similarly.
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Table 7.2. Distributions of number of customers in the queue at various epochs for MAP/E(8,8)
2 /1/60

(vacation time follows E2 distribution) queue with m = 2, λ∗ = 4.0, θs = 1.3333, θv = 0.2857, and
ρ = 0.6667.

n
p+(n) π+(n) ω+(n) π(n) ω(n) p(n) p−(n)∑m

k=1

∑m
k=1

∑m
k=1

∑m
k=1

∑m
k=1

∑m
k=1

∑m
k=1

0 0.0454 0.0285 0.0115 0.0709 0.0034 0.0765 0.0766

1 0.0716 0.0450 0.0266 0.0710 0.0070 0.0855 0.0856

2 0.0842 0.0528 0.0392 0.0672 0.0097 0.0922 0.0923

5 0.0802 0.0503 0.0512 0.0487 0.0117 0.1054 0.1055

10 0.0439 0.0276 0.0062 0.0233 0.0009 0.0243 0.0242

15 0.0202 0.0127 0.0001 0.0104 0.0000 0.0104 0.0104

20 0.0089 0.0056 0.0000 0.0045 0.0000 0.0045 0.0045

25 0.0038 0.0024 0.0000 0.0019 0.0000 0.0019 0.0019

30 0.0016 0.0010 0.0000 0.0008 0.0000 0.0008 0.0008

35 0.0007 0.0004 0.0000 0.0004 0.0000 0.0004 0.0004

40 0.0003 0.0002 0.0000 0.0002 0.0000 0.0002 0.0002

45 0.0001 0.0001 0.0000 0.0001 0.0000 0.0001 0.0001

50 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

51 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

60 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sum 1.0000 0.6276 0.3724 0.6667 0.0848 1.0000 1.0000

ρ′ = 0.6667, ν(0)e= 0.0022, ν(1)e= 0.0076, ν(2)e= 0.0153, ν(3)e= 0.0247, ν(4)e= 0.0348,
ν(5)e= 0.0451, ν(6)e= 0.0548, ν(7)e= 0.0639, Lq = 5.8806, Lq2 = 4.2476, Lq1 = 0.3790,

Lq0 = 1.2541, and Ploss = 1.2952e− 005.

Proof. Postmultiplying (3.15), (3.16), (3.17), and (3.18) by e, differentiating these with
respect to s, and using (C + D)e= 0, we get

−π∗(0,s)e− sπ∗(1)(0,s)e= π∗(1)(0,s)Ce + S∗(1)(s)
b∑

n=a

(
π(n,0) +ω(n,0)

)
e

+ S∗(1)(s)ν(a− 1)De,

(A.2)

−π∗(n,s)e− sπ∗(1)(n,s)e= π∗(1)(n,s)Ce +π∗(1)(n− 1,s)De

+S∗(1)(s)
(
π(n+b,0)+ω(n+b,0)

)
e, 1≤n≤N−b,

(A.3)

−π∗(n,s)e− sπ∗(1)(n,s)e

= π∗(1)(n,s)Ce +π∗(1)(n− 1,s)De, N − b+ 1≤ n≤N − 1,
(A.4)

−π∗(N ,s)e− sπ∗(1)(N ,s)e= π∗(1)(N − 1,s)De. (A.5)

Setting s = 0 in (A.2), (A.3), (A.4), and (A.5), adding them, and using Lemmas 3.1, 3.2
and (C + D)e= 0, after simplification, we obtain

∑N
n=0π(n)e= θs

∑N
n=0π(n,0)e. Similarly,
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postmultiplying (3.19), (3.20), (3.21), and (3.22) by e, differentiating these equations
with respect to s, setting s=0, and using Lemma 3.2, we get

∑N
n=0ω(n)e=θv

∑N
n=0ω(n,0)e.

�

Lemma A.2.

θi = θv +

∑a−1
n=0

∑n
j=0

∑ j
k=0 p+( j− k)V(k)D

n− j
(−C)−1e∑a−1

n=0 p+(n)e
. (A.6)

Proof. Since θb/θi=
∑N

n=0π(n)e/(
∑N

n=0ω(n)e+
∑a−1

n=0 ν(n)e) (see [3, page 324]), using (A.1)
and (4.25), we get

θb
θi
= θs

∑N
n=0π(n,0)e

θv
∑N

n=0ω(n,0)e + σ
∑a−1

n=0

∑n
j=0ω+( j)D

n− j
(−C)−1e

. (A.7)

Dividing numerator and denominator by σ and using (4.1), we get

θb
θi
= θs

∑N
n=0π

+(n)e

θv
∑N

n=0ω+(n)e +
∑a−1

n=0

∑n
j=0ω+( j)D

n− j
(−C)−1e

. (A.8)

Substituting
∑N

n=0ω
+(n)e=∑a−1

n=0π
+(n)e (from Lemma 3.2, after dividing both sides by σ)

and θb = θs/
∑a−1

n=0 p+(n)e= θs
∑N

n=0π
+(n)e/

∑a−1
n=0π

+(n)e (using (4.20)) in (A.8), we get

θi = θv +

∑a−1
n=0

∑n
j=0ω

+( j)D
n− j

(−C)−1e∑a−1
n=0π+(n)e

. (A.9)

Now, using (4.16) and (4.20) in (A.9), after simplification, we get the result. �
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