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Under ρ− (η,θ)-invexity assumptions on the functions involved, weak, strong, and con-
verse duality theorems are proved to relate properly efficient solutions of the primal and
dual problems for a multiobjective programming problem.

1. Introduction

The notion of η-invexity was originally introduced by Hanson [6] who showed that, for a
nonlinear programming problem whose objective and constrained functions are η-invex
(all with respect to the same η), the Karush-Kuhn-Tucker necessary optimality conditions
are also sufficient. The term invex (for invariant convex) was coined by Craven [2] to
signify the fact that the invexity property of a function is invariant under certain types of
coordinate transformations. Evidently, convex functions, in general, do not possess this
property.

Various properties, extensions, and applications of η-invex functions are discussed in
[1, 2, 7] among others. Later the concept of ρ− (η,θ)-invexity has been introduced by
Zalmai [11], which generalizes the notion of invexity.

Recently programs with several conflicting objectives have been extensively studied in
the literature. Introducing the concept of proper efficiency of solutions, Geoffrion [5]
proved an equivalence between multiobjective program with convex functions and a re-
lated parametric (scalar) objective program. Using this equivalence, Weir [9] formulated
a dual program for a multiobjective program having differentiable convex functions. Sub-
sequently, Egudo [4] and Weir [9] proved duality results for a differentiable multiobjec-
tive program with pseudoconvex/quasiconvex functions. Das and Nanda [3] have stud-
ied the duality theorems of Mond-Weir type for a multiobjective programming problem
with semilocally invex functions. Xu [10] has studied mixed-type duality in multiobjec-
tive programming problems.

In the present paper, duality results (weak, strong, and converse duality theorems) are
proved for multiobjective programming problem under ρ− (η,θ)-invexity assumptions
on the functions involved.
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2. Preliminaries

In [5], Geoffrion considered the following multiobjective programming problem:
(VP)

Minimize
x∈X

f (x), (2.1)

where f : X → Rp and X is an open subset of Rn, and minimization means obtaining
efficient solutions in the following sense.

A point x̄ ∈ X is an efficient solution for f = ( f1, f2, . . . , fp) if there is no x ∈ X such
that f (x)≤ f (x̄) and f (x) �= f (x̄).

An efficient solution x̄ ∈ X , for which there exits a scalar M > 0 such that for each
i= 1,2, . . . , p, we have

fi(x)− fi(x̄)
f j(x̄)− f j(x)

≤M (2.2)

for some j such that f j(x) > fj(x̄) and fi(x) < fi(x̄) for x ∈ X , is called a properly efficient
solution of (VP) (see Geoffrion [5]). Geoffrion [5] proved the following results.

Lemma 2.1. If for fixed 0 < λ∈Rp, x̄ is an optimal solution of the parametric programming
problem

(Pλ)

Minimize
x∈X

λT f (x), (2.3)

where 0 < λ ∈ Rp is a vector, then x̄ is a properly efficient solution of the multiobjective
problem (VP).

Lemma 2.2. If X is convex and fi, i= 1,2, . . . , p, are all convex functions, then x̄ is a properly
efficient solution for (VP) if and only if x̄ is an optimal solution of the parametric program-
ming problem (Pλ) for some λ∈Rp with strictly positive components.

Recently Hanson and Mond [7] have generalized Lemma 2.2 to invex functions. They
have shown that if fi, i= 1,2, . . . , p, are differentiable invex functions with respect to the
same η(x,u) (n-dimensional) for x ∈ X , u ∈ X , then x̄ is properly efficient solution in
the multiobjective programming problem (VP) if and only if x̄ is an optimal solution of
the parametric programming problem (Pλ) for some λ ∈ Rp with strictly positive com-
ponents.

A differentiable function f (x) is said to be invex (see [1, 6]) at a point u∈ X over X if
there exists η(x,u)∈Rn such that

f (x)− f (u)≥ η(x,u)T∇ f (u) ∀x ∈ X. (2.4)

Here ∇ f denotes the gradient of f and the subscript “T” stands for the transpose of
a vector. Later the concept of ρ− (η,θ)-invexity has been studied by Zalmai (see [11]),
which generalizes the notion of invexity function.



C. Nahak and S. Nanda 177

Definition 2.3. A differentiable function h : X → R is called ρ− (η,θ)-invex with respect
to vector-valued functions η and θ if there exists some real number ρ such that for all
x,u∈ X ,

h(x)−h(u)≥ ηT(x,u)∇h(u) + ρ
∥
∥θ(x,u)

∥
∥2
. (2.5)

If ρ > 0, then f (x) is called strongly ρ− (η,θ)-invex, if ρ= 0, we obviously get the usual
notion of invexity, and if ρ < 0, then f (x) is called weakly ρ− (η,θ)-invex. It is clear that

strongly ρ− (η,θ)- invex=⇒ invex=⇒weakly ρ− (η,θ)- invex . (2.6)

Definition 2.4. h is said to be ρ− (η,θ)-pseudoinvex with respect to vector-valued func-
tions η and θ, if there exists some real number ρ such that for all x,u∈ X

ηT(x,u)∇h(u)≥−ρ∥∥θ(x,u)
∥
∥2 =⇒ h(x)≥ h(u). (2.7)

Definition 2.5. h is said to be ρ− (η,θ)-quasi-invex with respect to vector-valued func-
tions η and θ if there exists some real number ρ such that for all x,u∈ X ,

h(x)≤ h(u)=⇒ ηT(x,u)∇h(u)≤−ρ∥∥θ(x,u)
∥
∥2
. (2.8)

3. Duality

Consider the following multiobjective programming problems:
(PVP) Minimizex∈X f (x) subject to g(x)≤ 0,
(DVP) Maximizex∈X ,λ,y , f (u) + yTg(u)e subject to ∇λT f (u) +∇yTg(u) = 0, y ≥ 0,

λ≥ 0, λTe = 1,
where f : X → Rp, g : X → Rm, y ∈ Rm, λ∈ Rp, and e is p-tuple of 1’s. Thus parametric
(scalar) programming problems corresponding (PVP) and (DVP) are

(PCλ) Minimizex∈X λT f (x) subject to g(x)≤ 0,
(DCλ) Maximizex∈X ,y λT f (u) + yTg(u) subject to∇λT f (u) +∇yTg(u)= 0, y ≥ 0,

respectively. In programming problems (PCλ) and (DCλ), the vector 0 < λ∈Rp is prede-
termined. In [4], Egudo and Hanson proved weak and strong duality theorems between
(PVP) and (DVP) for invex functions. We prove the following duality theorems.

Theorem 3.1 (weak duality). Let S be the feasible region for the primal problem (PVP),
that is, S = {x ∈ X ,g(x) ≤ 0}. Let (u,λ, y) be a feasible point in the dual problem (DVP)
such that λT f is ρ− (η,θ)-invex at u∈S and yTg is ρ1−(η,θ)-invex at u∈ Swith ρ+ ρ1≥0.
Then

λT f (x)≥ λT f (u) + yTg(u) ∀x ∈ S. (3.1)

Proof. Since λT f is ρ− (η,θ)-invex at u over S and yTg is ρ1− (η,θ)-invex at u over S, we
have

λT f (x)− λT f (u)≥ ηT(x,u)∇(λT f (u)
)

+ ρ
∥
∥θ(x,u)

∥
∥2

,

yTg(x)− yTg(u)≥ ηT(x,u)∇(yTg(u)
)

+ ρ1
∥
∥θ(x,u)

∥
∥2

,
(3.2)
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that is,
{
λT f (x) + yTg(x)− λT f (u)− yTg(u)

≥ ηT(x,u)
[∇(λT f (u)

)
+∇(yTg(u)

)]
+
(
ρ+ ρ1

)∥∥θ(x,u)
∥
∥2}

.
(3.3)

Now since (u,λ, y) is feasible in (DVP), we have ηT(x,u)[∇(λT f (u)) +∇(yTg(u))] = 0
and yTg(x)≤ 0 for all x ∈ S, therefore inequality (3.3) reduces to

λT f (x)≥ λT f (u) + yTg(u) +
(
ρ+ ρ1

)∥∥θ(x,u)
∥
∥2
. (3.4)

Again ρ+ ρ1 ≥ 0, so

λT f (x)≥ λT f (u) + yTg(u) ∀x ∈ S. (3.5)
�

Theorem 3.2 (strong duality). Let x̄ be a properly efficient solution of the multiobjective
programming problem (PVP) at which a constraint qualification is satisfied. Then there
exists (λ̄, ȳ) such that (x̄, λ̄, ȳ) is a feasible solution in the programming problem (DVP)
and yTg(x̄)= 0. If also for each feasible (u, λ̄, y) in the dual programming problem (DVP),
λ̄T f is ρ− (η,θ)-invex and yTg is ρ1 − (η,θ)-invex at u over the primal feasible region
S= {x | x ∈ X : g(x)≤ 0} with ρ+ ρ1 ≥ 0, then (x̄, λ̄, ȳ) is a properly efficient solution of the
dual programming problem (DVP) and the objective values are equal.

Proof. Since a constraint qualification [8] (also see Ben-Israel and Mond [1]) is satis-
fied at x̄, then, from Kuhn-Tucker necessary conditions [5], there exists (λ̄, ȳ) such that
(x̄, λ̄, ȳ) is a feasible solution in the programming (DVP) and yTg(x̄)= 0. Hence, objec-
tive function values are equal. Also since for each feasible (u, λ̄, y) in the dual program-
ming problem (DVP), λ̄T f is ρ− (η,θ)-invex and yTg is ρ1 − (η,θ)-invex at u over S,
then

λ̄T f (x)− λ̄T f (u)≥ ηT(x,u)∇(λ̄T f (u)
)

+ ρ
∥
∥θ(x,u)

∥
∥2

,

yTg(x)− yTg(u)≥ ηT(x,u)∇(yTg(u)
)

+ ρ1
∥
∥θ(x,u)

∥
∥2

,
(3.6)

that is,

{
λ̄T f (x) + yTg(x)≥ λ̄T f (u) + yTg(u)

+ηT(x,u)
[∇(λ̄T f (u)

)
+∇yTg(u)

]
+
(
ρ+ ρ1

)∥∥θ(x,u)
∥
∥2}

.
(3.7)

But [∇(λ̄T f (u)) +∇(yTg(u))]= 0, therefore

λ̄T f (x) + yTg(x)≥ λ̄T f (u) + yTg(u) +
(
ρ+ ρ1

)∥∥θ(x,u)
∥
∥2
. (3.8)

Since y ≥ 0 and g(x) ≤ 0, for all x ∈ X , we have yTg(x) ≤ 0, for all x ∈ S. Hence, for all
feasible (u, λ̄, y) in the dual programming problem (DVP), we have

λ̄T f (x)≥ λ̄T f (u) + yTg(u) +
(
ρ+ ρ1

)∥∥θ(x,u)
∥
∥2 ∀x ∈ S. (3.9)
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As ρ+ ρ1 ≥ 0, so

λ̄T f (x)≥ λ̄T f (u) + yTg(u) ∀x ∈ S. (3.10)

By assumption, x̄ is feasible in the primal (PVP) and we have shown that (x̄, λ̄, ȳ) in the
dual (DVP) we have

λ̄T f (u) + yTg(u)≤ λ̄T f (x̄). (3.11)

Now (3.11) implies that for λ̄, (x̄, ȳ) solves the parametric problem (DCλ). Since λ̄ > 0,
from Geoffrion’s [5] sufficient conditions, we conclude that (x̄, λ̄, ȳ) is properly efficient
for the problem (DVP). �

4. Converse duality

In this section, we study the converse duality theorem.

Theorem 4.1 (converse duality). Let (x̄, λ̄, ȳ) be a feasible solution for the dual problem
(DVP) such that λ̄ f is ρ− (η,θ)-invex at ū on S and ȳTg is ρ1− (η,θ)-invex at ū over the
primal feasible region S= {x | x ∈ X : g(x)≤ 0} with ρ+ ρ1 ≥ 0. Suppose there exists x̄ ∈ S
such that λ̄T f (x̄)= λ̄T f (ū) + ȳTg(ū). Then x̄ is properly efficient solution of (PVP). If also
for each feasible (u, λ̄, y) in the dual programming problem (DVP), λ̄T f is ρ− (η,θ)-invex
at u over S and yTg is ρ1− (η,θ)-invex at u over the primal feasible region S= {x | x ∈ X :
g(x) ≤ 0} with ρ + ρ1 ≥ 0, then (x̄, λ̄, ȳ) is also properly efficient of the dual multiobjective
programming problem (DVP).

Proof. By Theorem 3.1 we have

λ̄T f (x)≥ λ̄T f (ū) + ȳTg(ū) ∀x ∈ S. (4.1)

Now since there exists x̄ ∈ S such that

λ̄T f (x̄)= λ̄T f (ū) + ȳTg(ū), (4.2)

so

λ̄T f (x)≥ λ̄T f (x̄) ∀x ∈ S. (4.3)

Since x ∈ S, (4.3) implies that for λ̄, x̄ is an optimal solution of the parametric program-
ming (PCλ). As λ̄ > 0, from Geoffrion’s sufficient conditions, x̄ is properly efficient solu-
tion of the primal multiobjective programming problem (PVP).

Again because λ̄T f is ρ− (η,θ)-invex and yTg is ρ1 − (η,θ)-invex at u over S with
ρ+ ρ1 ≥ 0, we have, for each feasible (u, λ̄, y) in the dual programming problem (DVP),

λ̄T f (x)≥ λ̄T f (u) + yTg(u), ∀x ∈ S, (4.4)

and because x̄ ∈ S and λ̄T f (x̄)= λ̄T f (ū) + ȳTg(ū), it follows that

λ̄T f (u) + yT f (u)≤ λ̄T f (x̄)= λ̄T f (ū) + ȳTg(ū), (4.5)
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and (4.5) holds for all feasible (u, λ̄, y) in the dual programming problem (DVP). This
implies that for λ̄, (ū, ȳ) is an optimal solution of the parametric programming problem
(DCλ). Since λ̄ > 0, it now follows from Geoffrion’s [5] sufficient condition that (x̄, λ̄, ȳ)
is a properly efficient solution of the dual programming problem (DVP). �

Concluding remark. As ρ− (η,θ)-invexity/pseudoinvexity is a generalization of invexity,
multiobjective variational problem and multiobjective control problem under ρ− (η,θ)-
invexity will orient future research of the authors.
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