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This paper is concerned with the nonlinear Schrödinger equation with an unbounded po-
tential iϕt =−�ϕ+V(x)ϕ−μ|ϕ|p−1ϕ− λ|ϕ|q−1ϕ, x ∈RN , t ≥ 0, where μ > 0, λ > 0, and
1 < p < q < 1 + 4/N . The potential V(x) is bounded from below and satisfies V(x)→∞ as
|x| →∞. From variational calculus and a compactness lemma, the existence of standing
waves and their orbital stability are obtained.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

In this paper, we consider the nonlinear Schrödinger equation with an unbounded po-
tential

iϕt =−�ϕ+V(x)ϕ−μ|ϕ|p−1ϕ− λ|ϕ|q−1ϕ, x ∈RN , t ≥ 0, (1.1)

where μ > 0, λ > 0, and 1 < p < q < 1 + 4/N . The potential V(x) is bounded from be-
low and satisfies V(x)→∞ as |x| → ∞. Equation (1.1) has its physical background. For
example, when V(x)= |x|2, it models the Bose-Einstein condensate with attractive inter-
particle interactions under magnetic trap [2, 7, 11, 17, 20].

When |DαV | is bounded for all |α| ≥ 2, in terms of the smoothness of the time 0
of Schrödinger kernel for potentials of quadratic growth provided by Fujiwara [9], Oh
[13] established the local well-posedness of (1.1) in the corresponding energy space.
Since Yajima [19] showed that for superquadratic potentials, the Schrödinger kernel is
nowhere C1, we see that quadratic potentials are the highest-order potential for local
well-posedness of (1.1). Thus the result of Oh [13], the local well-posedness of nonlinear
Schrödinger equation with the potential function V(x), is indeed sharp.

We are interested in the following standing waves of (1.1):

ϕ(t,x)= eiwtu(x), (1.2)
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where w ∈ R is a parameter and u(x) is the solution of the nonlinear elliptic equation

−�u+V(x)u+wu−μ|u|p−1u− λ|u|q−1u= 0. (1.3)

The interesting topics to investigate standing waves are pursued strongly by many physi-
cians and mathematicians [4, 3, 12, 14, 16].

For (1.3), Ding and Ni [8] by using “mountain pass” and comparison arguments got
the existence of positive solutions. Rabinowitz [15] and Zhang [20, 21] also studied the
existence of the solutions for (1.3) by the method of variation. Hirose and Ohta [10]
studied the uniqueness of the solution for (1.3).

In this paper, for 1 < p < q < 1 + 4/N , we establish the existence of the standing waves
with the ground state of (1.1) by variational calculus which originates in Berestycki [1],
Cazenave and Lions [6], Weinstein [18], and Zhang [20–23]. Furthermore, we prove the
standing waves are orbitally stable.

This paper is organized as follows. In the second section, we give some necessary pre-
liminaries which include the compactness lemma. In the third section, we prove the exis-
tence of the standing waves. And in the last section, we obtain their orbital stability.

2. Preliminaries

For (1.1), we impose the initial value as follows:

ϕ(x,0)= ϕ0(x), x ∈RN . (2.1)

In the course of nature, we set

H :=
{
u∈H1(RN

)
:
∫
V(x)|u|2dx <∞

}
. (2.2)

Here and hereafter, for simplicity, we denote
∫
RN dx by

∫
dx. H becomes a Hilbert space,

continuously embedded in H1(RN ), when endowed with the inner product

〈ϕ,ψ〉H =
∫
	ϕ	ψ +ϕψ +

(
V(x)− infV(x)

)
ϕψ dx, (2.3)

whose associated norm is denoted by ‖ · ‖H .

Lemma 2.1 [5, 13]. Let V(x) satisfy that infV(x) > −∞ and for each |α| ≥ 2, |DαV | is
bounded, 1 < p < q < 1 + 4/N , and ϕ0 ∈H . Then there exists a unique solution ϕ(t,x) of the
Cauchy problem (1.1), (2.1) in ([0,∞);H), and ϕ(t,·) satisfies the following two conserva-
tion laws of the mass

M(ϕ)=
∫
|ϕ|2dx =

∫ ∣∣ϕ0
∣∣2
dx =M(ϕ0

)
(2.4)

and energy

E(ϕ)=
∫
|	ϕ|2 +V(x)|ϕ|2− 2μ

p+ 1
|ϕ|p+1− 2λ

q+ 1
|ϕ|q+1dx = E(ϕ0

)
(2.5)

for all t ∈ [0,∞).
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Lemma 2.2. IfV(x)→∞ as |x| →∞, let 1≤ p<(N + 2)/(N − 2) whenN≥3 and 1≤ p<∞
when N = 1,2. Then the embedding H↩Lp+1(RN ) is compact.

Proof. We firstly show it for p = 1.
SinceH↩H1(RN ) continuously, it follows from the Sobolev embedding theorem that

H↩Lp+1(RN ) continuously. Now let {un}n ⊂H be a sequence such that

un⇀ 0 weakly in H. (2.6)

Then we have

un⇀ 0 weakly in H1(RN
)
. (2.7)

Moreover, we have M := supn‖un‖H <∞. Let ε > 0. Then there exists B > 0 such that
1/V(x)≤ ε for |x| ≥ B. For B, from (2.7), we have

un −→ 0 in L2({|x| ≤ B}). (2.8)

It follows that there exists m> 0 such that∫
|x|≤B

∣∣un∣∣2
dx ≤ ε for n≥m. (2.9)

Then when n≥m, we get
∫ ∣∣un∣∣2

dx =
∫
|x|≤B

∣∣un∣∣2
dx+

∫
|x|≥B

∣∣un∣∣2
dx

≤ ε+ ε
∫
|x|≥B

V(x)
∣∣un∣∣2

dx ≤ ε+ εCM2.
(2.10)

Here and hereafter C denotes various positive constant. Thus we get that

un −→ 0 in L2(RN
)
. (2.11)

It follows that the embedding H↩L2(RN ) is compact.
For p > 1, using the conclusion of p = 1 and the Gagliardo-Nirenberg inequality,

‖u‖p+1
Lp+1(RN ) ≤ C‖	u‖

N(p−1)/2
L2(RN ) ‖u‖p+1−N(p−1)/2

L2(RN ) , (2.12)

we can get the conclusion immediately. �

3. The existence of standing waves

Firstly, we define a variational problem as follows:

dρ := inf
{u∈H\{0}:∫ |u|2dx=ρ}

E(u) for any ρ > 0. (3.1)

Theorem 3.1. If 1 < p < q < 1 + 4/N , then

dρ = min
{u∈H\{0}:∫ |u|2dx=ρ}

E(u) for any ρ > 0. (3.2)
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Proof. Choose the minimizing sequence {un}n∈N of the variational problem (3.1). There-
fore, we have

un ∈H\{0}, E(un)−→ d as n−→∞, (3.3)∫ ∣∣un∣∣2
dx = ρ. (3.4)

By the Gagliardo-Nirenberg inequality and (3.4), for 1 < p < q < 1 + 4/N , one has

∫ ∣∣un∣∣p+1
dx ≤ C

(∫ ∣∣	un∣∣2
dx
)θ1

,
∫ ∣∣un∣∣q+1

dx ≤ C
(∫ ∣∣	un∣∣2

dx
)θ2

, (3.5)

where 0 < θ1 < θ2 < 1. Hence, from (3.3) and (3.5), we have

C ≥
∫ ∣∣	un∣∣2

+V(x)
∣∣un∣∣2− 2μ

p+ 1

∣∣un∣∣p+1− 2λ
q+ 1

∣∣un∣∣q+1
dx

≥ 1
2

∫ ∣∣	un∣∣2
dx−C

(∫ ∣∣	un∣∣2
dx
)θ1

+
1
2

∫ ∣∣	un∣∣2
dx−C

(∫ ∣∣	un∣∣2
dx
)θ2

+
∫ (

V(x)− infV(x)
)∣∣un∣∣2

dx+
∫

infV(x)
∣∣un∣∣2

dx.

(3.6)

Let f (x)= x−Cxθ and x > 0, where θ ∈ (0,1) and C > 0. One has
(10) when x = 0 or x = C1/(1−θ), f (x)= 0;
(20) f ′(x)= 1−Cθxθ−1 and f ′(C1/(1−θ))= 1− θ > 0;
(30) f ′′(x)= Cθ(1− θ)xθ−2 > 0 as x > 0.

From the Taylor expansion of f (x),

f (x)= f
(
x0
)

+ f ′
(
x0
)(
x− x0

)
+
f ′′(ξ)

2

(
x− x0

)2
, (3.7)

where ξ is between x0 and x, and choosing x0 = C1/(1−θ), one has

f (x)≥ (1− θ)x− (1− θ)C1/(1−θ). (3.8)

Therefore, by (3.4), (3.6), and (3.8), it yields that {un}n∈N is bounded in H . Therefore,
there exists u∈H such that the subsequence of {un}n∈N which we still denote by {un}n∈N
satisfies

un⇀ u in H. (3.9)

By Lemma 2.2, one has

un −→ u in L2(RN
)
,

un −→ u in Lp+1(RN
)
, in Lq+1(RN

)
.

(3.10)
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Therefore, it follows from (3.4) and (3.10) that
∫
|u|2dx = ρ, (3.11)

which implies that E(u)≥ dρ. From (3.10) and with

F(u) :=
∫
|	u|2 +

(
V(x)− infV(x)

)|u|2dx (3.12)

being coercive and convex, one has

F(u)≤ lim
n→∞ inf F

(
un
)
. (3.13)

From (3.3), (3.9), (3.10), (3.11), and (3.13), it follows that E(u)= dρ. The proof is com-
plete. �

For any ρ > 0, let Ωρ denote the set of the minimizers of the variational problem (3.2).
Then for any u∈Ωρ, by Theorem 3.1, there must exist a Lagrange multiplier w such that

−�u+V(x)u+wu−μ|u|p−1u− λ|u|q−1u= 0. (3.14)

It follows that ϕ(t,x) = eiwtu(x) is the standing wave solution of (1.1), which also called
ground state since u is a minimizer of (3.2). Thus eiwtu(x) is the orbit of u. It is obvious
that for any t ≥ 0, if u is a solution of (3.2), then eiwtu is also a solution of (3.2), which
yields eiwtu∈Ωρ.

4. Orbital stability of standing waves

Now in terms of Cazenave and Lion’s argument [6], we have the following orbital stability.

Theorem 4.1. Assume that V(x) satisfies that infV >−∞, V(x)→∞ as |x| →∞ and for
each |α| ≥ 2, |DαV | is bounded. Let 1 < p < q < 1 + 4/N . Then the standing waves of the
Cauchy problem (1.1), (2.1) are orbitally stable. In other words, for arbitrary ε > 0, there
exists a σ > 0 such that for any ϕ0 ∈H , if

inf
u∈Ωρ

∥∥ϕ0−u
∥∥
H < σ , (4.1)

then

inf
u∈Ωρ

∥∥ϕ(x, t)−u(x)
∥∥
H < ε ∀t ≥ 0. (4.2)

Proof. Firstly, for any ϕ0 ∈H , from Lemma 2.1, the corresponding solution ϕ(x, t) of the
Cauchy problem (1.1), (2.1) is global and bounded in H . Now arguing by contradic-
tion, if the conclusion of the theorem does not hold, then there exist a ε0 > 0, a sequence
{ϕn0}n∈N ⊂H such that

inf
u∈Ωρ

∥∥ϕn0 −u
∥∥
H <

1
n

, (4.3)
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and a sequence {tn}n∈N such that

inf
u∈Ωρ

∥∥ϕn(tn,·)−u(·)∥∥H ≥ ε0, (4.4)

where ϕn denotes the solution of the Cauchy problem (1.1), (2.1) with the initial value
ϕn0.

From (4.3) and Lemma 2.2, we have

M
(
ϕn0
)=

∫ ∣∣ϕn0
∣∣2
dx −→

∫
|u|2dx,

E
(
ϕn0
)−→ E(u).

(4.5)

It follows from (4.5) and the conservation laws in Lemma 2.1 that {ϕn(t,·)}n∈N is a min-
imizing sequence for the problem (3.2). Therefore, there exists a u∈Ωρ such that

∥∥ϕn(tn,·)−u∥∥H −→ 0 as n−→∞. (4.6)

This is contradictory with (4.4). The proof is complete. �
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