ON THE PARABOLIC POTENTIALS IN DEGENERATE-TYPE HEAT EQUATION¹

IGOR MALYSHEV

Department of Mathematics and Computer Science San Jose State University San Jose, CA 95192

ABSTRACT

Using distributions theory technique we introduce parabolic potentials for the heat equation with one time-dependent coefficient (not everywhere positive and continuous) at the highest space-derivative, discuss their properties, and apply obtained results to three illustrative problems. Presented technique allows to deal with some equation of the degenerate/mixed type.

Key words: parabolic potentials, variable coefficient, boundary value problems, equations of degenerate/mixed type.

AMS subject classifications: 35K65, 35R05.

1. INTRODUCTION

In this paper we shall study the properties of "parabolic" potentials associated with the boundary value problems in a semi-infinite domain of the following type:

(1)
$$L_{\alpha}u = \frac{\partial u}{\partial t} - \alpha(t)\frac{\partial^{2} u}{\partial x^{2}} = f(x,t), x > 0, t > 0;$$

(2)
$$u(x,0) = \varphi(x), x \ge 0;$$

(3)
$$u(0,t) = r(t), t \ge 0;$$
 $(\varphi(0) = r(0)).$

¹Received: August 1990, Revised: February 1991

Throughout the paper the coefficient $\alpha(t) \in L_1[0, T]$, is not necessarily positive (which implies that (1) may be of degenerate/mixed type), is defined everywhere in [0,T] and satisfies one of the following conditions:

- (i) $\alpha(t) \ge 0$, with equality allowed only at isolated points that do not cluster anywhere in [0, T];
 - (ii) $\alpha_1(t)$ defined by the formula

$$\alpha_1(t) = \int_0^t \alpha(z) dz$$
, $(\alpha_1(0) = 0)$

is positive for all t > 0, which allows $\alpha(t)$ to be even negative in some intervals. Obviously, any function satisfying (i) is a function of the (ii) type.

It should be noted that in neither case (for different reasons) (1) is reducible to a standard heat operator $u_t - u_{xx}$. The realization of this comes from the relatively obvious substitution of variables [1]:

$$\tau = \int_0^t \alpha(z) dz,$$

which in case of (i) implies existence of inverse function $t(\tau)$ with a finite derivative t'_{τ}

= $1/\alpha(t)$ at the points where $\alpha(t) \neq 0$. In (ii) case inversion is not possible at all. To get around this obstacle, we derive the fundamental solution, potentials and their properties, and solution of (1)-(3) directly from (1) in its original form.

The boundary S of the domain consists of two parts denoted throughout by $S_1 = \{x \ge 0, t = 0\}$ and $S_2 = \{x = 0, t \ge 0\}$. And, finally, M denotes the class of bounded in any strip $(-\infty < x < \infty) \times [0, T]$ functions, vanishing at t < 0.

Under condition (ii) the fundamental solution of (1) can be found by applying Fourier transform in x in the form [1]:

(4)
$$E_{\alpha}(x,t) = E(x, \alpha_1(t)) = \frac{H(t)}{2\sqrt{\pi\alpha_1(t)}} \exp(-x^2/4\alpha_1(t)),$$

(were H(t) is Heaviside function), provided that $\alpha_1(t) > 0$.

Function (4) has the properties similar to those of standard fundamental solution of heat operator [2], such as

(5)
$$\int_{-\infty}^{+\infty} E_{\alpha}(x,t) dx = 1; E_{\alpha}(x,t) \rightarrow \delta(x) \text{ with } t \rightarrow 0^{+}.$$

Denoting f, u, etc. the functions in (1)-(3) extended as $\equiv 0$ for x < 0, t < 0, the initial-boundary value problem can be put into generalized form

(6)
$$L_{\alpha}\tilde{u} = \tilde{f}(x,t) + [\tilde{u}]_{s_1} \cos(\tilde{n},\tilde{e}_1) \delta_{s_1} - \alpha(t) \left[\frac{\partial \tilde{u}}{\partial x}\right]_{s_2} \cos(\tilde{n},\tilde{e}_2) \delta_{s_2}$$
$$-\frac{\partial}{\partial x} (\alpha(t) [\tilde{u}]_{s_2} \cos(\tilde{n},\tilde{e}_2) \delta_{s_2}) \equiv F(x,t),$$

where $[u]_s$ is a jump of u on $S = S_1 \cup S_2$, n is an external normal to S, e_1 , e_2 are unit vectors along t, x -axis respectively and distributions in the form $\mu \delta_s$, - $(\mu \delta_s)'_x$ are single and double layers in terms of [2].

Since the operator L_{α} contains a non-constant coefficient, it is not immediately clear whether solution of (6) can be found in the form $u=E_{\alpha}*F$, as in the case of a constant coefficient. However, we still have the following

LEMMA. Under the condition (i) the distributional solution of (6) is unique and can be represented as a convolution of the fundamental solution E_{β} ("dual" to E_{α}) with the right-hand side of (6), that is $u = E_{\beta} * F$, where, as in [1],

(7)
$$E_{\beta}(x-\xi,t-\tau) = E(x-\xi,\beta_1(t-\tau)),$$

and

$$\beta_1(t-\tau) = \int_{\tau}^{t} \alpha(z) dz = \alpha_1(t) - \alpha_1(\tau); \quad \beta_1(t) = \alpha_1(t).$$

In other words, we treat $\alpha_1(t)$ as if it were time variable in a standard case. Obviously, β_1 is continuous and, due to (i) $\beta_1(t-\tau) > 0$ for $t-\tau > 0$.

Proof. Let condition (i) hold. Then $E_{\beta}(x - \xi, t - \tau)$ from (7) is a distributional solution of

$$L_{\alpha} E_{\beta}(x-\xi,t-\tau) = \frac{\partial E}{\partial t} - \alpha(t) \frac{\partial^{2} E}{\partial x^{2}} = \delta(x-\xi,t-\tau) \quad \text{in } x,t,$$

and

$$L_{\alpha}^{+} E_{\beta}(x-\xi,t-\tau) = -\frac{\partial E}{\partial \tau} - \alpha (\tau) \frac{\partial^{2} E}{\partial \xi^{2}} = \delta (x-\xi,t-\tau) \text{ in } \xi,\tau.$$

Verification can be easily done by the Fourier transform technique. Then, using integration by parts we find that $u=E_{\beta}*L_{\alpha}u$, and by the direct differentiation $u=L_{\alpha}(E_{\beta}*u)$, which leads to:

$$L_{\alpha}(E_{\beta} * \tilde{\mathbf{u}}) = (L_{\alpha}E_{\beta}) * \tilde{\mathbf{u}} = E_{\beta} * L_{\alpha}\tilde{\mathbf{u}} ,$$

and the uniqueness of the distributional solution follows immediately, since

$$L_{\alpha} u = 0 \implies E_{\beta} * L_{\alpha} u = L_{\alpha} E_{\beta} * u = \delta * u = u = 0.$$

Later we also find that in case of f and r in (1)-(3) being zero, the condition (i) here can be relaxed into (ii).

As a result of Lemma, we obtain the following integral representation for the solution of (6) (x > 0, t > 0):

$$(8) \qquad u(x,\,t) = \int_0^t \!\!\! d\tau \int_0^\infty \!\!\! f\left(\xi,\,\tau\right) \, E_\beta(x-\xi,\,t-\tau) \, d\xi + \int_0^\infty \!\!\! u(\xi,0) \, E_\beta(x-\xi,\,t) \, d\xi$$

$$+ \int_0^t \!\!\! \alpha(\tau) \, u(0,\tau) \, \frac{\partial}{\partial \xi} (E_\beta(x-\xi,\,t-\tau)) \, \Big|_{\,\xi\,=\,0} \, d\tau - \int_0^t \!\!\! \alpha(\tau) \, \frac{\partial u}{\partial \xi} (0,\tau) \, E_\beta(x,\,t-\tau) \, d\tau \; .$$

Formula (8) (see also [2]) motivates the following definition of parabolic potentials associated with the boundary value problem (1)-(3):

a) volume potential

(9)
$$V(x,t) = E_{\beta} * \tilde{f} = \int_{0}^{t} d\tau \int_{0}^{\infty} f(\xi,\tau) E_{\beta}(x-\xi,t-\tau) d\xi;$$

b) single-layer potential concentrated on $S_1 = \{ x \ge 0, t = 0 \}$

(10)
$$V^{(0)}(x,t) = E_{\beta} * (\tilde{\phi} \delta_{s_1}) = \int_0^{\infty} \varphi(\xi) E_{\beta}(x-\xi,t) d\xi;$$

c) single-layer potential concentrated on $S_2 = \{ x = 0, t \ge 0 \}$

(11)
$$V^{(1)}(x,t) = E_{\beta} * (\alpha \mu \delta_{s_2}) = \int_0^t \alpha(\tau) \mu(\tau) E_{\beta}(x,t-\tau) d\tau;$$

d) double-layer potential concentrated on S2

(12)
$$W(x, t) = -\frac{\partial}{\partial x} (\alpha r \delta_{s_2}) * E_{\beta} = \int_0^t \alpha(\tau) r(\tau) \frac{\partial}{\partial \xi} (E_{\beta}(x - \xi, t - \tau)) \Big|_{\xi = 0} d\tau.$$

2. VOLUME POTENTIAL

Volume potential V(x,t) given by (9) - is a part of a boundary value problem solution that corresponds to the source-function f(x,t).

THEOREM 1. Let $\alpha(t) \in L_1[0, T]$ and satisfy condition (i). Then: (a) for $f \in M$, $V(x,t) \in M$; (b) for $x \ge 0$, $t \ge 0$ V(x,t) is a distributional solution of (1), satisfying zero initial condition as $t \to 0^+$; (c) if extension $f \in C^2$ for all x and $t \ge 0$ (which in particular implies that $f(0, t) = f_x(0, t) = 0$) and all its derivatives up to the second order belong to M, then $V_{xx}(x, t)$ is continuous in $\{x \ge 0, t \ge 0\}$, V_t exists for all x and t, is continuous in x, and its smoothness in x is determined by that of $\alpha(t)$ itself; thus, if in addition $\alpha(t) \in C(R_+)$, then V(x,t) satisfies (1) in the classical sense.

Proof. Introducing in (9) a new variable $y(\beta_1(t-\tau) > 0 \text{ for } t-\tau > 0)$

$$x-\xi=2$$
 y $\sqrt{\beta_1(t-\tau)}$,

for $x \ge 0$, $t \ge 0$ we express V(x,t) in the form

(13)
$$V(x,t) = \frac{1}{\sqrt{\pi}} \int_0^t d\tau \int_{-\infty}^{\infty} \frac{x}{2\sqrt{\beta_1(t-\tau)}} f(x-2y\sqrt{\beta_1(t-\tau)};\tau) e^{-y^2} dy$$

and its time-derivative (t > 0):

$$(14) \quad \frac{\partial V}{\partial t} = f(x, t)$$

$$-\frac{\alpha(t)}{\sqrt{\pi}}\int_0^t\!\!\!\!\mathrm{d}\tau\!\!\int_{-\infty}^{\frac{x}{2\sqrt{\beta_1(t-\tau)}}}\!\!f^{\,\prime}_{arg.1}\left(x-2y\sqrt{\beta_1\,(t-\tau)};\tau\right)\!\!\frac{y}{\sqrt{\beta_1(t-\tau)}}\,e^{-y^2}\!\!\mathrm{d}y.$$

Using properties of integrals with parameters, it follows from (13)-(14) that $V(x,t) \in C^2(x \ge 0, t > 0) \cap C^1(x \ge 0, t \ge 0)$ for f and α satisfying conditions (c). At the same time V, being a distributional solution of $L_{\alpha}V = f$ and sufficiently smooth, is its classical solution (Du Bois Reimond theorem).

Then, since $f \in M$ and E_{β} (as E_{α}) satisfies (5),

$$|V(x,t)| \leq ||f|| \int_0^t d\tau \int_{-\infty}^{+\infty} E_{\beta} d\xi \leq t ||f||.$$

It follows immediately that $V \in M$ and satisfies zero initial condition. The rest of (b) can be obtained as in Lemma, since

$$\tilde{\mathbf{f}} = \delta * \tilde{\mathbf{f}} = \mathbf{L}_{\alpha} \mathbf{E}_{\beta} * \tilde{\mathbf{f}} = \mathbf{L}_{\alpha} (\mathbf{E}_{\beta} * \tilde{\mathbf{f}}) = \mathbf{L}_{\alpha} \mathbf{V}.$$

3. SINGLE-LAYER POTENTIALS

(A) Single-layer potential $V^{(0)}(x,t)$, given by (10), is a part of a solution corresponding to the initial condition (2).

THEOREM 2. Let now the condition (ii) hold. Then: (a) for $\varphi \in M$, $V^{(0)} \in M$; (b) $V^{(0)}$ is a distributional solution of the equation $L_{\alpha}u = \varphi \delta_{S1}$ and satisfies the initial condition $V^{(0)}(x,t) \to \varphi(x)$ as $t \to 0^+$ for x > 0; (c) if extension $\varphi \in C^2$ (which implies that $\varphi(0) = \varphi'(0) = 0$) and its derivatives up to the second order belong to M, then $V^{(0)}_{xx}(x,t)$ is continuous in $\{x \ge 0, t \ge 0\}$ and $V^{(0)}_{t}$ exists is continuous in x, and its smoothness in t is determined by that of $\alpha(t)$ itself; (d) if in addition $\alpha \in C(R_+)$, then $V^{(0)}(x,t) \in C^2(x \ge 0, t > 0) \cap C(x \ge 0, t \ge 0)$ and, since the support of the distribution $\varphi \delta_{S1}$ is S_1 , it follows that $V^{(0)}(x,t)$ is a classical solution of the problem (1)-(2) (with t = 0).

Proof is similar to that of Theorem 1 with the substitution of variables in the form: $x - \xi = 2(\alpha_1(t))^{1/2} y$.

(B) Single-layer potential $V^{(1)}(x,t)$, given by (11), is a part of a solution, corresponding to the boundary values $u'_X(0,t)$.

THEOREM 3. Let again condition (i) hold. Then: (a) for $\mu \in M$, $V^{(1)}(x,t) \in M$; (b) $V^{(1)}(x,t)$ is a distributional solution of the equation $L_{\alpha}u = \mu\alpha\delta_{S2}$, $x \ge 0$, $t \ge 0$: satisfies zero initial condition as $t \to 0^+$; (c) if in addition $\alpha \in C(R_+)$ and $\mu' \in M$,

then $V^{(1)}(x,t) \in C^{\infty}$ in x and C^1 in t for x > 0, $t \ge 0$ and is a classical solution of (1) with $f = \varphi = 0$; (d) $V^{(1)}(x,t)$ is continuous at x = 0 for all $t \ge 0$.

Proof. Let us introduce a new variable in (11):

(15)
$$y = 1/4 \beta_1 (t-\tau)$$
.

Since $y'_{\tau} \ge 0$ (= 0 only at isolated points), (15) gives an implicit function $\tau = \tau(t, y)$ with $1/(4 \beta_1(t)) \le y < +\infty$ and $\tau = 0$ for $y = 1/(4 \beta_1(t))$. Then, since $\alpha_1(t) = \beta_1(t)$, (11) can be rewritten in the form:

(16)
$$V^{(1)}(x,t) = \frac{1}{4\sqrt{\pi}} \int_{1/4\alpha_1(t)}^{\infty} \mu(\tau(t,y)) y^{-3/2} e^{-x^2 y} dy$$
.

(a) immediately follows from (16) since

$$|V^{(1)}(x,t)| \le \frac{1}{\sqrt{\pi}} ||\mu|| (\alpha_1(t))^{1/2}; \quad ((\alpha_1(0) = 0).$$

Part (b) can be proved in the way similar to that of Theorem 1, and since

$$(17) \qquad (V^{(1)}(x,t))'_{t} = 1/2 \pi^{-1/2} \mu(0) (\alpha_{1}(t))^{-1/2} \alpha(t) \exp(-x^{2}/4\alpha_{1}(t)) + V^{(1)}(x,t; \mu'_{t})$$

(where $V^{(1)}(x,t;\mu'_t)$ is the potential (16) with density $[\mu(\tau(t,y))]'_t$), part (c) of this theorem is an immediate consequence of (16) and (17). For x>0 $V^{(1)}(x,t)$ satisfies equation $L_{\alpha}V^{(1)}=0$ since the support of the distribution $\mu\alpha\delta_{S2}$ is S_2 , i.e. $\mu\alpha\delta_{S2}$ is equal to 0 for $x\notin S_2$.

Statement (d) is obtained by comparison of the convergent integral

$$V^{(1)}(0,t) = \frac{1}{4\sqrt{\pi}} \int_{1/4\alpha_1(t)}^{\infty} \mu(\cdot) y^{-3/2} dy$$

with $V^{(1)}(x,t)$, given by (16), for x close to 0. This, and formulae 3.383(3), 8.359(3) from [3], leads to the estimate:

$$\left| V^{(1)}(x,t) - V^{(1)}(0,t) \right| \le \frac{1}{2} \|\mu\| \left| x \left| (1 - \Phi(\left| x^* \right| / 2(\alpha_1(t))^{1/2})) \right|,$$

where $0 \le x^* \le x$ and Φ is the probability integral.

4. DOUBLE-LAYER POTENTIAL

Double-layer potential W(x,t), given by (12), is a part of a solution corresponding to the boundary condition (3).

THEOREM 4. Let α satisfy condition (i). Then: (a) for $r \in M$, $W(x,t) \in M$; (b) W(x,t) is a distributional solution of the equation $L_{\alpha}u = -(\alpha r \delta_{S2})'_{x}$ and satisfies zero initial condition as $t \to 0^+$; (c) for x > 0, $t \ge 0$ if α , $r \in C(R_+)$ and $r' \in M$, then $W(x,t) \in C^{\infty}$ in x and C^1 in t, and it is a classical solution of (1)-(2) with $f = \varphi = 0$; (d) given that $r(t) \in C^1(R_+)$ W satisfies the following "jump formulae":

(18)
$$\lim_{x \to \pm 0} W(x, t) = \pm \frac{1}{2} r(t)$$
.

Proof. Parts (a)-(c) of this theorem are proved in the same way as those in Theorem 3. We introduce a new variable (15) and express W in the form:

(19) W (x,t) =
$$\frac{x}{2\sqrt{\pi}} \int_{1/4\alpha_{\star}(t)}^{\infty} r(\tau) y^{-1/2} e^{-x^2 y} dy$$
,

(where $\tau = \tau(t, y)$, as in Theorem 3) and its time-derivative:

(20)
$$\frac{\partial W}{\partial t} = \frac{x}{\sqrt{\pi}} r(0) (\alpha_1(t))^{-3/2} \alpha(t) \exp(-x^2/4(\alpha_1(t)) + W(x, t; r_t')),$$

where $W(x, t; r_t')$ is the potential (19) with density $[r(\tau(t,y))]_t'$. Now part (b) can be proved applying the same technique as in Theorem 2, and (a), (c) follow from (19)-(20) as in Theorem 3.

Let us consider part (d) in more detail. First we let $r(\tau) \equiv r(t)$ for all $0 \le \tau \le t$, and denote the double layer potential in this case by W_0 . Then, it follows from (19) and [3] (3.381, 8.359), that for $x \ne 0$

(21)
$$W_0 = \frac{x}{2\sqrt{\pi}} r(t) \int_{1/4\alpha_1(t)}^{\infty} y^{-1/2} e^{-x^2 y} dy = \pm \frac{r(t)}{2} \left(1 - \Phi\left(\frac{x}{2\sqrt{\alpha(t)}}\right) \right),$$

(\pm depending on the sign of x), and, since $\Phi(0) = 0$,

$$\lim_{x \to 0^{\pm}} W_0(x, t) = \pm \frac{1}{2} r(t) .$$

Then, we consider the difference W_0 - W for x > 0, performing integration in two steps (over $(0, t - \Delta)$ and $(t - \Delta, t)$ intervals), and separately studying cases where point t is "regular" (i.e., $\alpha(t) > 0$) and "irregular" (i.e., $\alpha(t) = 0$). Let

$$W(x,t)-W_0(x,t) = I_1 + I_2$$
,

where

$$I_{1} = \frac{x}{4\sqrt{\pi}} \int_{0}^{t-\Delta} (r(t) - r(\tau)) \frac{\alpha(\tau)}{\beta_{1}^{3/2}(t-\tau)} \exp\left(-\frac{x^{2}}{4\beta_{1}(t-\tau)}\right) d\tau,$$

$$I_{2} = \frac{x}{4\sqrt{\pi}} \int_{t-\Delta}^{t} (r(t) - r(\tau)) \frac{\alpha(\tau)}{\beta_{1}^{3/2}(t-\tau)} \exp \left(-\frac{x^{2}}{4\beta_{1}(t-\tau)}\right) d\tau,$$

and, as in (21), for both types of t

$$\left| I_{1} \right| \leq \| r \| \left[\Phi \left(\frac{x}{2\sqrt{\alpha(t) - \alpha(t - \Delta)}} \right) - \Phi \left(\frac{x}{2\sqrt{\alpha(t)}} \right) \right] \rightarrow 0$$

with $x \rightarrow 0$ and fixed but arbitrary $\Delta > 0$.

 I_2 should be estimated separately for different types of t. Thus, for t "regular", that is $\alpha(t) > 0$, Δ can be chosen sufficiently small so that $\alpha(\tau) > 0$ over the entire interval $[t - \Delta, t]$. Then, from $\beta_1(t - \tau) = \alpha(\tau^*)(t - \tau)$ in $[t - \Delta, t]$ and the substitution of variables $y = (t - \tau)^{-1}$, we obtain:

$$\begin{split} \mid I_{2} \mid & \leq \frac{\parallel \alpha \parallel \mid x \mid \parallel r' \parallel}{4 \sqrt{\pi} \alpha_{\Delta}^{3/2}} \int_{1/\Delta}^{\infty} y^{-3/2} \exp \left(-\frac{x^{2}}{4(\alpha(t) - \alpha(t - \Delta))} \right) dy \\ & = \frac{\parallel \alpha \parallel \mid x \mid \parallel r' \parallel}{2 \sqrt{\pi} \alpha_{\Delta}^{3/2}} \sqrt{\Delta} \exp \left(-\frac{x^{2}}{4(\alpha(t) - \alpha(t - \Delta))} \right), \end{split}$$

where $0 < \alpha_{\Delta} = \min_{\tau \in [t-\Delta,\,t]} |\alpha(\tau^*)| \to \alpha(t)$ with $\Delta \to 0$. As a result, $I_2 \to 0$ with either x or $\Delta \to 0$. For t "irregular", the fact that $\alpha(t) = 0$, requires a different approach. Using (15), we can show that

$$|I_{2}| \leq \frac{1}{2} \max_{\tau \in [t-\Delta, t]} |r(t) - r(\tau)| \left(1 - \Phi\left(\frac{x}{2\sqrt{\alpha(t) - \alpha(t-\Delta)}}\right)\right)$$

$$\leq \frac{1}{2} \max_{\tau \in [t-\Delta, t]} |r(t) - r(\tau)| < \varepsilon$$

for arbitrarily small $\varepsilon > 0$. These estimates imply that $W_0 - W \to 0$ with $x \to 0$, hence the formula (18).

5. EXAMPLES

(a) Let's consider the problem (1)-(3) and $\alpha(t)$ satisfying (i). Then we introduce odd extension of all functions into the region x < 0. Then since the jumps at x = 0 are

 $[u]_{x=0} = -2 \text{ r(t)}$ and $[u'_x]_{x=0} = 0$, from (8) we obtain the integral representation for the solution of initial-boundary value problem (1)-(3) for $x \ge 0$, $t \ge 0$:

$$u(x, t) = \int_{0}^{t} d\tau \int_{0}^{\infty} f(\xi, \tau) (E_{\beta}(x - \xi, t - \tau) - E_{\beta}(x + \xi, t - \tau)) d\xi$$

$$+ \int_0^\infty \phi(\xi) \left(E_{\beta}(x-\xi,t) - E_{\beta}(x+\xi,t) \right) d\xi + 2 \int_0^t \alpha(\tau) \, r(\tau) \, \frac{\partial}{\partial \xi} \left(E_{\beta}(-\xi,t-\tau) \right) \Big|_{\xi=0} d\tau \ .$$

Function u(x,t) satisfies the equation (1) and initial and boundary conditions (2)-(3), given that the functions α , r, φ , f satisfy restrictions discussed in Theorems 1-4.

(b) As in a), considering the problem (1)-(3) for 0 < x < b with additional condition u(b, t) = h(t), we find solution u(x,t) in the form (with $\alpha(t)$ still satisfying (i)):

(22)
$$u(x,t) = V(x,t) + V^{(0)}(x,t) + W_1(x,t) + W_2(x,t),$$

where double-layer potentials W_1 (the same as in (12)) and W_2 have density functions 2 r(t) and μ (t) respectively. W_2 is concentrated on the x = 1 part of the boundary and is given by the formula:

$$W_2(x,t) = \int_0^t \alpha(\tau)\mu(\tau) \frac{\partial}{\partial \xi} \left[E_\beta(x-\xi,t-\tau) - E_\beta(x+\xi,t-\tau) \right]_{\xi=b} d\tau.$$

Using (18) for W_1 we find that u (22) satisfies the conditions (2)-(3) (note that $W_2(0, t) = 0$). Applying then the boundary condition u(b, t) = h(t) to (22) and using the "jump formula" for W_2 we obtain:

$$h(t) = V(b, t) + V^{(0)}(b, T) + W_1(b, t) - \frac{1}{2}\mu(t)$$

$$+ \frac{1}{2\sqrt{\pi}} \int_0^t \alpha(\tau) \, \mu(\tau) \, (\beta_1(t-\tau))^{-3/2} \exp(-b^2/4\beta_1(t-\tau)) \, d\tau \, .$$

The density $\mu(t)$ has to be found from the linear Volterra integral equation of the second kind:

(23)
$$\mu(t) = \int_0^t k(t,\tau) \mu(\tau) d\tau + F(t) \equiv K[\mu],$$

with continuous F(t) (Theorems 1-4) and a kernel

k (t,
$$\tau$$
) = $\frac{1}{\sqrt{\pi}} \alpha(\tau) (\beta_1(t-\tau))^{-3/2} \exp(-b^2/4\beta_1(t-\tau))$.

The unique solvability of the equation (23) can be obtained by methods discussed in [3], or it can be proved that some power K^m of the operator K is a contraction on C[0,T]. So, equation (23) has a unique solution, which can be found by the method of successive approximations, and formula (22) gives its integral representation.

(c) Considering (1)-(2) with $\alpha(t)$ satisfying (ii), f = 0 and φ being an odd extension into x < 0, we can find the solution in the form

$$\begin{split} u(x,\,t) \, &= \, E * \, \tilde{\phi} \, \delta_{S_1} = \int_0^\infty \! \phi(\xi) \, \left(E_\beta(x-\xi,\,t) - E_\beta(x+\xi,\,t\,) \right) \, d\xi \\ \\ &= \int_0^\infty \! \frac{\phi(\xi)}{2 \sqrt{\pi \, \alpha_1(t)}} \left[\, \exp\!\!\left(-\frac{\left(x-\xi\right)^2}{4 \, \alpha_1(t)} \right) - \, \exp\!\!\left(-\frac{\left(x+\xi\right)^2}{4 \, \alpha_1(t)} \right) \right] d\xi \, . \end{split}$$

Verification is straightforward. As an example of $\alpha(t)$ satisfying (ii) $1/2 + \cos(t)$ may do. Under the condition (ii) equation (1), not being of parabolic type, still can be solved in the form of a convolution of its fundamental solution with a single layer (Theorem 2).

REFERENCES

[1] I. Malyshev, On the inverse problem for a heat-like equation, J. of Appl. Math. and Simulation, Vol. 1, No. 2: 81-97, (1987).

- [2] V.S. Vladimirov, Equations of Mathematical Physics, Marcel Dekker, (1971).
- [3] I.S. Gradshteyn, I.M. Ryzhik, *Table of Integrals, Series and Products*, Academic Press, (1980).
- [4] I. Malyshev, Description of the parabolic potentials in the non-cylindrical domains by the Sobolev-Schwartz's Distributions, *J. of Comput. and Appl.Math.*, 30: 58-66, (1976). [Russian; English translation: MR 58, # 1196].