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1. Introduction

Variational inequalities were introduced and considered by Stampacchia [1] in early six-
ties. It has been shown that a wide class of linear and nonlinear problems arising in vari-
ous branches of mathematical and engineering sciences can be studied in the unified and
general framework of variational inequalities. Variational inequalities have been general-
ized and extended in several directions using new techniques. Giannessi [2] introduced
a new class of variational inequalities, which is vector variational inequality. Vector vari-
ational inequalities have many applications in vector optimization, approximate vector
optimization, and other areas (see, e.g., [3]). Noor [4] introduced a class of variational
inequalities involving two operators, which are called general variational inequalities. It
has been shown that nonsymmetric and odd-order obstacle, free, moving, and equilib-
rium problems can be studied via the general variational inequalities. For the applica-
tions, formulation, and numerical methods for solving variational inequalities, see [5–8]
and the references therein.

Inspired and motivated by the recent research activities going on in this dynamic field,
we introduce a new class of complementarity problems for η-pseudomonotone maps.
Moreover, we obtain an existence result for their solutions in real Hausdorff topological
vector spaces setting for a moving cone by relaxing continuity and compactness. This is
done by using a new version of famous Ky Fan lemma which is due to Ben-El-Mechaiekh
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et al. [9]. Our results represent an improvement and refinement of the recent results
obtained in [10].

In the rest of this section, we recall some definitions and preliminaries results which
are used in the next section.

We will denote by 2A the family of all subsets of A and by �(A) the family of all
nonempty finite subsets of A. Let X be a real Hausdorff topological vector space (t.v.s.).
A nonempty subset P of X is called convex cone if (i) P +P = P, (ii) λP ⊆ P, for all λ≥ 0.
Cone P is said to be pointed whenever P∩ −P = {0}. Let Y be a t.v.s. and let P ⊆ Y be a
cone. The cone P induces an ordering on Y (in this case the pair (Y, P) is called an ordered
t.v.s.) which is defined as follows:

x ≤ y⇐⇒ y− x ∈ P. (1.1)

This ordering is antisymmetric if P is pointed. Let K be a nonempty convex subset of a
t.v.s. X and let K0 be a subset of K . A multivalued map Γ : K0→2K is said to be a KKM
map if

coA⊆
⋃

x∈AΓ(x), ∀A∈�
(
K0
)
, (1.2)

where co denotes the convex hull.

Definition 1.1 (see [9]). Consider a subset A of a topological vector space and a topolog-
ical space Y. A family {Ci,Ki}i∈I of pairs of sets is said to be coercing for a map G : A→2Y

if and only if
(i) for each i∈ K ,Ci is contained in a compact convex subset of A, and Ki is a com-

pact subset of Y ;
(ii) for each i, j, there exists k ∈ I such that Ci∪Cj ⊆ Ck;

(iii) for each i∈ I , there exists k ∈ I with
⋂

x∈Ck
G(x)⊆ Ki.

Theorem 1.2 (see [9]). Let F : K→2Y be a KKM map with compactly closed (in K) values.
If F admits a coercing family, then

⋂
x∈KF(x) �=∅.

2. Main results

Throughout this section we let X and Y be two topological vector spaces, K a nonempty
convex subset of X ,C : K→2Y with convex cone values, and let η : K ×K→L(X ,Y) and
T : K→L(X ,Y) be two nonlinear mappings.

We consider two following problems; the first is called nonlinear vector variational
inequality (NVVI) problem with respect to η that consists in finding x ∈ K such that

〈
T(x),η(y,x)

〉∈ C(x), ∀y ∈ K. (2.1)

The second problem is called dual nonlinear vector variational inequality (DNVVI) prob-
lem with respect to η that consists in finding x ∈ K such that

〈
T(y),η(x, y)

〉∈ −C(y), ∀y ∈ K. (2.2)

We denote the solution set of (2.1) and (2.2) with NVVIS and DNVVIS, respectively.
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Definition 2.1. T is C-pseudomonotone with respect to η if, for all x, y ∈ K , the following
implication holds:

〈
T(x),η(y,x)

〉∈ C(x)=⇒ 〈T(y),η(x, y)
〉∈ −C(y). (2.3)

Remark that the definition of monotonicity of T with respect to η given in [10] implies
C-pseudomonotonicity of T with respect to η, for a constant cone C, that is C(x)= C, for
all x ∈ K .

Definition 2.2. T is said to beC-upper sign continuous with respect to η if, for all x, y ∈ K ,
the following holds:

〈
T(u),η(y,u)

〉∈ C(u), ∀u∈ ]x, y[=⇒ 〈T(x),η(x, y)
〉∈ C(x). (2.4)

Let us recall that the above definition is a very weak kind of continuity. This notion is
introduced by Hadjisavvas [11] in the framework of variational inequalities and later by
Bianchi and Pini [12] for real bifunctions.

The following proposition improves Theorem 3.1 in [10].

Proposition 2.3. If η is antisymmetric, that is, η(x, y)=−η(y,x), the set {y ∈ K : 〈T(x),
η(y,x)〉 = 0} = {x}, and T is C-pseudomonotone with respect to η, then the solution set of
(NVVI) is empty or singleton.

Proof. Let x1, x2 be two solutions of (NVVI). Hence

〈
T
(
x1
)
,η
(
x2,x1

)〉∈ C
(
x1
)
,

〈
T
(
x2
)
,η
(
x1,x2

)〉∈ C
(
x2
)
. (2.5)

From C-pseudomonotone with respect to η of T , η is antisymmetric, and from (2.1), we
get

〈
T
(
x2
)
,η
(
x1,x2

)〉∈ C
(
x2
)∩ −C

(
x2
)= {0}. (2.6)

Thus

x1 ∈
{
y ∈ K :

〈
T
(
x2
)
,η
(
y,x2

)〉= 0
}= {x2

}
. (2.7)

This completes the proof. �

The following theorem generalizes Theorem 3.2 in [10].

Theorem 2.4. Let T : K→L(X ,Y) and η : K ×X→L(X ,Y) be two mappings satisfying the
following conditions:

(i) T is C-pseudomonotone with respect to η;
(ii) η is convex in the first variable with η(x,x)= 0, for all x ∈ K ;

(iii) T is C-upper sign continuous with respect to η.
Then, NVVIS = DNVVIS.

Proof. By the definition of C-pseudomonotone with respect to η, we have

NVVIS⊆DNVVIS. (2.8)
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Conversely, let x0 ∈DNVVIS and x ∈ K. By letting xt = x0 + t(x− x0), for t ∈ ]0,1[, from
(2.2), we have

〈
Txt,η

(
x0,xt

)〉∈ −C
(
xt
)
. (2.9)

If 〈T(xs),η(x,xs)〉 �∈ C(xs), for some s∈ ]0,1[, then it is obvious from (2.9) and (ii) that

0= 〈T(xs),(1− s)η(x0,xs) + sη(x,xs)−η(xs,xs)) �∈ C(xs), (2.10)

which is a contradiction, since C(xs) is a pointed convex cone and 0 ∈ C(xs). Hence we
have

〈
T(xs),η(x,xs)

〉∈ C
(
xs
)
, ∀s∈ ]0,1[. (2.11)

Now, (iii) entails the result. �

Theorem 2.5. Assume that
(i) for each x ∈ K , η(x,x)= 0, and any compact subset W of K , the set {y ∈W : 〈Ty,

η(x, y)〉 ∈ C(y)} is closed in W ;
(ii) for each finite subset A of K and any y ∈ coA\A, there exists x ∈ A such that

〈Ty,η(x, y)〉 ∈ C(y);
(iii) there exist compact subset B and compact convex subset D of K such that for all

x ∈ K\B, ∃y ∈D;〈Tx,η(y,x)〉 �∈ C(x).
Then the NVVIS is nonempty and compact.

Proof. We define Γ : K→2K as follows:

Γ(y)= {x ∈ K :
〈
Tx,η(y,x)

〉∈ C(x)
}
. (2.12)

By (i), Γ has compactly closed values. We claim that Γ is a KKM mapping. Indeed, if it
is false, then there exist elements y1, y2, ..., yn of K and z ∈ co({y1, y2, ..., yn}) such that
z �∈⋃n

i=1Γ(yi). Thus by the definition of Γ, we have 〈Tz,η(yi,z)〉 �∈ C(z), for i= 1,2, ...,n,
which is a contradiction (by (ii)). It is clear that {(D,B)} is a coercing family for Γ. Now,
by Theorem 1.2, NVVIS=⋂ x∈KΓ(x) �=∅. Using (iii), we obtain

NVVIS=
⋂

x∈KΓ(x)⊆ B, (2.13)

and hence

NVVIS=
⋂

x∈KΓ(x)=
⋂

x∈K
(
Γ(x)∩B

)
, (2.14)

which is closed in B (by (i)), and so a compact subset of B. �

Theorem 2.6. Assume that
(i) for each x ∈ K , η(x,x)= 0, and any compact subset W of K , the set {y ∈W : 〈Ty,

η(y,x)〉 ∈ −C(y)} is closed in W ;
(ii) for each finite subset A of K and any y ∈ coA\A, there exists x ∈ A such that

〈Ty,η(y,x)〉 ∈ −C(x);
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(iii) there exist compact subset B and compact convex subset D of K such that for all
x ∈ K\B,∃y ∈D;〈Ty,η(x, y)〉 �∈ −C(y).

Then the DNVVIS is nonempty and compact.

Proof. We define Γ : K→2K as follows:

Γ(y)= {x ∈ K :
〈
Ty,η(x, y)

〉∈ −C(y)
}
. (2.15)

By (i), Γ has compactly closed values. By (ii), Γ is a KKM mapping. It is obvious that
{(D,B)} is a coercing family for Γ. Now, by Theorem 1.2, DNVVIS = ⋂ x∈KΓ(x) �=∅.
Moreover, using (iii),

DNVVIS=
⋂

x∈KΓ(x)⊆ B, (2.16)

and hence

DNVVIS=
⋂

x∈KΓ(x)=
⋂

x∈K
(
Γ(x)∩B

)
, (2.17)

which is closed in B (by (i)), and so a compact subset of B. �
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