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The purpose of this paper is to provide a substantial improvement and random analogues
of several results due to Benavides and Ramı́rez (2004). Our work sets random versions of
the results of Shahzad and Lone (2005) and improves the work of Plubtieng and Kumam
(2006).
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1. Introduction

Kirk and Massa [7] proved the existence of fixed points for multivalued nonexpansive
self-maps in a Banach space X for which the asymptotic center of a bounded sequence in
a closed bounded convex subset is nonempty and compact; this occurs, for instance, if X
is a uniformly convex space. If X is nearly uniformly convex, then the asymptotic center
of a bounded sequence can be a noncompact set (see [8]). This fact motivated Benavides
and Ramı́rez [4] to generalize Kirk-Massa theorem to a class of Banach spaces where
the asymptotic center of a sequence is not necessarily a compact set; specifically, they
established fixed point theorems for multivalued nonexpansive self-maps in a Banach
space whose characteristic of noncompact convexity is less than 1. Benavides and Ramı́rez
[5] obtained results similar to those in [4] for non-self-maps satisfying the inwardness
condition. More recently, Shahzad and Lone [12] have replaced nonexpansive maps with
SL maps in the results of Benavides and Ramı́rez [5].

One of the aspects of nonlinear functional analysis is to randomize deterministic fixed
point results of the maps. In this regard, we cannot follow the arguments of the proofs
for the deterministic cases because these may not be constructive enough to assure the
measurability of the random fixed point. Indeed, deterministic results are used as a tool
in our proofs to obtain random solutions. In this paper, we prove random fixed point
theorems for multivalued inward random operators; in particular, we establish random
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analogues of the results of Shahzad and Lone [12]. Our work also extends [11, Theorems
3.2 and 3.3].

2. Preliminaries

Let (X ,d) be a metric space. We denote by 2X (resp.,C(X),CB(X),K(X),KC(X)) the class
of all nonempty subsets (resp., nonempty closed, nonempty closed bound, nonempty
compact, nonempty compact convex subsets) of X . The diameter of B ⊆ X is given by
diamB = sup{d(x, y) : x, y ∈ B}. Let H be the Hausdorff metric with respect to d:

H(A,B)=max
{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}

, for every A,B ∈ C(X). (2.1)

We recall some definitions.
A Banach space X is said to satisfy Opial’s property if for each x ∈ X and each sequence

{xn}weakly convergent to x, the following condition holds for all x �= y : liminfn→∞‖xn−
x‖ < liminfn→∞‖xn− y‖. If limn→∞ inf ‖xn− x‖ ≤ limn→∞ inf ‖xn− y‖ holds, then X sat-
isfies the nonstrict Opial’s property.

Let C be a nonempty closed subset of a Banach space X . A multivalued map T : C→
2X is (i) upper semicontinuous if {x ∈ C : Tx ⊂ V} is open whenever V ⊂ X is open;
(ii) lower semicontinuous if T−1(V)= {x ∈ C : Tx

⋂
V �= φ} is open whenever V ⊂ X is

open; (iii) continuous if it is both upper and lower semicontinuous (see [2, page 299]);
(iv) nonexpansive if H(Tx,Ty)≤ ‖x− y‖, for all x, y ∈ C.

The Kuratowski, Hausdorff, and separation measures of noncompactness of a non-
empty bounded subset B of X are, respectively, defined as the numbers

α(B)= inf{r > 0 : B can be covered by finitely many sets of diameter≤ r},
χ(B)= inf{r > 0 : B can be covered by finitely many balls of radius≤ r},

β(B)= sup{r > 0 : B has an infinite r-separation}.
(2.2)

The map T : C→ 2X is called γ-condensing (resp., 1-γ-contractive) where γ = α(·) or
χ(·) if, for each bounded subset B of C with γ(B) > 0, the following holds:

γ
(
T(B)

)
< γ(B)

(
resp., γ

(
T(B)

)≤ γ(B)
)
, where T(B)=

⋃
x∈B

Tx. (2.3)

Let X be a Banach space and φ = α,β, or χ. Then the modulus and characteristic of
noncompact convexity associated to φ are, respectively, defined by

ΔX ,φ(ε)= inf
{

1−d(0,A) : A⊂ BX is convex, φ(A)≥ ε}, (2.4)

where BX is the unit ball of X , and

εφ(X)= sup
{
ε ≥ 0 : ΔX ,φ(ε)= 0

}
. (2.5)

If εφ(X)= 0, then the space X is called nearly uniformly convex.
Note that if εα(X) < 1, then X is reflexive (this is also true if εφ(X) < 1 where φ = χ or

β) (see [1, Theorem 5.1.7 and Remark 5.1.7]).
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The inward set ofC at x ∈ C is defined by IC(x)= {x+ λ(y− x) : λ≥ 0, y ∈ C}. Clearly,
C ⊂ IC(x) and it is not hard to show that IC(x) is a convex set when C is so.

The map T : C→ 2X is inward if Tx ⊂ IC(x), for all x ∈ C.
Let ĪC(x)= x+ {λ(z− x) : z ∈ C, λ≥ 1}. Note that for a convex set C, we have ĪC(x)=

IC(x). The map T is weakly inward if Tx ⊂ ĪC(x), for all x ∈ C.

Theorem 2.1 (cf. [4]). Let X be a Banach space and let φ �= C ⊂ X be closed bounded
convex. Let T : C → 2X be upper semicontinuous γ-condensing with closed convex values,
where γ(·)= α(·) or χ(·). If Tx

⋂
IC(x) �= φ for all x ∈ C, then T has a fixed point.

Lemma 2.2 [10]. Let C be a nonempty closed convex subset of a Banach space X and T :
C→ K(X) a contraction. If Tx ⊂ IC(x), for all x ∈ C, then T has a fixed point.

Definition 2.3. Let C be a nonempty bounded closed subset of a Banach space X and {xn}
a bounded sequence in X . The asymptotic radius and the asymptotic center of {xn} in C
are denoted and defined by, respectively,

r
(
C,
{
xn
})= inf

{
limsup
n→∞

∥∥xn− x
∥∥ : x ∈ C

}
,

A
(
C,
{
xn
})=

{
x ∈ C : limsup

n→∞

∥∥xn− x
∥∥= r

(
C,
{
xn
})}

.
(2.6)

If D is a bounded subset of X , the Chebyshev radius of D relative to C is

rC(D)= inf
{

sup
{‖x− y‖ : y ∈D

}
: x ∈ C

}
. (2.7)

Remark 2.4. The convexity of C implies that A(C,{xn}) is convex. The set A(C,{xn}) is
nonempty weakly compact if C is weakly compact, or C is a closed convex subset of a
reflexive Banach space X (see [5]).

Let C be a nonempty bounded closed subset of a Banach space X . Then {xn} in X
is called regular with respect to C if r(C,{xn}) = r(C,{xni}) for all subsequences {xni}
of {xn}; while {xn} is called asymptotically uniform with respect to C if A(C,{xn}) =
A(C,{xni}) for all subsequences {xni} of {xn}.
Lemma 2.5 [9]. Let {xn} and C be as in the above definition. Then (i) there always exists
a subsequence of {xn} which is regular with respect to C; (ii) if C is separable, then {xn}
contains a subsequence which is asymptotically uniform with respect to C.

Let A be a set and B ⊂ A. A net {xα : α ∈ D (directed set)} in A is eventually in B if
there exists α0 ∈D such that xα ∈ B for all α≥ α0. A net {xα : α∈D} in a set A is called
an ultranet if either {xα : α ∈ D} is eventually in B or {xα : α ∈ D} is eventually in A\B,
for each subset B of A. It is well known that every net in a set has a subnet which is an
ultranet (cf. [5]).

A sequence {xn} is called asymptotically T-regular if limn→∞d(xn,Txn)= 0.

Definition 2.6 [12]. Let C be a nonempty weakly compact convex subset of a Banach space
X and T : C→ KC(X). The map T is called subsequentially limit contractive (SL) if for
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every asymptotically T-regular sequence {xn} in C,

limsup
n→∞

H
(
Txn,Tx

)≤ limsup
n→∞

∥∥xn− x
∥∥, ∀x ∈ A

(
C,
{
xn
})
. (2.8)

Every nonexpansive map is an SL map but the converse does not hold (see [12, Exam-
ple 3.2]).

Let (Ω,
∑

) be a measurable space (
∑

-σ-algebra) and C a subset of a metric space X .
Then (i) T : Ω→ 2X is measurable if, for any open subset B of X , T−1(B) ∈∑ where
T−1(B) = {ω ∈Ω : T(ω)

⋂
B �= φ}; (ii) x : Ω→ X is a measurable selector of T : Ω→ 2X

if x(·) is measurable and x(ω) ∈ T(ω) for all ω ∈ Ω; (iii) T : Ω×C → 2X is a random
operator if, for each fixed x ∈ C,T(·,x) : Ω→ 2X is measurable; (iv) x : Ω→ C is a random
fixed point of T : Ω×C→ 2X if x is measurable and x(ω)∈ T(ω,x(ω)), for each ω ∈Ω;
(v) T : Ω×C → 2X is continuous (resp., contractive, nonexpansive, SL, etc.) if for each
ω ∈Ω, T(ω,·) is continuous (resp., contractive, nonexpansive, SL, etc.).

We will denote by F(ω) the fixed point set of T(ω,·), that is, F(ω) = {x ∈ C : x ∈
T(ω,x)}.

We list the following results for a ready reference in the sequel.

Lemma 2.7 [15]. Let (X ,d) be a complete separable metric space and T : Ω→ C(X) a mea-
surable operator. Then T has a measurable selector.

Lemma 2.8 [6]. Suppose that {Tn} is a sequence of measurable multivalued operators from
Ω to CB(X) and T : Ω→ CB(X) is an operator. If, for each ω ∈Ω, H(Tn(ω),T(ω))→ 0,
then T is measurable.

Lemma 2.9 [14]. Let X be a separable metric space and Y a metric space. If f : Ω×X → Y
is measurable in ω ∈ Ω and continuous in x ∈ X , and if x : Ω→ X is measurable, then
f (·,x(·)) : Ω→ Y is measurable.

Lemma 2.10 [11, Lemma 2.4]. Let C be a closed separable subset of a Banach space X ,T :
Ω× C → C a random continuous operator, and F : Ω → 2C a measurable closed-valued
operator. Then for any s > 0, the operator G : Ω→ 2C given by G(ω) = {x ∈ F(ω) : ‖x−
T(ω,x)‖ < s}, ω ∈Ω, is measurable and so is the operator cl{G(ω)} (the closure of G(ω)).

3. Main results

The following lemma is proved, as a claim, in the proof of [12, Theorem 3.3].

Lemma 3.1. Let C be a nonempty closed bounded convex subset of a Banach space X and
T : C → KC(X) an SL map such that Tx ⊂ IC(x), for all x ∈ C. If {xn} is asymptotically
T-regular in C, then there exists an ultranet {xnα} of {xn} such that Tx

⋂
IA(x) �= φ, for all

x ∈ A, where A=A(C,{xnα}).

We now set out to establish a random fixed point result which, on the one hand, is a
stochastic version of [12, Theorem 3.3] (which itself extends [5, Theorem 3.4]), and on
the other hand, improves [11, Theorem 3.3]. We follow the arguments of the proof of
[11, Theorem 3.2].
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Theorem 3.2. Let C be a nonempty closed bounded convex separable subset of a Banach
space X with εα(X) < 1 and T : Ω×C→ KC(X), a continuous 1-χ-contractive and SL ran-
dom operator. If T(ω,x)⊂ IC(x), for all x ∈ C and ω ∈Ω, then T has a random fixed point.

Proof. Let x0 ∈ C be fixed and consider the measurable map x0(ω) = x0, for all ω ∈ Ω.
For each n≥ 1, define Tn(ω,·) : C→ KC(X) by

Tn(ω,x)= 1
n
x0(ω) +

(
1− 1

n

)
T(ω,x), ∀x ∈ C. (3.1)

Then Tn is contractive and Tn(ω,x)⊂ IC(x), for all x ∈ C. Hence, by Lemma 2.2, each Tn

has a deterministic fixed point zn(ω)∈ C. So,

d
(
zn(ω),T

(
ω,zn(ω)

))≤ 1
n

diamC −→ 0 as n−→∞. (3.2)

Thus

Fn(ω)=
{
x ∈ C : d

(
x,T(ω,x)

)≤ 1
n

diamC
}

(3.3)

is nonempty closed and convex. By Lemma 2.10, each Fn is measurable. Thus, by Lemma
2.7, Fn admits a measurable selector xn(ω) such that

d
(
xn(ω),T

(
ω,xn(ω)

))≤ 1
n

diamC −→ 0 as n−→∞. (3.4)

Define f : Ω×C→ [0,∞) by

f (ω,x)= lim
n→∞sup

∥∥xn(ω)− x
∥∥, x ∈ C. (3.5)

It is easy to see that f (ω,·) is continuous and f (·,x) is measurable, so by Lemma 2.9,
f (·,x) is measurable. Obviously, f (ω,·) is convex. Therefore, by [13, Lemma 1.3.9], it
is weakly lower semicontinuous. Note that εα(X) < 1, so X is reflexive. Therefore, C is
weakly compact. Hence, by [3, Theorem 3.4], the marginal function r(ω)= infx∈C f (ω,x)
and the marginal map A(ω) = {x ∈ C : f (ω,x) = r(ω)} are measurable. By Remark 2.4,
A(ω) is a weakly compact convex subset of C. For any ω ∈ Ω, we may assume that
the sequence {xnα(ω)} is an ultranet in C. Note that A(ω) = A(C,{xnα(ω)}) and r(ω) =
r(C,{xnα(ω)}). We now apply [5, Theorem 3.2] to obtain

rC
(
A(ω)

)≤ λr
(
C,
{
xnα(ω)

})
, (3.6)

where λ= 1−�X ,α(1−) < 1.
For each ω ∈Ω and n≥ 1, we define the multivalued contraction T1

n(ω,·) : A(ω)→
KC(X) by

T1
n(ω,x)= 1

n
x1(ω) +

(
1− 1

n

)
T(ω,x), for each x ∈ C. (3.7)
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By Lemma 3.1, we have

T(ω,x)
⋂

IA(ω)(x) �= φ, ∀x ∈A(ω). (3.8)

Since IA(ω)(x) is convex, it follows, from (3.7) and (3.8), that

T1
n(ω,x)

⋂
IA(ω)(x) �= φ, ∀x ∈ A(ω). (3.9)

As in the proof of [4, Proposition 4.1], we can prove that T1
n(ω,·) is χ-condensing. Hence,

by Theorem 2.1,T1
n(ω,·) has a fixed point z1

n(ω)∈ A(ω); that is, F(ω)
⋂
A(ω) �= φ. Clearly,

d
(
z1
n(ω),T

(
ω,z1

n(ω)
))≤ 1

n
diamC −→ 0 as n−→∞. (3.10)

Thus

F1
n(ω)=

{
x ∈A(ω) : d

(
x,T(ω,x)

)≤ 1
n

diamC
}

(3.11)

is nonempty closed and convex for each n ≥ 1. By Lemma 2.10, each F1
n is measurable.

So, by Lemma 2.7 we can choose x1
n a measurable selector of F1

n . Thus we have x1
n ∈A(ω)

and d(x1
n(ω),T(ω,x1

n(ω)))→ 0 as n→∞. Let f2 : Ω×C→ [0,∞) be defined by

f2(ω,x)= lim
n→∞sup

∥∥x1
n(ω)− x

∥∥, ∀ω ∈Ω. (3.12)

As above, f2 is measurable and weakly lower semicontinuous. Again, by [3, Theorem
3.4], r2(ω) = infx∈A(ω) f2(ω,x) and A1(ω) = {x ∈ A(ω) : f2(ω,x) = r2(ω)} are measur-
able. Since A1(ω)= A(A(ω),{x1

nα(ω)}), it follows that A1(ω) is weakly compact and con-
vex. We also note that r2(ω) = r(A(ω),{x1

nα(ω)}). Again, for any ω ∈Ω, we can assume
that the sequence {x1

nα(ω)}α is an ultranet in A1(ω). As above, by Lemma 3.1 and [5,
Theorem 3.2], we obtain

T
(
ω,x(ω)

)⋂
IA1(ω)

(
x(ω)

) �= φ, ∀x(ω)∈ A1(ω), (3.13)

where A1(ω)= A(A(ω),{x1
nα(ω)}) and

rC
(
A1(ω)

)≤ λr
(
A(ω),

{
x1
nα(ω)

})≤ λrC
(
A(ω)

)
. (3.14)

By induction, for each m≥ 1, we take a sequence {xmn (ω)}n ⊂ Am−1 such that

lim
n→∞d

(
xmn (ω),T

(
ω,xmn (ω)

))= 0, (3.15)

for each ω ∈ Ω. By means of the ultranet {xmnα(ω)}α, we construct the set Am = A(C,
{xmnα(ω)}) such that rC(Am) ≤ λmrC(A). Since diamAm(ω) ≤ 2rC(Am) and λ < 1, it fol-
lows that limm→∞diamAm(ω)= 0. Note that {Am(ω)} is a descending sequence of weakly
compact subsets of C for each ω ∈ Ω. Thus, by Cantor’s intersection theorem (see [1,
page 20]), we have

⋂
mA

m(ω)= {z(ω)} for some z(ω)∈ C. Furthermore, we observe that
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H(Am(ω),{z(ω)})≤ diamAm(ω)→ 0 as m→∞. Therefore, by Lemma 2.8, z(ω) is mea-
surable. Finally, we show that z(ω) is a random fixed point of T . For each m≥ 1, we have

d
(
z(ω),T

(
ω,z(ω)

))≤ ∥∥z(ω)− xmn (ω)
∥∥+d

(
xmn (ω),T

(
ω,xmn (ω)

))

+H
(
T
(
ω,xmn (ω)

)
,T
(
ω,z(ω)

))
.

(3.16)

Since T is an SL map and {xmn (ω)} asymptotically T-regular for m≥ 1, therefore we have

lim
n→∞supH

(
T
(
ω,xmn (ω),T

(
ω,z(ω)

)))≤ lim
n→∞sup

∥∥xmn (ω)− z(ω)
∥∥. (3.17)

Thus, by (3.15)–(3.17), we obtain

d
(
z(ω),T

(
ω,z(ω)

))≤ 2 lim
n→∞sup

∥∥z(ω)− xmn (ω)
∥∥≤ 2diamAm(ω). (3.18)

Taking the limit as m→∞, we have z(ω)∈ T(ω,z(ω)). �

We remark that if C is a weakly compact subset of a reflexive Banach space satisfying
the nonstrict Opial’s property, then we can follow the ideas in the proof of [4, Theo-
rem 4.5] to deduce that a nonexpansive map T : C→ K(X) with bounded range is 1-χ-
contractive. Thus, in view of Theorem 3.2, we have the following.

Corollary 3.3. Let X be a Banach space satisfying the nonstrict Opial’s property and εα(X)
< 1. Suppose that C is a nonempty closed bounded convex separable subset of X and T :
Ω×C→ KC(X) is a nonexpansive random operator such that T(C) is a bounded set and
T(ω,x)⊂ IC(x), for all x ∈ C and ω ∈Ω. Then T has a random fixed point.

Remark 3.4. The ultranet in Lemma 3.1 can be replaced by a sequence which is asymptot-
ically uniform with respect to C (see [9]). This allows us to rewrite the proof of Theorem
3.2 for β and χ moduli of noncompact convexity.

The following two theorems follow from the above remark and [4, Theorem 3.4].

Theorem 3.5. Let C be a nonempty closed bounded convex separable subset of a Banach
space X with εβ(X) < 1 and T : Ω×C→ KC(X), continuous 1-χ-contractive, and SL ran-
dom operator. If T satisfies the inwardness condition, then T has a random fixed point.

Theorem 3.6. Let X be a Banach space satisfying the nonstrict Opial’s property and εχ(X) <
1. Suppose that C is a nonempty closed bounded convex separable subset of X and T : Ω×
C → KC(X) is a nonexpansive random operator such that T(C) is a bounded set and T
satisfies the inwardness condition. Then T has a random fixed point.
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