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A classical basis for one-dimensional SchrSdinger quantum theory is
constructed from simple vacuum polarization harmonic oscillators within
standard stochastic theory. The model is constructed on a two-dimensional
phase configuration surface with phase velocity vectors that have a speed of
light zitterbewegung behaviour character. The system supplies a natural
Hermitian scalar product describing probability density which is derived from
angular momentum considerations. The generality of the model which is
extensive is discussed.
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1. INTRODUCTION

In previous papers [1,2,3,4,5,19,20], the author has shown that a mathematical model for

a "physical" structure that involves negative mass particles in addition to the usual positive mass

particles free to move in an extended configuration space can be used as a basis for the

construction of a classical" theory that fully accounts for the form taken by SchrSdinger

quantum theory. With this model, the SchrSdinger equation becomes deducible from more

fundamental and familiar classical assumptions. One of the motivations for this line of

investigation has been the conviction that the probabilistic aspects of SchrSdinger theory should

arise naturally from built in stochastical [22] features of any accounting underlying alternative

theory, rather than in the add hoc way in which probability appears in the orthodox theory. In

this paper, it will be shown that a correct and convincing stochastic basis can be introduced and

woven about the structure that the alternative theory presents. This is achieved by making a

1Received: October 1990, Revised: December 1990.

Printed in the U.S. (C) 1991 The Society of Applied Mathematics, Modeling and Simulation 95



96 JAMES G. GILSON

substantial generalization of work [27] done by the author some years ago in an attempt to

construct theoretically a massive particle from contained" random photon motion. It i then

shown that this generalization can be used as a more basic and completely sound aprobabilisti’

foundation for the alternative theory. The particular topic of importance in this context, an

erratic zig-zag motion of a photon or light particle probably first mentioned by Dirac [28], and

often referred to as zitterbewegung. It shows up in some aspects of the theory of quantized field

[29]. It has appeared in the past to be a process likely to be amenable to some sort of aclassical"
stochastic explanation similar to Brownian motion and some authors [17,18] have made use of tke

process in their work on quantum foundations. The work to be described in this article hs in a

special sense the character of zitterbewegung on the two dimensional surface which is the

configuration space of the alternative theory, lZelated work or work with related motivations can

be found in references [8-16,23,25,26].

2..:. OS.CILLATO

Attention will be confined to one-dimensional quantum theory such as would normally he

described by the one-dimensional SchrSdinger equation. The main basis for the alternative theory

are positive and negative mass or energy monopolar particle" fields such as norma[ electrons

with their positive rest mass m0 and negative charge el and more controversially truly

negative" rest mass- m0 and "positively" charged el, negative mass positrons" in constrained

motion on a two" dimensional surface. Thus in the case of electronic polar monopoles, the

additional anti-polar particles are not positrons. However, in this theory, these two types of

monopole always appear locked together in a balanced dipolar condition of zero rest mass and

zero charge so that the theory does not necessarily imply that actual negative mass anti-polar

type particles should be detectable as free particles nor indeed does it preclude the existence of

such free particles. The actual nonzero" energy carrying capacity of these dipoles depends on

kinematic differences of the constituent monopoles such as differences in their velocities. The

positive mass monopoles are only free to move in 4-e directions that is parallel with the z-axis_

The negative mass monopoles are only free to move in the :i= e directions that is parallel with the

y-axis. The y = 0 cross section of the extended configuration space is to be regarded as the

normal space of common experience and neasurement" and it is on this cross section that the

normal one dimensional SchrSdinger equation is recovered from the theory. This scheme gives a

means of describing subtle mass polarization processes that can transform the aempty two

dimensional surface into complex patterns of flowing and rotating dipolar vortices instantaneously

formed from the basic monopoles. The connection of this polarization picture with the

SchrSdinger structure has been described in detail in earlier publications [1,2,3,4]. However, the



Oscillations of a Polarizable Vacuum 97

account of the theory given in this article is self contained and more fundamentally based. Here

we wish to concentrate on the instantaneous structure of single dipoles, their oscillator character,

their variety of internal" states and also most importantly on the interaction between dipoles in

different internal states. This effectively rebounds the theory at a more fundamental level where

only oscillatory processes can take place and, as will be seen, in a special sense only with the

velocity of light. The higher level velocity fields in which the theory was originally formulate can

then be seen as statistical averages with the alternative theory retaining its original structure.

We view the basic two dimensional surface as being embedded in a "three-space". The three-

space was originally introduced so that physical properties such as vorticity of the polarization

fluid motion and magnetic fields orthogonal to the zy-plane could be "isualized" as vectors

normal to the configuration plane. The full value of using the three-space arises from what will

be called the primary polarization field as this shares with the vorticity the property of being a

vector perpendicular to the zy-plane, the plane of monopolar motions. From this quantity which

has the versatile character of being able to represent mechanical, electrical and magnetic

characteristics simultaneously, all of the alternative theory is deducible. In this article, the third

direction will be more fully utilized in a way which enhances the "explanatory" nature of the

theory in its role as a foundation for SchrSdinger quantum mechanics. The two-dimensional

vacuum oscillators which are here being introduced as a new basis add an internal structure to the

dipoles or vacuum polarization units of the original theory. They are formed from a pair" of

oppositely signed "energy" oscillators constructed from the positive and negative mass monopoles

which are able to oscillate on the configuration plane in the orthogonal direction e and ez. Thus

at the new "lower" level of analysis only small separations of the positive and negative monopoles

are important and large displacements or free translations do not contribute to the process.

Translatory velocity fields will be recovered later as averages over the oscillatory fundamental"

process. As was the case with earlier work, the now "oscillating" positive mass monopoles are

constrained to movement in the +/- e directions whilst the now "oscillating’ negative monopole

are constrained to movement in the +/- e directions. The oscillations that occur are of the "dipole

moments" associated with the "planar" polarization in the first instance. Using the electronic rest

energy rnoc2 and a fLxed length 0 which is taken to be the "Compton" wave length divided by 4r

we introduce the magnitude of a basic electronic "energy" dipole moment I.noy[ associated

with the mass monopoles and their "planar" freedom of movement as,

Jtt’ngyl = 2moc210, (2.1)

where o is taken to have the value 0 -- /2m0c. Attention will be confined to simulation of the

quantum behaviour of systems that have a finite number of discrete non-negative energy levels



98 JAMES G. GILSON

denoted by E 0, say, where the subscript ranges over the integer values 1 to . However, as

all the processes associated with this model are a consequence of vacuum polarization this will

also imply the parallel existence of a related set of anti-polar energy levels E being involved in

the overall system structure. The system being simulated can be thought of as one pole of an

enlarged embedding construction, even in the orthodox theory there is an embryonic version of

such a structure. This takes the form of the complex conjugate of an eigenfunction of the

time evolution operator with energy E being %ffectively" an eigenfunction of the time evolution

operator with negative energy -Ei. More general systems which have continuous as well a

discrete eigenvalues are only excluded because of technical complications involved in their

description but could be covered by the theory with some elaboration. Thus for each energy level, we associate a configuration vector q- j for e direction polarization and a configuration

vector q- j for e direction polarization under oscillatory conditions which are solutions to the

simple harmonic equation +/- -- (E/)2q +/- according to the formulae,

Ejq / j = 2mOC210cos(j/2)e (2.2)

Ejq_ j = 2moC21osin(j/2)e, (2.3)

the two oscillatory processes involve being taken to be r/2 radians out of phase and where at the

very least the angle bj depends on abstract time t. With this prescription a phase-point" vector

defined by combining the positive and negative configuration vectors of the oscillators above in

the form,

" j = (2moC21o/Ej)(cos(j/2)e- sin(bj/2)e’) (2.4)

will execute a circular motion with radius 2moc:lo]Ei, with angular lxition given -./]2 d
angular velocity --O(qj/2)/Ot. A "phase-point" vector defined by,

qj = (2moC21o/Ej)(cos(Oj/2)e + sin(Oj/2)e’) (2.5)

will execute a circular motion with the same radius but with angular position Oil2 and with

angular velocity O(j/2)/Ot. The two phase-point vectors defined above act like hands of a clock

with angular separation bj and moving contrary wise according to how i/2 depends on abstract

time t with their motion representing a fundamental "time-keeping" mechanism associated with

the basic monopolar oscillations. The vector " always points along the direction of the line of

centers of the constituent monopolar pair and so has a definite associated physical image related

to the local process. The angular velocities wj = O(bj/2)/Ot will be identified with the state

energies by the usual quantum formula,
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Ej = wj. (2.6)

Thus, in this context, the usual quantum angular" frequencies have a visual image in terms of

the rotation rates of the phase vectors qj. The velocities associated with the polaxization

configuration vectors are obtained by partially differentiating them with respect to time t to

obtain,

and

j = s/o =  (sin(j/2)e +

j = qj/Ot = c(sin(jl2)e os(qbjl2)e’), (2.8)

----/ + j -t-/_ j, say. (2.9)

Thus the circular motion described by the "phase" velocities (2.7) and (2.8) takes place at the

speed of light and this is true for all the n eigenstate. If the phase motion of the system is

measured, the phase points will always be found to have the velocity of light and to be moving in

any one of the 2r possible directions on the configuration plane. This feature taken with the

statistics associated with the involvement of the various eigenstates constitutes the

"zitterbewegung" character of the basic oscillations. The statistical uncertainties associated with

the eigenstates will be discussed later. It is intended that the quantum energy states of the

system should be seen to be "constructed" out of the polarizability of the hypervacuum of "extra"
energy the "vacuum" can hold as a consequence. The polarized condition locally is the result of

the movement and generation of the fundamental amount of "mass dipole moment molo in

various configurations or oscillatory conditions. In general any specific quantum state will have

an energy that is not necessarily an integral number of electron rest energies. Thus the

monopolar "particles" associated with the quantum states will have monopolar mass" values

given by the formulae

=l= M -- =t= Ei/c2 = +/- Neimo. (2.10)

The :k sign of (2.10) depending on the polarity of the state and the Nei or the number of

electronic rest masses in the mass of the state i are usually not integers. Thus the quantum states

cannot be thought of as just a collection of non-interacting electronic rest energies. We shall

assume that given the simultaneous existence of a collection of quantum monopolar mass state

4-Mi for some range of values of i, there will also exist an attraction between any such mass

monopole and every other mass monopole of opposite sign in the collection. It is not necessary to

specify the precise form that this attractive force takes. However, it is possible to calculate

various of its consequences. That it should exist at all is highly plausible given that oppositely
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signed simple electronic monopoles are of opposite electronic charge. The dipoles are in turn

constructed form the positive and negative mass monopoles and the general pattern of behaviour

of the whole system arises from the attraction between any mass monopole and every mass

monopole of opposite sign. it is the attraction between these opposite sign fields that leads to the

possibility of oscillatory motions of the system at the basic level The movement of the quantum

mass monopoles can be envisaged as a square dance on the configuration plane in which members

of the oppositely signed monopolar fields oscillate in pairwise relationships in a motion which can

be interpreted and analyzed as rotational in terms of the polarization configuration vectors (2.4)
and (2.5). The mutual rotational interaction between the positive and negative monopolar fields

generates angular momenta perpendicular to the zy-plane for each of the dancing pairs of

eigenstates. The angular momentum induced by this motion will be examined in the next

section. In the earlier work, the assumption was made that the vacuum polarization process

enabling this model has the symmetry property connection electron mass and electronic charge

built into the mass-charge values of the assumed underlying basic electronic monopoles. Here,

this same symmetry will be assumed to apply generally to "monopoles" that may consist of more

than one or a non-integral number of the basic monopoles. Thus a monopole of mass M will also

be considered to carry a charge of magnitude =eM/mO. This leads to the important

conclusion that each one of the basic 2-dimension oscillators generates a specific amount of

magnetic moment orthogonal to the two-space. This can be seen by considering the polarization

vector " j from (2.4) which besides pointing in the direction of separation of the two monopolar

constituents has a magnitude equal to their separation distance. As the system performs one

complete cycle the positive monopole of the pair perform one circular motion around and relative

to the negative monopole of the pair at the radial distance I j l. It is to be emphasized that

this circular" motion is relative motion and is possible in spite of the restriction of the

monopolar motion on the configuration plane to straight lines parallel with the e,e directions.

Thus we analyze the consequences of this rotatory activity by viewing the motion of positive mass

particles as taking place relative to the negative mass particles. If the positive mass monopole M

carries the charge the relative circular motion of the charge at the radius I j will generate

a magnetic dipole moment "mag given by the usual formula from electrodynamics involving the

area of the loop and the current flow in it,

.At,ma ---- (rq:Q/T)k, (2.11)

where T is the periodic time for one cycle, q has the value 2moc2lo/Ei using (2.5). The

conventional current is anti-clockwise and according to the mass-charge symmetry rule Q has the

value -le[E/moc2. If the periodic time is given the value T = 2r/w = 27rn/E, then the
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magnetic dipole moment of the loop (2.11) assumes the value,

"At’mso = loc I I, (2.2)

which conveniently is just one Bohr magneton. This is the important contribution to the

primary" magnetic field orthogonal to the configuration plane from the one oscillator or state j

in self interaction and this clearly does not depend on j. Each of the n states will give a

contribution with the same value as (2.12) arising from the interaction between its positive and

negative aspects but there will be many other contribution from pairwise interactions between

positive aspects of a state with negative aspects of a different state which take a slightly more

complex form than (2.12). However, the argument leading to the value (2.12) for the magnetic

moment contributed by one oscillator does supply the clue that it is necessary to examine the

motion of the positive mass field "relative" to the negative mass field in order to find the general

form for the induced magnetic moment. It seems this is most easily done in terms of a relative"

angular momentum of the positive and negative mass fields, the topic to be examined in the next

section.

ANGULAR MOMENTffM

The angular momentum orthogonal to the configuration plane induced by the dancing

eigenstate pairs can be examined in terms of the vector product combination,

aij = q-i( Mi) A + j q + j(Mj) A

_
i" (3.1)

= (Mjq + j Miq_ i) A (fl + j i)" (3.2)

The "relative" nature of this quantity being evident from the second form (3.2) which involves

the velocity of the phase point of the positive monopole from the state j relative to the velocity of

the phase point of the negative monopole from state i and the contribution to the mass

polarization of those monopoles. This quantity is one contribution to the rotational interaction

angular momentum between states i and j. In this situation the mass values -Mi,M which

appear in the first factors of (3.1), the planar mass dipolar contributions, are not the mass values

associated with the positions and velocities/ + j,/_ respectively of the moving monopoles as is

usually the case in an angular momentum vector product but never the less (3.1) is still an

induced angular momentum. The other contribution to the angular momentum interaction

between the two state, the angular momentum of the positive monopole from state i relative to

the negative monopole from state j, is given by

aji = q_ j( Mj) A + i- q + i(Mi) A

_
j. (3.3)
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= (Miq + i- Mjq_ j) A ( +i-- j)" (3.4)

Thus there are two contributions to the angular momentum when the two interacting states are

different (i j) and only the one contribution,

aii= q- i( Mi) A + i-q + i(Mi) A i, (3.5)

when the positive and negative monopoles sides of a state i are in self interaction. Evaluation of

these vector products gives

aij 2moclocos(( qj)/2)k.

The self interacting term for the state is obtained by putting j = i in (3.6) to give,

aii = 2moclok. (3.7)

Comparing this with (2.12), it can be seen that the step from an angular "momentum"

contribution to a similarly constituted magnetic moment contribution is just multiplication by

el/2mo which is the "classical" gyromagnetic ration. This observation enables us to infer

any magnetic contribution from two interacting states from the corresponding angular

momentum contribution or indeed to infer the full magnetic contribution from the full angular

momentum contribution. If there is present an assembly of oscillators composed of n members

in the state Ei for i = 1 to n, then the total angular momentum generated by all the n2

interactions between the oppositely signed fields is

(3.8)

(3.9)

Inspection of (3.9) suggests that the angular momentum a dividend by -2c can be interpreted as

the mass dipole moment orthogonal to the zy-plane or the mass polarization vector orthogonal to

the plane and as has been shown is generated by the "rotary" phase or oscillatory polarizations on

the plane. This interpretation is suggested in the first instance by the multiplicative dimensioned

factors that appear in the expression (3.9). It is likely possible to give a more elaborate

justification for such an interpretation in terms of Lorentz forces acting on the electric charges of

the monopoles. However, here we shall be content with identifying the existence of the primary

mass polarization condition as being indicated by the factors appearing in the formula (3.9). The

dimensionless real quantity
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p(0) = (,iniezP(i/2i))(.,iniexp( qbi/2i)) (3.10)

also appearing in (3.9) is the number of dipoles present each with the fundamental mass dipole

moment molok and the quantity (3.9) divided by -2c and in which it first appears will be called

%he primary maze polarization field" in spite of the fact that, in this work, it has been shown to

be generated form the motions of the planar polarizations. It was referred to as the primary

polarization field in earlier work because from it all the usual quantum mechanical quantities can

be derived by simple mathematical operations, t/ere we axe working from a lower level of

struetuxe with the quantity regarded as primary earlier having been shown to arise from the basis

%peed of light" underlying oscillatory polarization process. It should be noted that the step from

the angular moment (3.9) to the primary mass dipole moment in the k direction involves the

factor -2e and that the 2 in this factor is a direct consequence of the classical gyromagnetie ratio

being operative. The form (3.10) which is to be directly related to the t/ermitian quadratic

product of orthodox quantum theory arises naturally from the polarizing angular momentum

(3.9) and a number of important quantum characteristics san be read off from its structure. It is

a product of two quantities one being the complex conjugate of the other and each involves the

linear superposition of the eigenfunctions i" It thus gives a strong indication of how general

space dependence will have to be incorporated into the structure particularly when, as intended,

the initial real zy-plane representation is replaced by a complex plane representation. Thus if the

first factor of this product is taken to be a regular function of a complex variable z = z + iy and

consequently has real and imaginary parts satisfying the Cauchy-Riemann equations, the form

(3.10) is such that Inp() will be a solution of the two dimensional Laplace equation. That is to

say lnp(} will be a scalar two-space potential while the first factor or mixed wave function will be

a complex two-space potential. The quantity clolnp() turns out to be the stream function or

imaginary part of the complex fluid potential that controls the average relative velocity of the

basic monopoles. This complex potential is an important quantity exponentially nonlinearly

related to the wave function.

In order to define a hyper density over the two-surface, it is necessary to introduce a

fundamental comparison volume in which all the p(0) local dipoles given by (3.9) are considered

to reside. If the comparison volume is denoted by v0 then the dipolar three-density can be

defined as,

= p()/vo, (3.11)

whilst the quantity (3.9) can be converted into an angular momentum density by dividing it by

the comparison volume vo. The comparison volume is a dimensioned constant but various other
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quantities will have to depend on space and time in order that a Schr6dinger field type of

situation can be seen to arise from the local space polarization oscillators that have been

introduced. In other words, we need to have oscillators of the type just discussed spre over the

configuration space according to some density specification and this, of course, is also necessary to

make sense of the density function for the oscillators (3.11). To install spatial variability in the

structure the assembly numbers n will be made spatially dependent according to the following

prescription. Each nl will be factored into a constant part N not depending on position or time

and a part nci(Z,y that only depends on space,

ni-’- Ninci(x,y). (3.12)

The functional dependence of the nc(,y) on the z and y coordinates is not arbitrary but is

determined by choosing the wave functions to have the special z,y form of dependence of a

regular or analytic function (z + iy, t) of the complex variable z = z + iy in those regions of the

z-plane of interest. This has the consequence that the real and imaginary parts of each (z, t)
satisfies the Cauchy-Riemann equations,

0a/0 = 0u/0y, 0a/0y = -0u/0. (3.13)

Various physical arguments can be used to justify the introduction of the Cauchy-Riemann

equations (3.13) at the level of the average fluid flow that is generated by the statistical basis and

in terms of vorticity of velocity fields and dilatational effects. However, here we just recognize

that these equations simply facilitate the passage from the real plane representation in which the

system has been introduced to the complex plane representation in which the SchrSdinger

equation is to be recovered. The magnitude Iil of an eigenstate wave function will then be

identified as

I1 = -(, )/z0- (3.z4)

Thus here, wave functions will be defined to be inverse lengths.

formula (3.10) takes the form,

Under this prescription, the

p(o} = (,iNinci(X, u)exp(qi/2i))(,iNinci(x, !/)exp( bi/2i)) (3.15)

or

v() =
or

v(o) = 0( , t)*(=, , t), (3.17)
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where is a generalized "mixed" state wave function defined by,

(a:, u, t) = NO(a,U, t).

The usual "one-dimensional" quantum wave eigenfunctions bi(ar t) are to be recovered from,

or

i(x,,t) = "o1%i(x, y)exv(#i(, y, t)12i) = i ev(#i/2i, (3.19)

(, t) = (z, t) ezp(i(z, (3.20)

in terms of the complex variable, when y is set equal to zero. In (3.18), the absolute constants N

that were factored out of the assembly numbers n are now to be seen as the usual linear

superposition constants of orthodox quantum theory. The structure that has been set up using

the basic set of frequencies n is a standard type of stochastic system [24] where quantities such as

p(o) can be expressed as expectation values of random variables. Certainly two types of

expectation value or other statistical measure can be formulated using the probabilistic basis. A

linear one, by converting the original assembly numbers n into the probabilities Pi = ni/N or a

"quadratic" one by converting the interaction products ninj numbers into the probabilities

Pij = ninj/N] where N! = N2 and N = Eini. The primary polarization field is formed from

electronic mass dipoles with dipole moment molok. Such a dipole can be thought of as a pair of

electronic "mass" monopoles separated by a displacement of magnitude 0 pointing orthogonally

away from the zy-plane. Thus generally, if this polarization process is such that charge

polarization is always involved with the mass polarization so that one electronic mass m0

monopole always carries with it one electronic charge el as the symmetry principle implies

then, the primary mass polarization will also involve a primary charge polarization density field

given by,

I lo(Einiexp(#i/2i))(iniexv( = #i/2i))k/vo

as can be read off from (3.9) and using the density function introduced earlier it is more

succinctly expressed as

g, = I 0p(=,y, (3,22)

with the dipolar mass polarization density vector being expressed as

gmas = moloP(Z, Y, t)k. (3.23)

The original formula for the induced angular momentum contains the velocity of light in the

factor -2c. If the conceptual steps from (3.23) to (3.22) through (3.9) are made with the
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velocity of light left in or account is taken of the magnetic inductive property of the phase loops

currents discussed earlier, we are led to consider the co-existence and contribution of fields like

gmg =1= e Clop(=, y, t)k (3.24)

which represents a density of magnetic dipoles with magnetic pole strength [elc or with

magnitude of magnetic dipole moment elclo which is exactly one Bohr magneton. Thus the

system of =rotating" dipole phases in the plane together with their probabilistic weighting seem to

generate this orthogonal field of dipoles which are composite in that they are simultaneously

electric, magnetic and mass orientated. The various dipolar densities being given by the formulae

(3.22), (3.23) and (3.24). The density of magnetic dipoles is the key to the next step as it

generates the primary field of "magnetic induction" orthogonal to the zy-plane. The primary

magnetic induction field B0 can be taken to be,

B0 =/ogmag. (3.25)

The quantity (3.9) from which the magnetic indication (3.25) is derived is essentially a statistical

quantity depending as it does on the assembly numbers n and it can easily be expressed as an

expectation value of a random variable by making us of the probabilities pij. Thus B0 itself is

essentially an average or an expectation value and so quantities derived from B0 will also be

averages. It is possible to derive the average or an expectation value and so quantities derived

from B0 will also be averages. It is possible to derive the average dipolar flow field from B0 by

introducing an average" dipolar electric current via a Maxwell equation [6] which can be taken

to be,

/0J = V A B0. (3.26)

Substituting B0 into this equation with a restriction to the positive sign in (3.23) gives an

"average" electric current density which can be written in the form,

J = +

The current flow in the e’ direction can only involve positively charged monopoles whereas the

current flow in the e direction can only involve the negatively charged -l el monopoles.

Consequently, the e direction component of =velocity" flow u is defined in terms of the e current

component directly as Sl(z,y,$ while the e’ direction component of =velocity" flow v is def’med as

s2(z, y, t) or of opposite sign to the corresponding term appearing in the current to take account

of the e’ velocity component carrying the positive charge [e [7]. That is to say, the =average"
monopolar velocity field given by,
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where

and

u(x., y, ) : cloOlnp(z y, t)lOy

(3.28)

(3.29)

u(z, y, t) = cloalnp(z, , t)/az, (3.30)

as follows from the Maxwell equation (3.26). All that is required now to demonstrate that this

system is equivalent to one dimensional Schr6dinger quantum mechanics is an equation of

continuity for the movement of dipole or oscillator density over the configuration surface. This

needs to have the form,

op/ot + v. (p,(c)) = r, (3.31)

involving the source term r. The source term is necessary on the configuration plane to take

account of external influences on the system behavior. Its form is determined by the external

field function on the ordinary space cross section = 0 and itself is generally zero on this cross

section so giving the usual conservation of probability on the z axis. The velocity field/](c) is the

dipolar centroidal" velocity field,

/(c) =//2 = (u(z, y, t)e + v(z, y, t))e’)/2. (3.32)

This is a velocity as would be measured midway between points separated in the k direction and

moving with the two component monopolar velocities. The two component velocities can here be

thought of as projecting to the same (z,Z/) position on the plane but separated by the primary

polarization length vector lok so that the velocity of the mid-point of the moving dipole is given

by (3.32). If the expression for/(c) as given by (3.32) through (3.29) and (3.30) is substituted

into the continuity equation (3.31), the equation of "centrifugal diffusion" [22],

Op/Ot = cloOp/OzOv + r, (3.33)

is obtained. If the expression for p given by given (3.16) through (3.11) is substituted into (3.33),
some rearrangements are made and z +ly is denoted by z, the analytically [21] continued

SchrSdinger equation,

i o /ot = + (3.34)

is easily derived using the Cauchy-Pdemann equations (3.13) and on the real axis when z = z, this

reduces to the usual one-dimensional SchrSdinger equation. The detailed steps involved in
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deriving the SchrSdinger equation have been given elsewhere [2,3] ad so only the briefest outline

has been given here.

4__. CONCLUSIONS

The higher dimensional %lassical" model for vacuum oscillations described in this article

completely replicates the type of physical process that is usually described by the one-dimensional

Schr6dinger equation, its involvement of the imaginary unit, the failure of the orthodox theory to

supply any physical picture for the %omplex" wave function and of the wve function linearity

superposition principle, it seems unlikely that any %lassical" model could ever by produced in

just the one configuration dimension. In fact, the orthodox view is that %ny" classical model is

impossible. It has been demonstrated here that a very simple fully satisfactory classical model

can be produced in a higher dimensional space based on standard stochastic theory, in which the

quantum probability on density Hermitian bilinear form arises naturally and the wave function

can be given a clear physical image. The basic vector indicates the direction of separation of

the local pair of polarizing monopoles in the real plane and also has the character of the hand of a

clock while the rgument of has the character of an angular analogue time measure as

indicated by the clock hand. The two vectors q and " describe a basic zitterbewegung type of

process in terms of their velocities of motion always with the speed of light and onto this

probabilistic or stochastic activity the quantum simulation process is built. The unitary part

ezp(qbi/2i of the wave functions i are simple the complex plane representations of the " and so

the wave functions acquire physical images by association. The implication of the existence of

this model and the results derived from it is that the orthodox view of the philosophical

significance of the Schr6dinger equation may need to be modified. The successful construction of

such a simple classical model on a sound stochastic basis suggests that quantum processes may

well sound stochastic basis suggest that quantum processes may well indeed involve activities of a

physical nature that actually do occur in a higher dimensional space in which the three space of

common experience and experiment is imbedded. The model is of substantial generality and, as

has been shown, it supplies a complete account of the characteristics of the linear SchrSdinger

equation with which this article has been concerned and which is essentially conditioned by the

equation of continuity (3.31) as a classical precursor. The model is intrinsically" nonlinear with

an exponential type of nonlinearity connecting the argument of the wave function which can be

shown to be a complex velocity potential to the space of wave function superpositions but this

only shows up partially in the work here in the appearance of the quadratic" form for the

quantum probability density. The intrinsic nonlinearity has the important consequence that the

same structure can be used to generate many nonlinear generalizations [19] of the SchrSdinger
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equation and to simultaneously add explanation for the underlying processes involved in terms of

fluid vorticities and local states of compression. Such explanations can be given in terms of

nonlinear feedback from the two-dimensional fluid potential into the space of quantum wave

functions. These generalizations are simply achieved by replacing the simple equation of

continuity (3.31) by other modified forms of continuity equation involving some appropriate form

of feedback into the rate of flow or local production of density on the configuration plane with the

main structure of the model remaining unaltered.
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