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We establish the existence of a stochastic integral in a nuclear space setting as follows. Let E, F,
and G be nuclear spaces which satisfy the following conditions: the spaces are reflexive, complete,
bornological spaces such that their strong duals also satisfy these conditions. Assume that there
is a continuous bilinear mapping of E × F into G. If H is an integrable, E-valued predictable
process and X is an F-valued square integrable martingale, then there exists a G-valued process
(
∫
HdX)t called the stochastic integral. The Lebesgue space of these integrable processes is studied

and convergence theorems are given. Extensions to general locally convex spaces are presented.

1. Introduction

In this note, we announce the existence of a stochastic integral in a nuclear space setting. The
nuclear spaces are assumed to have special properties which are given in Section 3.1 below.
Our main result will now be stated. All definitions and pertinent concepts will be given in
Sections 2 and 3, as well as a presentation of the construction.

Theorem 1.1. Let E, F, and G be nuclear spaces which satisfy the special conditions listed in
Section 3.1, and suppose that there is a continuous bilinear mapping of E × F into G. Assume that
X is an F-valued square integrable martingale.

IfH is a bounded E-valued predictable process, then there exists aG-valued process (
∫
H dX)t,

called the stochastic integral of H with respect to X, which is a square integrable martingale.
If we further assume thatG has a countable basis of seminorms, then the above conclusion holds

when H is a predictable E-valued process, which is integrable with respect to X (in this case, H is, in
general, unbounded).

This result extends the theory of nuclear stochastic integration of Ustunel [1] in several
directions. In [1] it is assumed that F is the strong dual of E and G is the real number field,
and furthermore H is assumed to be bounded. To develop our theory, we modify the vector
bilinear integral developed in [2] for Banach spaces. After defining the space L2

G, G locally
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convex, the above bilinear integration theory will be applied when we use the property that
a complete nuclear space is a projective limit of a family of Hilbert spaces.

In Section 2 we will present the underlying integration theory, and apply this, in
Section 3, to construct the stochastic integral.

We omit the proofs in some of the integration theorems since they follow along the
usual lines, with appropriate modifications necessary in a general setting (see [2, 3]).

2. Bilinear Vector Integration Theory

2.1. The Banach Setting

In this subsection, assume E, F, andG are Banach spaces over the realsR, with norms denoted
by | · |. Let Σ be a σ-field of subsets of a set T , and assumem : Σ → F is a σ-additive measure.
We will assume that there is a continuous bilinear mapping Φ of E × F into G, which, in turn,
yields a continuous linear map φ : E → L(F,G), where L(F,G) is the space of bounded linear
operators from F into G.

The semivariation of m relative to φ, E, F, G, denoted by m̂ is defined on Σ as follows:

m̂(A) = sup|Σeim(Ai)|, (2.1)

where the supremum is extended over all finite collections of elements ei in the unit ball E1 of
E and over all finite disjoint collections of sets Ai in Σ which are contained in A. We are only
interested in the case when m̂(T) < ∞ in order to develop an integration theory of E-valued
integrands. Sometimes we will write m̂ as m̂E,G. Note that we write e in place of φ(e).

One can show that, for each A ∈ Σ, m̂(A) = sup |mz|(A), where the supremum is
taken over z ∈ G′

1, the unit ball of the dual G
′ of G, and mz : Σ → E′ is defined by mz(A)e =

〈z, em(A)〉, for e ∈ E. The total variation measure ofmz is denoted by |mz|. LetmE,G = {|mz| :
z ∈ G′

1}. Thus, mE,G is a bounded collection of positive σ-additive measures. If co/⊂G (e.g., if
G is a Hilbert space), then one can show thatmE,G is relatively weakly compact in the Banach
space ca(Σ) consisting of real-valued measures, with total variation norm. In this case, there
exists a positive control measure λ such that mE,G is uniformly absolutely continuous with
respect to λ. A set Q ⊂ T ism-negligible if it is contained in a set A ∈ Σ such that |m|(A) = 0.

The advantage of modifying the bilinear integration theory in [2] to the case where
the integrand is operator-valued rather than the measure being operator-valued will become
apparent when the nuclear stochastic integral is studied. This modification changes some of
the results in the previous theory, but we are still able to construct the desired Lebesgue space
of integrable functions and establish convergence theorems. We now sketch this theory.

Denote by S = SE the collection of E-valued simple functions. We say that h : T → E
is measurable if there exists a sequence from S which converges pointwise to h. For such h,
define

N(h) = sup
∫
|h|d|mz|, (2.2)

where the supremum is taken over z ∈ G′
1. Let F̃ = F̃(mE,G) be the collection of all such h

with N(h) finite. Then set L = L(mE,G) to be the closure of S in F̃. The space L with the
seminorm N is our Lebesgue space.
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There are different, but equivalent ways to define
∫
hdm for h ∈ L. We select one

which yields more information (hence more usefulness) regarding the defining components.
If h ∈ L, one can show that there exists a determining sequence {hn} of elements in S— that is,
the sequence is Cauchy in L, and {hn} converges inm-measure, namely, m̂(|h − hn| > ε) → 0
for each ε > 0. Define the integral of h ∈ S in the obvious manner. A determining sequence
for h has the property that {N(hn1(·))}n is uniformly absolutely continuous with respect to m̂.
Also hn → h in L. The setwise limit

∫
A hndm,A ∈ Σ, exists and defines a σ-additive measure

on Σ. Denote this limit by
∫
A hdm. This limit is independent of the choice of the determining

sequence for h. We refer to L as the space of integrable functions.

Theorem 2.1 (Vitali). Let {hn} be a sequence of integrable functions. Let h be an E-valued
measurable function. Then h ∈ L and hn → h in L if and only if

(1) hn → h inm-measure,

(2) {N(hn1(·))}n is uniformly absolutely continuous with respect to m̂.

Theorem 2.2 (Lebesgue). Let g ∈ L, and let {hn} be a sequence of functions from L. If hn → h in
m-measure and |hn(·)| ≤ |g(·)| for each n, then h ∈ L and hn → h in L.

Theorem 2.3. If mE,G is relatively weakly compact, then L contains the bounded measurable
functions.

2.2. Application to the Stochastic Integral in Banach Spaces

We retain the assumptions on E, F, G as stated in Section 2.1. The stochastic setting is as
follows (definitions and terminology are found in [4]). Let (Ω,F,P) be a probability space.
L2
F(P) is a space of F-measurable, E-valued functions such that E(|f |2) =

∫ |f |2dP < ∞,

endowed with norm |f | = E(|f |2)1/2. Assume (Ft)t≥0 is a filtration which satisfies the usual
conditions. Suppose X : R+ × Ω → F is a cadlag adapted process, with Xt ∈ L2

F for each t.
Let R be the ring of subsets of R+ ×Ω generated by the predictable rectangles; thus σ(R) = P,
the predictable σ-field. Let m (= IX) be the additive L2

F-valued measure first defined on the
predictable rectangles bym((s, t] ×A) = 1A(Xt −Xs), A ∈ Fs, andm(0A) = 1AX0, A ∈ F0. We
regard E as being continuously embedded into L(L2

F, L
2
G) in the obvious manner. The theory

of [3] for Banach stochastic integration can be shown to apply in a parallel fashion to this
setting, and we state a few pertinent results. If co/⊂F, then m can be extended uniquely to a
σ-additive L2

F-valued measure if and only if m is bounded on R. For our purposes in this
paper, we will be interested only in the case when all the spaces are Hilbert spaces and X is
a square integrable martingale. In this case, m̂E,L2

G
(R+ ×Ω) < ∞. As a result, we can construct

the stochastic integral (
∫
H dX)t, which is a process such that

∫ t
0 H dX ∈ L2

G, and this process
is a G-valued square integrable martingale. If we still denote the extension of m to P by m,
then

∫ t
0 H dX is defined to be

∫
H1[0,t]dm, where H is integrable with respect to m, that is,

H ∈ L(mE,L2
G
), and the Hilbert spaces involved in the bilinear theory are E, L2

F , and L2
G. This

integral will be used to define the stochastic integral in nuclear spaces.

2.3. The Definition of L2
G, G Locally Convex

In this subsection, assume (T,Σ,m) is a measure space,m is real-valued and σ-additive. LetG
be a complete locally convex space, and let G be a basis of seminorms defining the topology
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of G. A function f : T → G is measurable if it is the pointwise limit of simple G-valued

measurable functions in SG. For r ∈ G and h being measurable, let Nr(h) = (
∫
r(h)2d|m|)1/2.

Let F̃G be the space of measurable functions h such that Nr(h) < ∞ for each r ∈ G. Then F̃G

is a locally convex space with {Nr : r ∈ G} being a basis of seminorms. Define L2
G, the space

of integrable functions, to be the closure of SG in F̃G.
It can be shown that L2

G is the set of measurable functions h which have a determining
sequence (hn) ⊂ SG, that is, the sequence satisfies for each r ∈ G, Nr(hn − hm) → 0 as n,m →
∞, and for each ε > 0 and r ∈ G, we have |m|(r(hn − h) > ε) → 0 as n → ∞. In this case,∫
A hdm = lim

∫
A hndm, A ∈ Σ, is unambiguously defined for each determining sequence (the

definition of
∫
hndm is the obvious one).

The bounded measurable functions are in L2
G, and the Vitali and the Lebesgue

dominated convergence theorem hold. Moreover, we have the following theorem.

Theorem 2.4. LetG be a complete locally convex space with a countable basis of seminorms. Then L2
G

is complete.

2.4. A Remark on the Bilinear Mapping E × F → G

Suppose E and G are locally convex spaces with E and G denoting their respective bases of
defining seminorms. Assume F is a Hilbert space and Φ : E ×F → G is a continuous bilinear
mapping that induces φ : E → L(F,G). Using the continuity ofΦ, observe that for each r ∈ G,
there exists a p ∈ E such thatΦ(Up, F1) ⊂ Ur , whereUp andUr are the closed balls induced by
p and r. If we define p(r) to be the infimum over all p for which the above inclusion holds, it
turns out that p(r) is a seminorm andUp(r) is the closed convex balanced hull of ∪pUp, where
the union is taken over those p in the above infimum. Also p(r)(e) = sup |ze|F ′ , where the
supremum is taken over z ∈ U◦

r (ze : f → 〈z, ef〉, f ∈ F). Call p(r) the seminorm associated
with r and Φ. Note that E(Up(r)) is isometrically embedded in L(F,G(Ur)), where E(Up(r))
is the Banach space consisting of equivalence classes modulo ker p(r), completed under the
norm induced by p(r); G(Ur) is similarly defined.

3. The Nuclear Setting. The Construction of the Stochastic Integral

3.1. Square Integrable Martingales in Nuclear Spaces

(Ω,F,P) and (Ft)t≥0 are as in Section 2.2. Let F denote a nuclear space which is reflexive,
complete, bornological, and such that its strong dual F ′ satisfies the same conditions. We say
F satisfies the special conditions. These special conditions are the hypotheses of Ustunel, who
established fundamental results for square integrable martingales in this setting. Let E be
such a space. Then for E and E′ there exist neighborhood bases of zero,U, andU′, respectively,
such that for each U ∈ U, the space E(U) is a separable Hilbert space over the reals, and its
separable dual is identified with the Hilbert space E′[U◦] as defined in [5], where U◦ is the
polar of U. Also, {U◦ : U ∈ U} and {V ◦ : V ∈ U′} are bases of closed, convex, balanced
bounded sets in E′, E, respectively. For U ∈ U, we denote by K(U) the continuous canonical
map from E onto E(U). If U,V ∈ U and V ⊂ U, then K(U,V ) is the canonical mapping of
E(V ) onto E(U).

Let (Ω,F,P) be a probability space with (Ft)t≥0 being a filtration satisfying the usual
conditions. The set X = {XU : U ∈ U} is called a projective system of square integrable
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martingales if for each U, we have that XU is an E(U)-valued square integrable martingale,
and if whenever U,V ∈ U and V ⊂ U, then K(U,V )XV and XU are indistinguishable. We
also assume XU is cadlag for each U. One says that X has a limit in E if there exists a weakly
adapted mapping X̃ on R+ × Ω into E such that K(U)X̃ is a modification of XU for each
U ∈ U.

The next theorem is crucial for defining the stochastic integral. Ustunel [1, Section II.4]
assumed the existence of a limit in E forX. This hypothesis was removed in [6]. We now state
the theorem and provide a brief sketch of the proof, which uses a technique of Ustunel.

Theorem 3.1. Let X be a projective system of square integrable martingales. Then there exists a limit
X̃ in E of X which is strongly cadlag in E, and for which K(U)X̃ is a modification of XU for each
U ∈ U. Moreover, there exists a V ∈ U′ such that X̃ takes its values in E[V ◦].

Let M2 denote the space of real-valued square integrable martingales. Define a
mapping T : E′ → M2 by T(e′) = 〈e′, XU〉, where U is chosen in U so that e′ ∈ E′[U◦].
Argue that T is well defined and linear. If e′n → e′ in E′[U◦] for some U ∈ U, then

∣∣T
(
e′n
)
∞ − T

(
e′
)
∞
∣∣ ≤ ‖XU

∞‖E(U)
∥∥e′n − e′

∥∥
E′[U◦]; (3.1)

hence {T(e′n)∞} converges to (T(e′)∞) in L2(P) = L2, and thus T(e′n) → T(e′) in M2.
Consequently, T is continuous on E′[U◦]. Since E′ is bornological, T is continuous on E′.
As a result, T : E′ → M2 is a nuclear map of the form

T
(
e′
)
=
∑

λi < ei, e′ > Mi, (3.2)

where {λi} ∈ l1, {ei} is equicontinuous in E, and (Mi) is bounded in M2. Choose V ∈ U′ such
that all ei ∈ V ◦. Define the process X̃ by X̃t =

∑
λieiM

i
t, where we choose (X̃t) to be a cadlag

version. Then X̃ is the desired process.
From now on, we identify X and X̃, and we assume that X takes its values in the

Hilbert space E[V ◦].

3.2. Construction of the Stochastic Integral

Assume that E, F, and G are nuclear spaces over the reals satisfying the special conditions set
forth in Section 3.1. Also assume that Φ : E × F → G is a continuous bilinear mapping. The
neighborhood bases of zero in E and G are denoted by UE and UG. Let X : R+ × Ω → F be
a square integrable martingale. By Theorem 2.4, we may assume X is Hilbert space valued.
As a result, we may now assume F is a real Hilbert space. The bilinear map Φ induces a
continuous linear map φ : E → L(F,G), which in turn induces the continuous linear map
φ : E → L(L2

F, L
2
G), where L2

G is the space constructed in Section 2.3.
Since co/⊂F, the stochastic measurem (= IX) first defined on the predictable rectangles

can be extended to a σ-additive measure, still denoted by m, m : P → L2
F . Note that if K1

and K2 are Hilbert spaces, then m has finite semivariation with respect to every continuous
linear embedding of K1 into L(L2

F,K2).
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If z ∈ (L2
G)

′, we define mz : P → E′ by mz(A)e = 〈z, em(A)〉, for e ∈ E. Given any
r ∈ G, if z ∈ U◦

Nr
, then mz : P → E′[U◦

p(Nr)
] = E(Up(Nr))

′ (where p(Nr) is the seminorm

associated withNr relative to the mapping E → L(L2
F, L

2
G)) by

mz(A)[e]p(Nr) =
〈
z, [e]p(Nr)m(A)

〉
= 〈z, em(A)〉. (3.3)

In fact, p(Nr) = p(r), relative to the mapping E → L(F,G). Let mr = {|mz| : z ∈ U◦
Nr
}. Then

m̂r(A) = sup |mz|(A), where the supremum is extended over z ∈ U◦
Nr
. Observe that m̂r is the

semivariation of m relative to E(Up(r)), L2
G(UNr ) which arises from the isometric mapping

of E(Up(r)) into L(L2
F, L

2
G(UNr )). One can show that L2

G(UNr ) is isometrically embedded in
the Hilbert space L2

G(Ur)
and, as a result, m has a finite semivariation relative to each of these

embeddings; thus m̂r is finite for each r ∈ G, andmr is relatively weakly compact in ca(P).
A process H : R+ × Ω → E is a predictable process, or simply measurable, if it is the

pointwise limit of processes from SE, the simple predictable E-valued processes. For such a
measurable process H, define, for r ∈ G,

Nr(H) = sup
∫
p(r)(H)d|mz|, (3.4)

where the supremum is extended over z ∈ U◦
Nr
. Let F̃ = F̃(mE,L2

G
) be the space of measurable

functionsH such that Nr(H) < ∞ for each r ∈ G. Then F̃ is a locally convex space containing
SE. Let L = L(mE,L2

G
) denote the closure of SE in F̃. One can show that for each H ∈ L there

exists a determining sequence (Hn) from SE such that (Hn) is mean Cauchy in L (Nr(Hn −
Hm)→ n,m0), for each r ∈ G, and m̂r(p(r)(Hn −H) > ε)→ n0 for each ε > 0 and r ∈ G.

Now assume G has a countable basis of seminorms, that is, G is now a nuclear Fréchet
space. Thus there exists a positive measure λ such that m̂r � λ for each r ∈ G. Since L2

G is
complete and, for H ∈ SE, we have Nr(

∫
H dm) ≤ Nr(H), where the integral is defined in

the obvious way, then for general H ∈ L with determining sequence (Hn), we can define

∫

(·)
H dm = lim

∫

(·)
Hndm ∈ L2

G. (3.5)

The completeness of L2
G ensures that

∫
A H dm is a function in L2

G. Define the process
(
∫
H dX)t =

∫ t
0 H dX by

∫ t
0 H dX =

∫
H1[0,t]dm, called the stochastic integral of H with respect to

X. We sayH is integrable with respect to X ifH ∈ L. IfH ∈ SE, one can show that (
∫
H dX)t

is a G-valued square integrable martingale. By means of using determining sequences, the
general stochastic integral enjoys this property.

Next, assume that G just satisfies the special conditions (no longer nuclear Fréchet).
Let H be a bounded measurable E-valued process; hence the range of H is contained in a
closed, bounded, convex, balanced set B1, where E[B1] is a Hilbert space. By the continuity
of Φ, it follows that Φ(B1, F1) is contained in a bounded set B having the same properties as
B1, and G[B] is a Hilbert space.

Algebraically,Φ inducesΦ0 : E[B1]×F → G[B]which is bilinear, and sinceΦ−1
0 (αB) ⊃

(αB1) × F for every α ∈ R, Φ0 is continuous. As a result, this induces a continuous linear map
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φ0 : E[B1] → L(F,G[B]), which in turn induces the continuous linear map φ̃0 : E[B1] →
L(L2

F, L
2
G[B]). Hence we can define m = IX : P → L2

F as before, which is σ-additive and has

finite semivariation relative to φ̃0.
SinceH is measurable, it is the pointwise limit of functions fromSE, and thus if x′ ∈ E′,

x′Hn → x′H. This implies that (x′H)−1(O) ∈ P for any open subset O of the reals. By the
reflexivity of E,

E[B1]′ = E[B1] =
[
E′(B◦

1

)]′ = E′(B◦
1

)
, (3.6)

since we have chosen B1 = V ◦ ∈ U′. Let e′ ∈ E[B1]
′; then e′ = [x′]B◦

1
, and for e ∈ E[B1], it

follows that 〈e′, e〉 = 〈[x′]B◦
1
, e〉 = 〈x′, e〉, that is, x′H = e′H. As a consequence,H : R+ ×Ω →

E[B1] is weakly measurable, and since E[B1] is separable, by the Pettis theorem we conclude
that H is bounded and measurable as an E[B1]-valued function.

We now use the integration theory in Section 2.1. There exists a control measure λ in
this setting, since co/⊂G[B]; hence it follows that the space of integrable functions, relative to
the map φ̃0, contains the bounded measurable functions. Thus

∫
H dX =

∫
H dm ∈ L2

G[B], and
the process (

∫
H dX)t =

∫
H1[0,t]dm defines the stochastic integral; note that this process is

a square integrable martingale. Since the norm on G[B] is stronger than any r ∈ G, one can
show that L2

G[B] is continuously injected in L2
G.

Remarks 3.2. (1) When we assumed G was a nuclear Fréchet space, we constructed the
stochastic integral for every H integrable with respect to X. In particular, if H is bounded,
the stochastic integral agrees with the one constructed by means of using L2

G[B].
(2) Suppose G is nuclear Fréchet and H is integrable relative to φ : E → L(L2

F, L
2
G).

For each seminorm Nr on L2
G, there is a seminorm p(r) ∈ E which induces the isometric

embedding φ̃ of E(Up(r)) into L(L2
F, L

2
G(UNr )), where L2

G(UNr ) is a Hilbert space since it is
isometrically embedded in L2

G(Ur)
. Thus each [H]p(r) : R+×Ω → E(Up(r)) is integrable relative

to φ̃ and gives rise to the stochastic integral defined by (
∫
[H]p(r)1[0,t]dX)

t≥0, which is a square
integrable martingale. The projective system of square integrable martingales {[H]p(r)}r∈G
has a limit in G, and this limit is (

∫
H dX)t := (M)t, M∞ =

∫
H dX.

Since there is a control measure for mE,L2
G
, one can show that E(M∞ | Ft) = Mt.
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