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ABSTR&CT

Denote by Sn the set of Ml distinct rooted trees with n lbeled
vertices. A tree is chosen t random in the set Sn, assuming that all the
possible nn- 1 choices are equally probable. Define 7"n(m as the number
of vertices in layer m, that is, the number of vertices at a distance m
from the root of the tree. The distance of a vertex from the root is the
number of edges in the path from the vertex to the root. This paper is
concerned with the distribution and the moments of rn(m) and their
asymptotic behavior in the case where m = [2c], 0 < c < oo and n-c.
In addition, more random trees, branching processes, the Bernoulli
excursion and the Brownian excursion are also considered.
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I. INTRODUUTION

In 1889, A. Cayley [3] observed that the number of distinct trees with n labeled

vertices is nn- 2. Since then various proofs have been found for Cayley’s formula. For a

simple proof see L. Takhcs [23]. The number of distinct rooted trees with n labeled vertices is

Rn=nn-1 (1)

9, Since among the n vertices we can choose a root in n ways, (1) immediatelyfor n=l,

follows from Cayley’s formula.

The number of vertices in layer m in a rooted tree is the number of vertices at a

distance m from the root. The distance of a vertex from the root is the number of edges in the

path from the vertex to the root.
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Let Sn be the set of all distinct rooted trees with n labeled vertices and denote by

tn(j,m),j = O, 1,...,n-m, the number of trees in Sn having j vertices at a distance m from

the root. Let us choose a tree at random in the set Sn, assuming that all the possible nn- 1

choices are equally probable. Define rn(m) as the number of vertices in layer m, that is, the

number of vertices at a distance m from the root of the tree chosen at random. If all the

possible trees in Sn are equally probable, then

P{rn(m) = j} = t,(j,m)/nn-1 (2)

for j = 0, 1,..., n m.

In this paper we are concerned with the distribution and the moments of rn(m) and

their asymptotic behavior in the case where m = [2aff],0 < a < oo and n-oo. The results

derived for 7"n(m are extended to other random trees, branching processes, the Bernoulli

excursion and the Brownian excursion.

2. AUXILIARY THEOREMS

Let us define the generating functions

gn(z’m) = E tn(J’m)zJ (3)

and

Gm(z w) = E gn(z, m)wn/n! (4)

forn>_landm>0. If zl <land wl <l/e, then (4) is convergent-

Lemma 1: If w] <_ l/e, then the equation

y,- u = w (5)

has exactly one root in the unit disk Yl < 1 and

yr
W

r
oo

rt
n __.rwn=[Y( )] = rXrn(n r)! (6)

for w <lIe and r = l, 9

Proof: By Rouch6’s theorem it follows that (5) has exactly one root in the unit

disk Yl < 1 and we obtain (6) by Lagrange’s expansion. For r = 1 the expansion (6) was

already known to L. Euler [7].
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Gin(z, w) = weGin-

where Go(z, w) = zy(w), and y = y(w) is given by (6) with r = 1.

Proof: If we take into consideration that the degree of the root of a tree may be

k = 0,1,2,..., then we obtain hat

Gm(z, w = W’4" WE [Gm_ l(Z,w)]k/k! = WeGm- l(z’w)
k---1

for m = 1,2,... and obviously

(8)

for w _.< 1/e. Equation (7) appears also in A. Meir and J.W. Moon [191 and in A.M.

Odlyzko and H.S. Will [20].

3. TIIE MOMENTS OF ra(m)

The following theorem has been found by V.E. Stepanov [21].
shall give a simple proof for it.

In what follows we

Theorem I:

exists for r = O, 1,2,

If 0 < c < c, then

lim 2rn = pr(a)

We ave po(a) = 1,pl( = 4ae- 22, and

(10)

r-1

pr(a) = 2r + :r!ar / (1 + z)e
o

2a2(1 + X)2g
r_ (z)dz1 (11)

for r >_ 2, where

fort>2 and z >_ O.

[z]

(r 1)(z-j)r-2gr-1(x) E (- llJ
3 =0

j (r- 2)! (12)

Proof: Let us define

= l (OrGm(z,w) oo rn )} n!Sr(’m) ".k OZr )z----l: E E{(m)
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for r_>0,m>_0, and Iwl _<l/e.

By forming the derivative of (7) with respect to z we obtain

=Oz Oz

for rn > 1. Hence

Bl(w,m = Bo(w,m)Bl(W,m- 1)

for rn > 1. Since

B0(,-,) = Y()

for rn >_ 0, by (15) we obtain that

B1 (w, m) [y(w)]m + 1

for m >_ 0, and thus by (6)

(14)

(15)

(16)

(17)

m+l nm/ (18)

If r _> 2, and m >_ 1, then the (r- 1)st derivative of (14) with respect to z at z -- 1 yields

r-1

r[Br(w,m y(w)Br(w,m- 1)1 = Z (r- j)Bj(w,m)Br_j(w,m- 1), (19)

whence for the determination of Br(w,m),(r= 2,3,...), we get the following recurrence

formula:

r-1

rBr(w’m)- E (r-j) E [Y(w)]m-i-lBj(w’i+ 1)Br-j(w’i)" (20)
=

If r 2 in (20), then by (17)

:(,,)- 1/2 [u()]++ (:)
O<i<m

and thus by (6)

O<i<m

2n,- (,m2.2)!- (n- 2m L 2)*. (22)

If r- 3 in (20), then by (17)and (21)
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1B3(w,m) =
o<i<j<, 0_<i=j<m

and hence

E 7n(m+i+j+2)+
o<_i<./<.,

E 7n(m+i+j+2). (24)
0<_i=j<m

By continuing this procedure we obtain that for r >_ 2,

Br(w m) (r 1)!=
2r- 1 E [Y(w)]m + il +’"’!" r_ 1 +r +... (25)

o_<i1 <i2<...<ir_l <rn

where the neglected terms are constant multiples of sums similar to the one displayed, except

that in these sums il, i2,...,ir_l are not distinct; for at least one v = 2,...,r-1 we have

v 1 = it,. Formula (25) can be proved by mathematical induction. If we suppose that (25) is

true for B2(w,m),...,Br_(w,m where r =3,4,..., then by (20)it follows that (25)is true

for Br(w, m) too. Accordingly, (25)is true for every r > 2.

It is easy to prove that

17.(m)- me- m2/(2n) < 4/3

for 0 < m < n. If r = 1 and m = [2aft’if], then by (18) we obtain that

(26)

E{vn(m)} = 7n(m),-. 2aff’e- 22

as ---c or

(27)

lLnoo2E{rn(m)}/’i’a = 4ere- 2a2. (28)

This proves (10) for r = 1. If r > 2,m = [2aft’a], 0 < a < c and n---cx), then by (25)

(,., 1)! E 7n(m + il +"" + ir- 1 + r- 1) +...
0 <_ I < 2 <... < r 1 < m (29)

where the neglected terms are of smaller order than the displayed one. If r

0 < cr < c and n---,c, then

E{[rn(m)]r) r!E ( (rnm) ) ),
and by (26) and (29) we obtain that

(30)

lnimoo2rE{[rn(m)]r}/nr/2 = btr(cr) (31)
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exists and

0<x1 <...<Xr_ 1 <1

(,) = (r-

(1 + zt + + zr_ 1)e- 22( + xl +"" + =r- 1)2dZl...dzr_ 1 (32)

1 1

= cr (1 + .r. t + + r t)e 2a’2(:t :t dzt...dzr_ +.
o o

for r >_ 2, where cr 2r + lrtotr. We can write also that

r-1

/Zr() = 2r + lr!cr ] (1 + z)e- 2a2(1 + X)2g
r l(X)dar

o
(33)

for r >_ 2 where gr- 1(z) is the density function of 1 + 2 +-’. + r- 1 where l,2,-’-,r- 1

are independent random variables each having a uniform distribution over the interval (0,1).
For the density function gr_l(a:), formula (12) has been found by P.S. Laplace [14], pp. 256-

257. For a simple proof of (12) see L. Wakcs [22].

We note that

/:z(a) 4(e 2c’2 e 8c’2), (34)

and

(35)

where

-u2/2du (36)

is the normal distribution function.

4. THE ASYMPTOTIC DISTRIBUTION OF rn(m)

The asymptotic distribution of rn(m has been found by V.E. Stepanov [21] in a

different form.
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Theorem I: If 0 < o < cx, then

ff=p(’-([z’]) _< ) = G,() (37)

.for x > 0 where G(x) is the distribution function of a nonnegative random variable and is

given by

G() = 1 2j__IE k0(k3
1

j 1) e -(x + 2cj)2/2( z)kHk + 2( -]- 2j)//I. (38)

for >_ 0 where Ho(x),Hl(X),... are the Hermite polynomials defined by

We have

and

d

Hn(z) = n!E (- 1)ix"
j o 23J!(n 2j)!

(39)

Ga(0 = 1 2E (4c2J2 1)e 2a;J2 (40)
3-’1

= 2 I + 2( + 2aj)/(k 1)!
j=l k=l

(41)

Proof: Since

u2ue <_ (2e) 1/2 < 1 [2 (42)

if u >_ 0, it follows from (11) that

,,(,)/,’! < (2,)"/, (43)

for r _> 2. Accordingly, there exists one and only one distribution function Ga(x) such that

Ga(x 0 for x < 0 and

/ xrdGa(x)- i.tr(O)
-0

(44)

for r >_ 0. By the moment convergence theorem of M. Frchet and J. Shohat [8] it follows from

(I0) that (37) holds in every continuity point of Ga(x). If Is < 1/(2a), then the Laplace-

Stieltjes transform

a(s) = f e-SXdGa(x)
-0

(45)
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can be expressed as

By (11) we obtain that

a(s) = (- 1)r/r(a)sr/r!. (46)
r=0

for Is < 1/(2ix). Hence (38) and (41) follow by inversion.

(47)

5. VARIOUS EXTENSIONS

By using the same method which we used in proving Theorems 1 and 2 we can

demonstrate that the distribution function Ga(m appears also in the solutions of various other

problems in probability theory. Apparently, the interesting interrelation among these

problems has not been noticed before, and Ga(z has appeared in various disguises. Here are

some examples.

(i) Random trees. Denote by Tn+l the set of distinct rooted ordered trees with

n + 1 unlabeled vertices. There are

Cn : (2nn) 1 (48)n+1

distinct trees in Tn + 1" This follows from the obvious recurrence formula

Cn = , Ci- Cn
i=1

(49)

for n = 1,2,... where CO = 1. In (48) Cn is the nth Catalan number. Let us choose a tree at

random, assuming that all the possible Cn trees are equally probable. Denote by rn + l(m) the

number of vertices at a distance m from the root of a tree chosen at random. If 0 <
then we have

{ + }= Go( )

for x > 0.

Denote by Tn +2 the set of distinct planted trivalent trees with 2n +2 unlabeled

vertices. A planted tree is rooted at an end vertex. In a trivalent tree every vertex has degree

3 except the end vertices which have degree 1. In 1859, A. Cayley [2] demonstrated that there
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are Cn distinct trees in T, + 2 where Ca

Tn + 2 assuming that all the possible C,
the number of vertices at a distance m from the root of a tree chosen at random.

0 < c < c, then we have

lira P + G()

is given by (48). Let us choose a tree at random in

choices are equally probable. Denote by V2n + 2(m)
If

(51)

for z > 0.

(ii) Branching processes. Let us suppose that in a population initially we have a

progenitor and in each generation each individual reproduces, independently of the others, and

has probability pj, (j = O, 1,...), of giving rise to j descendants in the following generation.

Denote by (m), (m = 0,1,...), the number of individuals in the mth generation; (0)= 1.

Define

P = E (m), (52)

that is, p is the total number of individuals (total progeny) in the process (possibly p = c).
Let

and

If 1(1)= 1,

0 < a < c, then

gcd{j: pj > 0} = d. (54)

f’(1)=l, f"(1)=2 where 0<a<cx, f(r)(1)<cx for r>_2, and

{ }tim P = Ga(z,’,-..-,oo o’ <z’IP nd+l (55)

for z > 0 where Ga(z) is defined by (38).

If pj = e-X/j! for j = 0,1,2,..., then r2= 1 and d = 1 and (55) reduces to (37). If

pj= 1/2j+l for j=0,1,2,..., then a2=2 and d=l and (55)reduces to (50). If

P0 = P2 = 1/2 and pj = 0 otherwise, then r2 = 1 and d = 2 and (55) reduces to (51).

The limit distribution (55) has already been determined by D.P. Kennedy [12] in a

different form. By his results we can conclude that
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=

for a: > 0 and

o < ,, < /(,)
o < < I(4.)

a2u2/(2( 4a2v))(1 -4a2v)-3/2uf(u,v)dudv (56)

fsinh(. 2q.!-,u- wvf(u, v)dudv = - 2 + "

for Re(s) > 0 and Re(w) > 0.

(57)

(iii) Bernoulli excursion. Let us arrange n white balls and n black balls in a row in

such a way that for every = 1,2,...,2n among the first balls there are at least as many

white balls as black. The total number of such arrangements is given by the nth Catalan

number Cn, defined by (48). Let us suppose that all the possible Cn sequences are equally

probable and choose a sequence at random. We associate a random walk with the random

sequence chosen by assuming that a particle starts at time t = 0 at the origin of the z-axis and

in the time interval (i- 1,i], i = 1,2,..., 2n, it moves with a unit velocity to the right or to the

left according to whether the ith ball in the row is white or black respectively. Denote by

z=r/n+(t) the position of the particle at time 2nt where 0_<t< 1. The process

{r/+n(t),0 <t_< 1} is called a Bernoulli excursion. Denote by 2r+n(m)(m= 1,2,...,n) the

number of crossings of the sample function of the process {r/+n (t),0 < t < 1} through the line

z = m-1/2. In other words, r +n (m)/n is the total time spent in the interval (m-1,m) by

the process {r/+n (t), 0 < < 1}. If 0 < a < , then

lira P { 2r +n ([c2]) < z } G(z) (58)

for z > O. Since r +n (m) has exactly the same distribution as rn + :(m) in (50), the two results,

(50) and (58), imply each other.

(iv) Brownian excursion. The process {r/n+ (t)/q-, 0 <_ <_ 1}, where r/+n (t) is denned

under (iii), converges weakly to the Brownian excursion {r/+ (t),0 < t _< 1}. For the definition

and properties of the Brownian excursion we refer to P. Lvy [15], [16], K. It5 and H.P.

McKean, Jr. [11] and K.L. Chung [4]. For the process {r/+(t),0 _< t _< 1} define r+() as the

local time at the level a for a >_ 0. From (58) we can conclude that

+ <_ = (59)

for z > 0, and also
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(60)

for r = O, 1,2,... where pr(a) is defined by (10).

The distribution function (59) has attracted considerable interest. In the articles by

R.K. Getoor and M.J. Sharpe [9], J.W. Cohen and G. Hooghiemstra [5], G. Louchard [17], [18],
E. Cshki and S.G. Mohanty [6], and Ph. Blanc and M. Yor [1], P{r + (a) _< x} is expressed in

the form of a complex integral. F.B. Knight [13] and G. Hooghiemstra [10] expressed

P(v+(a) _<x} in explicit forms, but their formulas are hardly suitable for numerical

calculations. We can easily produce tables and graphs for Ga(z) and G’a(z) by using formulas

(38) and (41) and the remarkable program MATHEMATICA by S. Wolfram [24].
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