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We consider in this paper the stability of retrial queues with a versatile retrial policy.
We obtain sufficient conditions for the stability by the strong coupling convergence to
a stationary ergodic regime for various models of retrial queues including a model with
two types of customers, a model with breakdowns of the server, a model with negative
customers, and a model with batch arrivals. For all the models considered we assume that
the service times are general stationary ergodic and interarrival and retrial times are i.i.d.
sequences exponentially distributed. For the model with unreliable server we also assume
that the repair times are stationary and ergodic and the occurrences of breakdowns follow
a Poisson process.

Copyright © 2006 T. Kernane and A. Aı̈ssani. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We investigate in this paper the problem of stability condition for some retrial queueing
models. The first model is a retrial queue with a versatile retrial policy which incorporates
simultaneously the classical linear retrial policy and the constant one and is described as
follows. Consider a single server queue in which a primary arriving customer who finds
the server busy moves to a group of blocked customers called “orbit” and repeatedly re-
tries for service until he finds the server free, and consider the following retrial policy
for the access to the server from the orbit. The probability of a repeated attempt from
the orbit during the interval (t, t +Δt), given that j customers were in orbit at time t, is
(θ(1− δ0 j) + jμ)Δt+◦(Δt). This model was defined by Artalejo and Gomez-Corral [4]. If
μ= 0, we obtain the constant retrial policy with parameter θ introduced by Fayolle [14].
If a primary arriving customer finds the server free, he receives service and leaves the sys-
tem. The second model is a retrial queue with two types of arriving customers, known
as “impatient” and “persistent.” If an impatient customer finds the server busy, then it
leaves the system. On the other hand, if a persistent customer arrives and finds the server
busy, then he may have access to the orbit and waits to be served later according to the
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versatile retrial policy described above. If μ= 0, we obtain the model with constant retrial
policy and two types of customers studied by Martin and Artalejo [21]. The third model
is a single server retrial queue with the server subject to random breakdowns and repairs.
In the fourth model we consider the stability of a retrial queue with positive and negative
customers. When a negative arrival occurs in the system, it immediately removes one reg-
ular customer if present. The concept of negative customers was introduced by Gelenbe
[17], who established the product form solution for a queueing network including neg-
ative arrivals as well as regular ones. A review of results and practical situations can be
found in Artalejo [3]. Gelenbe et al. [18] derived the stability conditions for two models
of negative arrivals, the removal of customer in service (RCS) and removal of customer
at the tail of the queue (RCT). Artalejo and Gomez-Corral [5, 6] extended the queues
with negative arrivals to that when regular customers follow a retrial policy. Finally, we
consider the stability of a retrial queue with batch arrivals. The first such model with the
classical linear retrial policy was introduced by Falin [12], who derived the joint distribu-
tion of the server state and queue length. A more detailed analysis of the model was given
later by Falin [13].

Most of the efforts in the study of retrial queues have been directed to the compu-
tation of the steady-state solutions assuming that such stationary regime exists. For an
M/G/1 queue with linear retrial policy under Markovian assumptions, that is, Poisson
arrivals with rate λ, i.i.d. exponential retrial times with rate θ, and i.i.d. general service
times with rate μ, the necessary and sufficient condition for stability is λ < μ. Intuitively,
we would expect that this condition is indeed sufficient in general. But, Liang and Kulka-
rni [20] gave a counterexample showing that the system can be unstable even though
the arrival rate is less than the service rate. The problem of deriving stability condition
becomes nontrivial also when perturbing independence and/or exponential assumptions
upon parametric distributions, it is essentially due to the difficulty of describing the basic
process in terms of a Markov chain in a simple way. Similar arguments can be provided
in the case of the model with constant retrial policy in which case the stability condition
depends in general on the retrial rate.

We consider in this paper the approach based on constructing a class of processes,
the so-called stochastic recursive sequences, which are of a more general and compli-
cated nature than Markov processes and using the techniques of renovation events to
obtain strong coupling convergence to a stationary ergodic regime. These techniques
were formulated, in the stationary ergodic context, by Borovkov [9]. The approach of
renovating events already has its roots in the early work by Akhmarov and Leont’eva
[1]. These methods have further been developed in [7, 15, 16]. For the classical linear
retrial queue, Altman and Borovkov [2] obtained sufficient conditions for the stability
under various general assumptions for interarrival and service times, in particular they
applied the method of renovation events to obtain ergodicity under general stationary er-
godic service times and independent and exponentially distributed interarrival and retrial
times. In Section 2, we give some backgrounds for stochastic recursive sequence theory
and review the main theorem that enables us to obtain a strong coupling convergence
to a stationary regime by using renovation events for the retrial queues described above.
In Section 3, we apply the method of stochastic recursive sequences to the retrial queue
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with the versatile retrial policy and we derive a sufficient stability condition under gen-
eral assumption of stationary and ergodic service times, exponentially distributed inter-
arrival and retrial times. In Section 4, we derive a sufficient stability condition for the
retrial queue with two types of customers under general stationary ergodic service times
for both types, and exponentially distributed interarrival and retrial times. In Section 5,
we use the same method for the retrial queue with breakdowns and repairs to derive a
sufficient stability condition under the assumptions that the service and repair times are
stationary and ergodic sequences and independent and exponentially distributed interar-
rival, breakdown, and retrial times. In Section 6, we obtain a sufficient stability condition
for the retrial queue with negative customers by assuming that the service times of the
regular customers are stationary and ergodic, interarrival times of regular and negative
customers and retrial times are independent and exponentially distributed. In Section 7,
we consider a retrial queue with the versatile retrial policy in which customers arrive in
batches and we derive a sufficient condition for stability under the assumptions that the
service times are stationary and ergodic, interarrival and retrial times are independent
and exponentially distributed and the sizes of batches of arrivals are independent and
generally distributed.

2. Stochastically recursive sequences

Let X = {X(n), n ≥ 0} and {ξn} be random sequences defined on the same probability
space (Ω,�,P) and taking values in measurable spaces (X,BX) and (Y,BY), respectively.
Assume moreover, that a measurable function f : X×Y→ X is defined on (X×Y,BX ×
BY).

Definition 2.1. A random sequence {X(n)} is called a stochastically recursive sequence
(SRS) controlled by the governing sequence {ξn} if {X(n)} obey the equation

X(n+ 1)= f
(
X(n),ξn

)
, ∀n≥ 0. (2.1)

Stochastically recursive sequences (SRS) are more general objects than Markov chains,
that is, each Markov chain can be represented as an SRS with independent ξn (see Kifer
[19] or Borovkov [10]).

We assume in the sequel that the sequence {ξn} is stationary (in the strict sense), that
is, the distributions of the finite-dimensional random variables (ξk+n1 ,ξk+n2 , . . . ,ξk+nj ) do
not depend on k for any j and n1, . . . ,nj . By the Kolmogorov’s theorem on the extension
of compatible distributions, a stationary sequence {ξn; n≥ 0}may be extended to obtain
the sequence {ξn; −∞ < n <∞} stationary on the entire time-axis. Let us introduce the

σ-algebras �ξ
n = σ(ξk; k ≤ n) and �ξ = σ(ξk; −∞ < k <∞).

Definition 2.2. An event A∈ �ξ
n+m, m≥ 0, is a renovation event for the SRS X(n) on the

segment [n,n + m] if there exists a measurable function g : Ym+1 → X such that on the
set A,

X(n+m+ 1)= g
(
ξn, . . . ,ξn+m

)
. (2.2)
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The sequence An, An ∈�ξ
n+m, is a renovating sequence of events for the SRS X(n) if there

exists an integer n0 such that (2.2) holds true for n ≥ n0 with a common function g for
all n. Let U be the measure-preserving shift transformation of �ξ-measurable random
variables generated by ξn, Uξn = ξn+1, and Uk, k ≥ 0, denote the kth iteration of U . A
sequence {ηn; −∞ < n <∞} is said to be compatible with the shift U if for any n∈ Z, ηn
is �ξ-measurable and Uηn = ηn+1. We denote by T the corresponding transformation of
events in the σ-algebra �ξ :

T
{
ω : ξj(ω)∈ Bj ; j = 1, . . . ,k

}= {ω : ξj+1(ω)∈ Bj ; j = 1, . . . ,k
}

, (2.3)

and Tk, k ≥ 0, denote the kth iteration of T . U0 and T0 are identity transformations, and
U−k, T−k are the inverse transformations for Uk and Tk, respectively.

Remark 2.3. The σ-algebra �ξ may be considered as a possibly larger σ-algebra in which
an arbitrary sequence of independent random variables {ζn}, taking values in a measur-
able space (Z,BZ), and not depending on {ξn}, is �ξ-measurable since in this case �ξ can
be viewed as the σ-algebra generated by {ξn} and {ζn} (we can denote it by �ξ,ζ). The
shift T will also be defined by means of the relation

T
{
ω :
(
ξn+i(ω),ζn+i(ω)

)∈ Bi; i= 0, . . . ,k
}

= {ω :
(
ξn+i+1(ω),ζn+i+1(ω)

)∈ Bi; i= 0, . . . ,k
}

,
(2.4)

for any sets B1, . . . ,Bk ∈ BY×BZ (see Borovkov [8, page 14]). Let U be the corresponding
measure-preserving shift transformation of �ξ,ζ-measurable random variables, then for
any �ξ,ζ -measurable random variable η the sequence {ηn =Unη, −∞ < n <∞} is obvi-
ously stationary (see Doob [11, page 452]), and consequently any sequence compatible
with the shift U is stationary.

A set A∈�ξ is called invariant with respect to the shift T if A= TA almost surely.
A sequence {ξn} is called metrically transitive if the only invariant sets are those which

have probability 0 or 1.
A sequence {ξn} is ergodic if and only if for an arbitrary �ξ-measurable random vari-

able η, with Eη <∞, we have almost surely

lim
n→∞

1
n

n∑

i=1

Uiη = Eη. (2.5)

If the sequence {ξn} is stationary, the relation (2.5) can be expressed in the following
form:

lim
n→∞

1
n

−1∑

i=−n
Uiη = Eη. (2.6)

The later is called the Birkhoff strong law of large numbers.
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A stationary sequence {ξn} is ergodic if and only if it is metrically transitive (see Doob
[11, Chapter 10]).

Remark 2.4. If {ξn} is stationary and ergodic, then any sequence {ηn; −∞ < n <∞} com-
patible with the shift U is also ergodic, that is, it satisfies the Birkhoff strong law of large
numbers (see Doob [11, pages 455-456]).

We call the sequence of events {An} stationary if Ak = TkA0 for all k. Let X0 be a
random variable with values in the space X that is measurable with respect to the σ-
algebra �ξ . Let {Xn =UnX0} be the stationary sequence constructed using X0.

Definition 2.5. An SRS {X(n)} coupling converges to {Xn} if it satisfies

lim
n→∞P

{
X(k)= Xk, ∀k ≥ n

}= 1. (2.7)

If we introduce the random variable

ν0 ≡min
{
n≥ 0 : X(k)= Xk, ∀k ≥ n

}
, (2.8)

the relation (2.7) becomes equivalent to

P
(
ν0 <∞

)= 1. (2.9)

Put

Xk(n)=U−kX(n+ k), for n≥−k,

νk =min
{
n≥−k : Xk(n)= Xn

}
.

(2.10)

Denote by ν = supk≥0 νk the time when all the sequences {Xk(n), n ≥ 0}, k ≥ 0, have
fused with the sequence {Xn}.
Definition 2.6. A sequence {X(n)} is strong coupling convergent to the sequence {Xn ≡
UnX0} if

ν <∞ a.s. (2.11)

This ν is called the strong coupling time. Note that strong coupling convergence is
stronger than coupling convergence, which implies the convergence in total variation and
then the convergence in distribution. The following theorem (of Borovkov [10, Theorem
11.4]) gives a necessary and sufficient condition of strong coupling convergence of an SRS
to a stationary ergodic process.

Theorem 2.7. The existence of a stationary sequence of renovation eventsAn with P(An) > 0
is the necessary and sufficient condition of strong coupling convergence of the SRS X(n) to
a stationary sequence Xn obeying the equation Xn+1 = f (Xn,ξn) where ξn is stationary and
ergodic.
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3. Stability of the retrial queue with versatile retrial policy

We consider a single server retrial queue at which primary customers arrive to the system
at times {ti, i = 1,2, . . .}. Let τi = ti+1− ti be the successive interarrival times, i = 1,2, . . . .
If the ith arriving customer finds the server free, he receives service and leaves the system.
Otherwise, if the server is busy, the arriving customer moves immediately to an “orbit.”
The probability of a repeated attempt from the orbit during the interval (t, t +Δt), given
that j customers were in orbit at time t, is (θ(1− δ0 j) + jμ)Δt + ◦(Δt). That is, after an
exponential random time with rate θ (which we will call the orbit retrial time), indepen-
dent of the arrival process, each customer in orbit generates a Poisson stream of repeated
attempts with parameter μ and behaves independently of other customers in orbit and
of the external arrival process. This model, introduced by Artalejo and Gomez-Corral
[4], incorporates simultaneously the classical linear retrial policy and the constant one.
If μ = 0, we obtain the constant retrial policy with parameter θ; if the orbit retrial time
ends before an external arrival, then one customer from the orbit (the customer at the
head of the queue or a randomly chosen one) occupies the server. The nth service dura-
tion is σn, and we assume that 0 < Eσn <∞. We assume throughout this section that the
sequence {σn} is stationary and ergodic, the interarrival times {τi} are i.i.d. exponentially
distributed with parameter λ, the interarrival times, orbit retrial times, and retrial times
of each customer in orbit are mutually independent and independent of the sequence
{σn}. Let X(t) be the number of customers in orbit at time t. Define sn to be the instant
when the (n− 1)st service time ends. We consider the process X(n) embedded imme-
diately after time sn, (i.e., X(n) = X(s+

n)). After the end of the (n− 1)st service, a com-
petition between two independent (since the orbit retrial time and retrial times of each
customer in orbit are independent of the interarrival time) exponential laws with rates
λ and θ +X(n)μ determines the next customer that gains the server and the probability
that a retrial time expires earlier than the interarrival time is (θ +X(n)μ)/(λ+ θ +X(n)μ).
Let u1

n and u2
n be two i.i.d. sequences of random variables distributed uniformly on [0,1],

mutually independent and independent of the sequence σn. u1 = {u1
n} will generate the

arrival process, and u2 = {u2
n}will generate the type of arrival (external or from the orbit)

at the end of the successive service periods. Let
∏

:R+× [0,1]→N denote the inverse of
the Poisson distribution

∏
(t,x)= inf

{

n∈N :
n∑

k=0

tke−t

k!
≥ x

}

, (3.1)

so that
∏

(t,u1
n) is a Poisson random variable with parameter t. We have the following

representation of the process X(n):

X(n+ 1)= (X(n) + ξn
)+

, (3.2)

where x+ =max[0,x] and

ξn =
∏(

λσn,u1
n

)− I
(
u2
n ≤

θ +X(n)μ
λ+ θ +X(n)μ

)
(3.3)

is the governing sequence.
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Theorem 3.1. The process X(n) is strong coupling convergent to a unique stationary ergodic
regime if one of the following conditions is fulfilled:

(1) θ > 0, μ= 0, and λEσ1 < θ/(λ+ θ);
(2) θ ≥ 0, μ > 0, and λEσ1 < 1.

Proof. Consider the case θ > 0 and μ= 0, then the driving sequence (3.3) has the form

ξn =
∏(

λσn,u1
n

)− I
(
u2
n ≤

θ

λ+ θ

)
. (3.4)

Since the sequence {uin} is identically distributed for i= 1,2, and hence stationary, it can
be defined for all integers −∞ < n <∞. Define the σ-algebras �σ ,u

n = σ(σk,u1
k,u2

k; k ≤ n)
and �σ ,u = σ(σk,u1

k,u2
k; −∞ < k <∞). Let U be the measure-preserving shift transforma-

tion of �σ ,u-measurable random variables generated by {σn,u1
n,u2

n; −∞ < n <∞}. From
Remark 2.3, since for any n∈ Z, the random variable ξn is generated by {σn,u1

n,u2
n}, then

ξn+1 =Uξn and {ξn; −∞ < n <∞} is stationary. Moreover, since {σn; −∞ < n <∞} is sta-
tionary and ergodic and the sequence {ξn; −∞ < n <∞} is compatible with the shift U ,
then by Remark 2.4 the sequence {ξn; −∞ < n <∞} is ergodic. We have

E
(
ξn
)= λEσ1− θ

λ+ θ
, (3.5)

so that if

λEσ1 <
θ

λ+ θ
(3.6)

holds, then E(ξn) < 0. With no loss of generality, we assume that X(0)= a≥ 0. Whatever
the choice of n0, the events An = TnA0, where

A0 =
⋂n0−1

k=0

{
ξ−1 + ···+ ξ−1−k ≤ 0

}⋂

l≥1

{
ξ−1 + ···+ ξ−n0−l ≤−a

}
, (3.7)

make a stationary sequence of renovation events with m=0 and g(y)≡y+ (see Borovkov
[10, Example 11.1]). Indeed, for n≥ n0,

X(n+ 1)= ξ+
n a.s. on An. (3.8)

Since E(ξn) < 0 and the sequence {ξn} is stationary and ergodic, then by the Birkhoff

strong law of large numbers for ergodic sequences, we have almost surely

lim
n→∞

1
n

−1∑

i=−n
ξi = Eξ1 < 0, (3.9)

and it follows that almost surely

lim
n→∞

(
ξ−1 + ···+ ξ−n

)=−∞, (3.10)



8 Stability of retrial queues with versatile retrial policy

hence there is a number n0 = n0(a) such that P(An) > 0 for n≥ n0. If, on the other hand,
the events Bn, the number m, and the function g :Rm+1 →R are defined as

m= n0, Bn = TmAn, g
(
y0, . . . , ym

)≡ y+
m, (3.11)

then the events Bn ∈ �ξ
n+m are renovating for {X(n)} on the segment [n,n +m] for all

n ≥ 0, so one can assume that n0 = 0. Hence, using Theorem 2.7, the sequence {X(n)}
is strong coupling convergent to a unique stationary sequence {Xn ≡ UnX0}, where X0

is �σ ,u-measurable, obeying the equation Xn+1 = (Xn + ξn)+, and the ergodicity follows
from Remark 2.4 and the fact that Xn is compatible with the shift U .

Let us now consider the case θ ≥ 0 and μ > 0. The renovation events An will be con-
structed now in two steps. We will first introduce a majorizing SRS X(n)∗ on the same
probability space, which will enable us to obtain simple stationary renovating events A∗n
with positive probability, and An will be obtained as some subsets of A∗n . The SRS X(n)∗

has the following form:

X(0)∗ = X(0), X(n+ 1)∗ =max
(
C,X(n)∗ + ξ∗n

)
, (3.12)

where

ξ∗n =
∏(

λσn,u1
n

)− I
(
u2
n ≤

θ +Cμ

λ+ θ +Cμ

)
. (3.13)

The sequence {ξ∗n } is measurable with respect to �σ ,u and ξ∗n+1 = Uξ∗n . From this and
Remarks 2.3 and 2.4 it follows that the sequence {ξ∗n } is stationary and ergodic. We choose
the constant C such that Eξ∗n < 0 if the condition λEσ1 < 1 holds, where

E
(
ξ∗n
)= λEσ1− θ +Cμ

λ+ θ +Cμ
. (3.14)

It follows that there exist renovation events A∗n = TnA∗0 , n ≥ n0, where A∗0 is defined as
(3.7) with the sequence {ξ∗n }, such that X(n)∗ = C on the set A∗n for all n ≥ n0. Define
the sets

B0 =
{∏(

λσ−k,u1
−k
)= 0, u2

−k ≤
θ + kμ

λ+ θ + kμ
, k = 1, . . . ,C

}
, Bn = TnB0. (3.15)

The sets An = A∗n−C ∩Bn form a stationary renovating sequence for X(n), since for all n≥
n0 +C, we have on An, the values X(n− k)≤ k, k = 0,1, . . . ,C, and in particular, X(n)= 0.
Moreover, P(A0) = P(A∗−C) P(B0 | A∗−C) > 0 (see Altman and Borovkov [2, pages 353-
354]). The strong coupling convergence of the processX(n) to a stationary ergodic regime
follows from Theorem 2.7. �

Remark 3.2. Although the conditions of Theorem 3.1 are sufficient for stability, we can
assert that they are necessary, since for SRS of the form X(n + 1) = (X(n) + ξn)+, the
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condition Eξn > 0 implies that the process X(n) converges in distribution to an improper
limiting sequence, that is, X(n)→∞ almost surely, and it can be extended under wide
assumptions to the case Eξn = 0 (see Borovkov [8, Theorem 1.7]).

4. Stability of the retrial queue with two types of customers

Consider now a retrial queue with two types of arriving customers, known as “impatient”
and “persistent.” If an impatient customer finds the server busy, then he leaves the system.
On the other hand, if a persistent customer arrives and finds the server busy, then he may
have access to the orbit and waits to be served later according to the versatile retrial policy
described above. Assume that the interarrival times {τ1

n} of type 1 (impatient) and {τ2
n}

of type 2 (persistent) are sequences of independent and identically distributed random
variables with exponential distributions with parameters λ1 > 0 and λ2 > 0, respectively.
The service times {σ1

n} (for type 1) and {σ2
n} (for type 2) are stationary and ergodic,

independent of each other and of {τ1
n}, {τ2

n}, orbit retrial times and retrial times of each

customer in orbit, and 0 < E(σ
j
n) <∞, j = 1,2. The sequences {τ1

n}, {τ2
n}, orbit retrial

times and retrial times of each customer in orbit are independent of each other. Let X(t)
be the number of customers in orbit at time t. Define sn to be the instant when the (n−
1)st service time ends. We consider the process X(n) embedded immediately after time
sn, (i.e., X(n) = X(s+

n)). Let u1
n and u2

n defined as in Section 3, and independent of the
sequences {σ1

n} and {σ2
n}, except that u2 = u2

n will generate now the type of request of
service: impatient customer, external persistent customer or persistent customer from
the orbit at the end of the successive service periods. The representation of the process
X(n) is

X(n+ 1)= (X(n) + ξn
)+

, (4.1)

where the driving sequence {ξn} is now of the form

ξn =
∏(

λ2σ
1
n ,u1

n

)
I
(
u2
n ≤

λ1

λ1 + λ2 + θ +X(n)μ

)

+
∏(

λ2σ
2
n ,u1

n

)
I
(

λ1

λ1 + λ2 + θ +X(n)μ
< u2

n ≤
λ1 + λ2

λ1 + λ2 + θ +X(n)μ

)

+
∏(

λ2σ
2
n ,u1

n

)
I
(

λ1 + λ2

λ1 + λ2 + θ +X(n)μ
< u2

n ≤ 1
)

− I
(

λ1 + λ2

λ1 + λ2 + θ +X(n)μ
< u2

n ≤ 1
)
.

(4.2)

Theorem 4.1. The process X(n) is strong coupling convergent to a unique stationary ergodic
regime if one of the following conditions is fulfilled:

(1) θ > 0, μ= 0, and (λ1 + λ2 + λ2(θEσ2 + λ1Eσ1 + λ2Eσ2))/(λ1 + λ2 + θ) < 1;
(2) θ ≥ 0, μ > 0, and λ2Eσ2 < 1.
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Proof. Consider the first case θ > 0 and μ= 0. Then the sequence {ξn} has the form

ξn =
∏(

λ2σ
1
n ,u1

n

)
I
(
u2
n ≤

λ1

λ1 + λ2 + θ

)

+
∏(

λ2σ
2
n ,u1

n

)
I
(

λ1

λ1 + λ2 + θ
< u2

n ≤
λ1 + λ2

λ1 + λ2 + θ

)

+
∏(

λ2σ
2
n ,u1

n

)
I
(

λ1 + λ2

λ1 + λ2 + θ
< u2

n ≤ 1
)
− I
(

λ1 + λ2

λ1 + λ2 + θ
< u2

n ≤ 1
)
.

(4.3)

Define the σ-algebras �σ ,u
n = σ(σ1

k ,σ2
k ,u1

k,u2
k; k ≤ n) and �σ ,u = σ(σ1

k ,σ2
k ,u1

k,u2
k; −∞ <

k <∞). Let U be the measure-preserving shift transformation of �σ ,u-measurable ran-
dom variables generated by {σ1

n ,σ2
n ,u1

n,u2
n; −∞ < n <∞}. Since ξn is generated by {σ1

n ,σ2
n ,

u1
n,u2

n}, then {ξn; −∞ < n <∞} is compatible with the shift U . Hence, from Remarks 2.3
and 2.4, the sequence {ξn; −∞ < n <∞} is stationary and ergodic. We have

E
(
ξn
)= λ2

(
θEσ2 + λ1Eσ1 + λ2Eσ2

)− θ

λ1 + λ2 + θ
, (4.4)

so that if

λ1 + λ2 + λ2
(
θEσ2 + λ1Eσ1 + λ2Eσ2

)

λ1 + λ2 + θ
< 1, (4.5)

then E(ξn) < 0 and the rest of the proof is similar to the first case of Theorem 3.1. For the
case θ ≥ 0 and μ > 0, we construct a majorizing SRS as follows:

X(0)∗ = X(0), X(n+ 1)∗ =max
(
C,X(n)∗ + ξ∗n

)
, (4.6)

where

ξ∗n =
∏(

λ2σ
1
n ,u1

n

)
I
(
u2
n ≤

λ1

λ1 + λ2 + θ +Cμ

)

+
∏(

λ2σ
2
n ,u1

n

)
I
(

λ1

λ1 + λ2 + θ +Cμ
< u2

n ≤
λ1 + λ2

λ1 + λ2 + θ +Cμ

)

+
∏(

λ2σ
2
n ,u1

n

)
I
(

λ1 + λ2

λ1 + λ2 + θ +Cμ
< u2

n ≤ 1
)
− I
(

λ1 + λ2

λ1 + λ2 + θ +Cμ
< u2

n ≤ 1
)

,

E
(
ξ∗n
)= λ2

(
λ1Eσ1 + λ2Eσ2

)

λ1 + λ2 + θ +Cμ
+

θ +Cμ

λ1 + λ2 + θ +Cμ

(
λ2Eσ2− 1

)
.

(4.7)

The sequence {ξ∗n } is measurable with respect to �σ ,u and ξ∗n+1 = Uξ∗n . From this and
Remarks 2.3 and 2.4, it follows that the sequence {ξ∗n } is stationary and ergodic. We
choose the constant C such that Eξ∗n < 0 if the condition λ2Eσ2 < 1 holds, and the rest of
the proof is similar to the second part of that of Theorem 3.1. �
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5. Stability of the retrial queue with breakdowns

Consider a single server retrial queue with the server subject to breakdowns. Primary cus-
tomers arrive from the outside according to a Poisson process with rate λ. We consider the
versatile retrial policy for the access from the orbit to the server as described in Section 3.
Assume that the server fails at times βi, i = 1,2, . . ., according to a Poisson process with
rate α, that is, the server fails after an exponential amount of time with mean 1/α. If a
breakdown occurs at time βi, the server takes immediately a repair time ri, i = 1, 2, . . . .
We assume that after a repair time the server is as good as new and the service of a cus-
tomer is cumulative.

We assume that the service times {σn} and repair times {ri} are stationary and ergodic
and independent of each other. The interarrival times, orbit retrial times, retrial times of
each customer in orbit, and breakdown times are independent of each other and of the
sequences {σn} and {ri}. Denote by r(n) = (r(n)

k , k = 1,2, . . .) the sequence of repair times
that occur during the service time σn. Let X(t) be the number of customers in orbit at
time t. Define sn to be the instant when the (n− 1)st service time ends. We consider the
process X(n) embedded immediately after time sn, (i.e., X(n) = X(s+

n)). Let u1
n, u2

n, u3
n,

and u(n)
i be i.i.d. sequences of random variables distributed uniformly on [0,1], mutually

independent and independent of the sequences {σn} and {ri}. u1 = {u1
n} will generate the

arrival process, u2 = {u2
n} will generate the occurrence of breakdowns, u3

n will generate
the type of arrival (external or from the orbit) at the end of the successive service periods,

and u(n)
i will generate the arrival process during the ith repair time that occurs during the

nth service time, denote by u(n) = (u(n)
i , i= 1,2, . . .). We have the following representation

of the process X(n):

X(n+ 1)= (X(n) + ξn
)+

, (5.1)

where

ξn =
∏(

λσn,u1
n) +

∏
(ασn,u2

n)∑

i=1

∏(
λr(n)

i ,u(n)
i

)− I
(
u3
n ≤

θ +X(n)μ
λ+ θ +X(n)μ

)
(5.2)

is the driving sequence.

Theorem 5.1. The process X(n) is strong coupling convergent to a unique stationary ergodic
regime if one of the following conditions is fulfilled:

(1) θ > 0, μ= 0, and λEσ1(1 +αEr1) < θ/(λ+ θ);
(2) θ ≥ 0, μ > 0, and λEσ1(1 +αEr1) < 1.

Proof. Note that
∏

(λσn,u1
n) and

∏
(λri,u

(n)
i ) represent the number of arrivals during the

nth service time σn and the ith repair time ri, respectively.
∏

(ασn,u2
n) counts the number

of breakdowns during the processing of the nth service duration σn. If θ > 0 and μ = 0,
then the driving sequence (5.2) has the following form:

ξn =
∏(

λσn,u1
n

)
+

∏
(ασn,u2

n)∑

i=1

∏(
λri,u

(n)
i

)− I
(
u3
n ≤

θ

λ+ θ

)
. (5.3)
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Define the σ-algebras �σ ,u,r
n = σ(σk,r(k),u(k),u1

k,u2
k,u3

k; k ≤ n) and �σ ,u,r = σ(σk,r(k),
u(k),u1

k,u2
k,u3

k; −∞ < k <∞). Let U be the measure-preserving shift transformation of
�σ ,u,r-measurable random variables generated by {σn,r(n),u(n),u1

n,u2
n,u3

n; −∞ < n <∞},
then the sequence {ξn} is measurable with respect to �σ ,u,r , and by Remarks 2.3 and 2.4,
{ξn} is stationary and ergodic. From the Wald’s equation and the memoryless property
of the Poisson process, we get

Eξn = λEσ1 +
(
αEσ1

)(
λEr1

)− θ

λ+ θ
. (5.4)

So if λEσ1(1 +αEr1) < θ/(λ+ θ), then Eξn < 0, and the rest of the proof of the first condi-
tion is similar to that of Theorem 3.1.

We now study the case θ ≥ 0 and μ > 0. Consider the following majorizing SRS:

X∗(0)= X(0), X∗(n+ 1)=max
(
C,X∗(n) + ξ∗n

)
, (5.5)

where C is an arbitrary integer and

ξ∗n =
∏(

λσn,u1
n

)
+

∏
(ασn,u2

n)∑

i=1

∏(
λri,u

(n)
i

)− I
(
u3
n ≤

θ +Cμ

λ+ θ +Cμ

)
. (5.6)

The sequence {ξ∗n } is measurable with respect to �σ ,u,r . From this and Remarks 2.3 and
2.4, it follows that the sequence {ξ∗n } is stationary and ergodic. If the condition λEσ1(1 +
αEr1) < 1 holds, we can easily find a constant C such that Eξ∗n < 0, where now

E
(
ξ∗n
)= λEσ1 +

(
αEσ1

)(
λEr1

)− θ +Cμ

λ+ θ +Cμ
. (5.7)

The rest of the proof of the second condition is similar to that of Theorem 3.1. �

6. Stability of the retrial queue with negative customers

We consider now the stability of a single server retrial queue with two types of arrivals,
regular and negative. In retrial queues, a regular arriving customer who finds the server
busy joins the orbit, and reapplies for service after a random amount of time; otherwise, if
he finds the server idle, he receives service and leaves the system. When a negative arrival
occurs in a busy system, it immediately removes one regular customer from the orbit if
present. Otherwise, if the server is idle, it has no effect on the system. Regular customers
arrive from the outside according to a Poisson process with rate λ. The access from the
orbit to the server follows the versatile retrial policy. We assume that the service times
{σn} of regular customers are general stationary ergodic. The negative customers arrive
according to a Poisson process with rate δ. The interarrival times of regular customers,
interarrival times of negative customers, orbit retrial times and retrial times of each cus-
tomer in orbit are independent of each other and of the sequence {σn}. Let u1

n, u2
n, and

u3
n be three i.i.d. sequences of random variables distributed uniformly on [0,1], mutually

independent and independent of the sequences {σn}. u1 = {u1
n} will generate the arrival
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process of the regular customers, u2 = {u2
n} will generate the arrival process of the nega-

tive customers, and u3
n will generate the type of arrival that gains the server (external or

from the orbit) at the end of the successive service periods. Let X(n) be defined as above
and it has now the following representation:

X(n+ 1)= (X(n) + ζn−ηn
)+

, (6.1)

where

ζn =
∏(

λσn,u1
n

)− I
(
u3
n ≤

θ +X(n)μ
λ+ θ +X(n)μ

)
, (6.2)

ηn =
∏(

δσn,u2
n

)
. (6.3)

Theorem 6.1. The process X(n) is strong coupling convergent to a unique stationary and
ergodic regime if one of the following conditions is fulfilled:

(1) θ > 0, μ= 0, and ((λ− δ)(λ+ θ)/θ)Eσ1 < 1;
(2) θ ≥ 0, μ > 0, and (λ− δ)Eσ1 < 1.

Proof. Consider the first case θ > 0 and μ= 0. Then the sequence (6.2) has the form

ζn =
∏(

λσn,u1
n

)− I
(
u3
n ≤

θ

λ+ θ

)
. (6.4)

Define the σ-algebras �σ ,u
n = σ(σk,u1

k,u2
k,u3

k; k ≤ n) and �σ ,u = σ(σk,u1
k,u2

k,u3
k; −∞ < k <

∞). Let U be the measure-preserving shift transformation of �σ ,u-measurable random
variables generated by {σn,u1

n,u2
n,u3

n; −∞ < n <∞}. Since the sequence ζn is generated by
{σn,u1

n,u3
n} and ηn is generated by {σn,u2

n}, then by Remarks 2.3 and 2.4, ζn and ηn are
stationary and ergodic. E(ζn−ηn)= λEσ1− θ/(λ+ θ)− δEσ1 and if

(λ− δ)(λ+ θ)
θ

Eσ1 < 1, (6.5)

then we have E(ζn−ηn) < 0, and the rest of the proof is similar to the first part of Theorem
3.1.

Let us study now the case θ ≥ 0 and μ > 0. We follow the same method of the second
parts of the above theorems by constructing a majorizing SRS X∗(n) defined as follows:

X∗(0)= X(0), X∗(n+ 1)=max
(
C,X∗(n) + ζ∗n −ηn

)
, (6.6)

where

ζ∗n =
∏(

λσn,u1
n

)− I
(
u3
n ≤

θ +Cμ

λ+ θ +Cμ

)
. (6.7)

The sequence {ζ∗n } is measurable with respect to �σ ,u. From this and Remarks 2.3 and 2.4,
it follows that the sequence {ζ∗n } is stationary and ergodic. If (λ− δ)Eσ1 < 1, we can easily
find a constant C such that E(ζ∗n − ηn)= (λ− δ)Eσ1− (θ +Cμ)/(λ+ θ +Cμ) < 0. The rest
of the proof is similar to the second part of Theorem 3.1. �
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7. Stability of the retrial queue with batch arrivals

Consider a single server retrial queue with the versatile retrial policy. Let us now consider
that at every arrival epoch tk, k = 1,2, . . . , a random batch of ak customers enters the sys-
tem. If the server is busy at the arrival epoch, then the whole batch of customers joins the
orbit, whereas if the server is free, then one of the arriving customers starts his service
and the others join the orbit. We assume that the input flow of customers occurs accord-
ing to a Poisson process with rate λ, the sequence of batch sizes {ak} is independent and
identically distributed with general distribution and mean a, where 0 < a <∞. The nth
service time of a customer is σn, where 0 < Eσn <∞, and we assume that the sequence
{σn} is stationary and ergodic. We denote by a(n) = (a(n)

k , k = 1,2, . . .) the size of batches
of the arrivals that occur during the service time σn. We assume that the input flow of
customers, size of batches, orbit retrial times, retrial times of each customer in orbit and
service times are mutually independent.

Let X(n) be defined as above and it has the following representation as an SRS:

X(n+ 1)= (X(n) + ξn
)+

, (7.1)

where

ξn =
∏

(λσn,u1
n)∑

k=1

a(n)
k +

(
a1− 1

)
I
(
u2
n ≤

λ

λ+ θ +X(n)μ

)
− I
(

λ

λ+ θ +X(n)μ
< u2

n ≤ 1
)

,

(7.2)

and a1 is the size batch of the first arrival that gains the server if the arrival occurs before
a repeated attempt.

Theorem 7.1. The process X(n) is strong coupling convergent to a unique stationary and
ergodic regime if one of the following conditions is fulfilled:

(1) θ > 0, μ= 0, λ(a− 1) < θ, and λaEσ1 < (λ(1− a) + θ)/(λ+ θ);
(2) θ ≥ 0, μ > 0, and λaEσ1 < 1.

Proof. Consider the first case θ > 0 and μ= 0, so the driving sequence (7.2) will have the
following form:

ξn =
∏

(λσn,u1
n)∑

k=1

a(n)
k +

(
a1− 1

)
I
(
u2
n ≤

λ

λ+ θ

)
− I
(

λ

λ+ θ
< u2

n ≤ 1
)
. (7.3)

Define the σ-algebras �σ ,u,a
n = σ(σk,u1

k,u2
k,a(k); k ≤ n) and �σ ,u,a = σ(σk,u1

k,u2
k,a(k); −∞ <

k <∞) and we assume that a1 is measurable with respect to �σ ,u,a
n and �σ ,u,a. Let U be

the measure-preserving shift transformation of �σ ,u,a-measurable random variables gen-
erated by {σn,u1

n,u2
n,a(n); −∞ < n <∞}. The sequence {ξn} is �σ ,u,a-measurable, then by

Remarks 2.3 and 2.4, {ξn} is stationary and ergodic. We have

Eξn = λaEσ1 + (a− 1)
λ

λ+ θ
− θ

λ+ θ
= λaEσ1 + a

λ

λ+ θ
− 1, (7.4)
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and if the condition λaEσ1 < (λ(1− a) + θ)/(λ+ θ) holds, then Eξn < 0. The condition
λ(a− 1) < θ follows from the fact that λ(1− a) + θ must be positive. The rest of the proof
is the same as the first part of Theorem 3.1.

Consider now the second part when θ ≥ 0 and μ > 0. The majorizing SRS has now the
form

X∗(0)= X(0), X∗(n+ 1)=max
(
C,X∗(n) + ξ∗n

)
, (7.5)

where

ξ∗n =
∏

(λσn,u1
n)∑

k=1

a(n)
k +

(
a1− 1

)
I
(
u2
n ≤

λ

λ+ θ +Cμ

)
− I
(

λ

λ+ θ +Cμ
< u2

n ≤ 1
)
. (7.6)

The sequence {ξ∗n } is measurable with respect to �σ ,u,a. From this and Remarks 2.3 and
2.4, it follows that the sequence {ξ∗n } is stationary and ergodic. We have E(ξ∗n )= λaEσ1 +
a(λ/(λ+ θ +Cμ))− 1, so if the condition λaEσ1 < 1 holds, we can choose the constant C
as large as possible to have E(ξ∗n ) < 0. The rest of the proof is similar to the second part of
Theorem 3.1. �
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