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CONDITIONAL LIMIT TllEOREMS
FOR BINCHING PROCESSES1

LA:]OS TAK/CS
Case Western Reserve University

Cleveland, Ohio2

Let {(m),m = 0,1,2,...} be a branching process in which each
individual reproduces independently of the others and has probability pj
(j = 0,1,2,...) of giving rise to j descendants in the following generation.
The random variable (m) is the number of individuals in the ruth
generation. It is assumed that P{(0)= 1)= 1. Denote by p the total
progeny, #, the time of extinction, and r, the total number of ancestors
of all the individuals in the process. This paper deals with the
distributions of the random variables (m), # and r under the condition
that p = n and determines the asymptotic behavior of these distributions
in the case where n--<x and m--.cx in such a way that m/’q-ff tends to a
finite positive limit.
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1. INTRODUCTION

Let us suppose that in a population initially we have (i = 1, 2,...) progenitors and in

each generation each individual reproduces, independently of the others, and has probability pj

(j = 0, 1,2,...) of giving rise to j descendants in the following generation. Denote by (m)
(m = 0,1, 2,...) the number of individuals in the ruth generation. We have P{(0) = i} = 1.

Define

p = (m), (1)
m>0

that is, p is the total number of individuals (total progeny) in the process (possibly p = c).
Let
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p = sup{m:(m) > 0).

The random variable p is interpreted as the time of extinction.

then p = oo. Furthermore, let

If extinction never happens,

r- m(m), (3)
m>O

that is, r is the total number of ancestors of all the individuals in the process (possibly

Our aim is to study the distributions of the random variables (rn), p and r under the

condition that p = n and determine the asymptotic behavior of these distributions if n--oo and

rn---c in such a way that m/q’ff tends to a finite positive limit. We shall assume that

P{(0) = 1}- 1. The general case where P{(0)= i}- 1 and i>_ 1 can be reduced to the

particular case mentioned above.

2. PILIMINAKIES

The branching process {(m), m > 0} can also be interpreted in the following way: Let

us suppose that in the time interval (0,) customers arrive at random at a counter and are

served singly by one server. Let us assume that the server starts working at time t = 0 and at

that time (i = 0,1,...) customers are already waiting for service. Denote by vr (r = 1,2,...)
the number of customers arriving at the counter during the rth service time. Let us assume

that vt, v2,...,vr,.., are independent random variables for which

P{vr = J} = P.i (4)

if j=0,1,2,.., and r=l,2, Write Nr=vl+v2+...+vr for r>_l. Following D.G.

Kendall [25] we say that the initial customers form the 0th generation. The customers (if
any) arriving during the total service time of the initial customers form the 1st generation.

Generally, the customers (if any) arriving during the total service time of the customers in the

(m- 1)st generation form the ruth generation for m = 1, 2, If (m) (m 0, 1, 2,...) denotes

the number of customers in the mth generation, then {(m),m >_ 0} is the branching process

defined in the Introduction.

The time of the server consists of alternating busy periods and idle periods. Denote by

p the number of customers served in the initial busy period. By the results of L. Takcs [47],
[49], we have

p{Nn n- i} (5)P{p = n I(O) i} =
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for 1 < < n. Formula (5) can also be interpreted as the probability that the total progeny in

the branching process {(m),m > 0} is n given that the number of progenitors is i. See also M.

Dwass [14] and V.F. Kolchin [32] p. 104.

Let us introduce the generating function

for zl _<1- If wl <l, then the equatin

z wf(z) (7’)

has exactly one root z = g(w) in the unit disk zl < 1. By continuity we can extend the

definition of g(w) for w < 1 such that Ig(w) < 1 and z = g(w) satisfies (7) for w < 1.

By Lagrange’s expansion we obtain that

oo wn[g(w)] E --if- P{Nn = n i}

if i = 1,2,... and wl _< 1. Accordingly,

(8)

E{wP (0 = i} = [g(w)]

if i = 1,2,... and wl _< 1.

Throughout this paper we make the following assumptions:

E P.i = 1, (I0)
3.=0

= = 1, (
./=0

= . ( ()
3=0

is a finite positive number (o" > 0), and

gcd{j: pj > 0} = d. (13)

Then f(1) = 1, f’(1) = a = 1 and f"(1) = 2 where the derivatives are left derivatives at z = 1.

Throughout this paper we assume that P{(0)- 1} = 1. If P{(0)= 1} = 1, then by (5)

P{p- n} = P{Nn = n- 1}In

for n = 1,2, Each possible value of p has the form n = sd + 1 where s = 0,1,2,

have P{p < oo) = 1 and for any e > 0, there exists an N = N(e) such that

(14)

We
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IP{p = n)- a e-1 <n3 (15)

provided that n = sd + l(s = 0,1,...) and n > N(e). Since in (14) Nn = v1 + v2 + + vn is

the sum of n independent and identically distributed random variabl with a finite positive

variance a2, we can apply to Nn the local central limit theorem of B.V. Gnedenko [18] to

obtain (15). (See also B.V. Gnedenko and A.N. Kolmogorov [20] p. 233.)

By an Abelian theorem we obtain that

g(W) = 1 ,J2(1 W)/O"2[1 "+" el(W)] (16)

where el(w)--.0 as w---l( w < 1), and

w =

provided that w < 1. See also A.G. Pakes [41].

(17)

Now let us define a sequence of random events Ao, A1,...,An,... in the following way:

A0 is the sure event, and An (n=l,2,...) occurs if and only ifNn=n. Then {An} is a

recurrent sequence of events in which u0 = P{A0} = 1 and

un P{An} = P{Nn = n} (18)

for n = 1,2, Since gcd{n:un > 0} = d, the recurrent events are periodic with period d if

d > 1. By the local central limit theorem of B.V. Gnedenko [18] we have

if n = sd (s = 1, 2,...) and s--.oo.

Denote by fn (n = 1,2,...) the probability that the recurrence time is n. By (19),

f = fl + f2 +". + fn +"" = 1 and thus the recurrent events are persistent. We note that

gcd{n:fn >O}=d" If Iwl <l, wehave

rt’-I

and h(1) = 1. This follows from the equations

and

un = Z fiUn-
i=1

nPlp n} = 2 V{p = i}un
i=l

for n _> 1. By (16) and (17) it follows that

(20)

(21)

(22)
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where e2(w)--,0 as w---,l( w < 1). Hence by a Tauberian theorem

fn + fn+l"+’""

(23)

(24)

If we assume that 01, 02,... Ok,... are independent random variables such that

P{Ok = n} = fn (25)

for n >_ 1 and k >_ 1, then by (24), the random variables 01,02,...,0k,... belong to the domain

of attraction of the stable distribution function

and

2[ (/)] o > 0,
G(=)

0 for x<0,

lira P{01+02+’’’+0k )-.oo < = a().

(26)

(27)

By the local limit theorem of B.V. Gnedenko [19] (B.V. Gnedenko and A.N. Kolmogorov [20]
p. 236) it follows also that

/k/rn[k2r2p{01 + 02 +... + 0k = n} dg(n/k2o’2)] = 0 (28)

uniformly with respect to n = sd (s = 1,2,...). If n is not divisible by d, then clearly

P{OI+...+0k=n}=O. In (28)

for z > 0. Accordingly,

g() = G’(,) -- /=
Z{wOl "b 02 +...-b Ok} : [h(w)]k

for wl _< 1 and for every e > 0 there exists a K(e) such that

k2r2/2P{O +... + 0,, = n} -, -/4r,31 < /2

for k > K(e) and for every n- sd (s = 1,2,...).

(29)

(30)

(31)

We note that if in (31) we replace 0t by another discrete random variable whose

possible values are integral multiples of d and whose distribution is different from {fn}, then

(28) and (31) hold unchangeably. This immediately follows from the proof of the

aforementioned theorem of B.V. Gnedenko [19].
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Remarks: Throughout this paper we make the assumption (11), that is, a = 1.

However, the results proved in this paper are valid also for a 1. Namely, if a : 1, the

conditional distributions of the random variables (m), and r, given that p = n, remain

unchanged if we replace the probability distribution {pj} by {p} where

and c is any positive real number for which f(c) < o. Then

a* ---- Z JPJ = cf’(c)/f(c). (33)
j=o

If there is a c > 0 such that a* -- 1, then in finding the conditional distributions of (m),/ and

r given that p = n, we may substitute (p} for (pj}. if, in addition, f"(c)< x), then the

variance of (p} is also finite. If a < 1, then there always exists a c such that 0 < c < 1 and

3. TItE DISTRIBUTION OF (m)

It is assumed that (10), (11), (12) and (13) are satisfied.

of (m) given p = n is determined by the generating function

(,) =

defined for zl _<land wl _<1.

Theorem 1: and [w < 1, we have

The conditional distribution

(34)

%(z.w)- ,f(v.._ (. w))

Proof: Obviously,

(35)

(I)m(Z W) WZ Pj[(m- 1(z’ W)]j
j=0

for m = 1, 2,..., z <-- 1 and w <_ 1 where (I)0(z w) = zg(w). This implies (35). From (35)
it follows that

oe(z,) _:(z,)= l’(v._ :(z, ))0- OzOZ

for ]z] < 1. If we let z---l, we obtain that

E{(m)wp} = wf’(g(w))E{((m- 1)w}

(36)

(37)

(38)
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for m = 1, 2, Hence by (20) it follows that

= (39)

for m = 0,1,2,... and wl_< 1. On the right-hand side of (39) both g(w) and h(w) are

generating functions of discrete random variables taking on positive integers only. If we form

the coefficient of wn in the Taylor expansion of (39) and divide it by P{p = n}, then we can

calculate E{(m) p = n} explicitly. The possible values of p are n = sd + 1 (s = 0,1, 2,...). If

n = sd + 1 (s = 0, 1,2,...) and if we use (15) and (31), we obtain from (39) that for any e > 0

E{(m) p = n}- mae-"/’1 < an312/m2 (40)

for sufficiently large m and n. If in (40), m = [2l-a/a] where 0 < a < c, then we obtain that

n--,E( ’r P = n}= l(a) (41)

exists and

#1 (a) 4ce 2a2. (42)
If we form the second derivative of (35) with respect to z and let z--.1 (I z < 1), then

we obtain a recurrence formula for the determination of the second binomial moment of (m).
Thus we obtain that

= 2
l_<i<_m

for m > 1. If we form the coefficient of wn in the Taylor expansion of (43) and divide it by

P{p = n}, then we can calculate E{((n)) p n} explicitly. If n = sd + 1 (s = 0,1,2,...) and

if we take into consideration that [g(w)]2f"(g(w))/r2 is the generating function of a discrete

random variable whose possible values are sd (s = 1,2,...), then by (15) and (31) we obtain

that for any e > 0

r4 (m + i)e -(m + i)a2/, < en3/2/m (44)

for sufficiently large m and n. If in (44), m = [2a-a/a] where 0 < a < c, then we obtain that

exists and

f(2{([2aN-d/r]))2 n1
1

2(c) = 16a2 / (1 + z)e 2a2(1 + Z)2dz = 4(e- 2a2
0

(45)

e-Sa2). (46)

We can continue the above procedure for r- 3, 4,... to obtain the following result.
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Theorem If the following conditions are satisfied:. jrpj <
3=0

and n = sd + 1 (s = O, 1,...), then

exists. We have p0(a)= 1,/,l(a)- 4ae -2a2 and

(47)

(48)

for r >_ 2, where

fort>_2 and z >_ O.

r-1

/r(c) = 2r + lr!ar / (1 + z)e- 2a2(1 +
o

gr 1

gr_l(X) = (_ 1)j (r-1)(z-J)r-2
(49)

(50)

Proof: Let us introduce the notation

S?(w) -. ik OZr z--- 1

for r > 0, m > 0 and wl _< 1. We are interested in finding the asymptotic behavior of the

coefficient of wn in the Taylor series of (51) in the case where m =
n = sd + 1 (s = 0,1,2,...) and n--,c. We have already considered the cases where r = 1 and

r = 2. Let us assume now that r > 2. If we form the rth derivative of (35) with respect to z

and let z---l (Izl < ), then we obtain

wf"(g(w)) B7_ l(w)Brm..il(w) +Bn(w) = h(w)Brm l(w) + 2
l<i<r

wf(r)(g(w))r rm-I- ,, t-i l(w)]r.

Hence we obtain that
m

1Brm(w) =
wf"(g(w))_ ,-, [h(wl]m- JB (w)S (w) +...

j=l 1

+ r! [Bj l(w)lr[h(w)lm- j"
3--1

By this recurrence formula we can draw the conclusion that
1 r tt r

Brat(w) (r-l)twr [g(w)] [f (g(w))] -1

=
2 -"i

(52)

(53)

[h(w)]m + 1 "1"... + it_ 1 2(r- 1)

1_<i1 < i2 <:...<ir_l <_m
(54)
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for r >_ 2 where each neglected term is the product of a constant, w, a generating function of a

discrete random variable whose possible values are integral multiples of d, and a sum similar to

the one displayed except that in these sums i:,i2,...,ir_ are not distinct; for at least one

u = 2,..., r 1 we have u = u_ . Consequently, the neglected terms in (54) do not

contribute to the asymptotic expansion of the coefficient of wu in Brat(w). The fact that the

leading term in Br(w) is given by (54) can be proved by mathematical induction if we use

(53). We note that (47)implies that f(u)(1)<oo for u<_r and consequently

[9(w)]Uf(U)(w)/f(’)(1) is the generating function of a discrete random variable whose possible

values are integral multiples of d.

By (15), (31) and (54) we can draw the conclusion that for every e > 0

{( ) ) cr2r(r-1)!2r_
E (m+il +’"’kit-1)e-(ra+il+’’’’l’ir-1)2’212nl < 6n3/2mr-3

1_<i1<i2 <"’<ir-l<-m

if r >_ 2 and m and n are sufficiently large. If in (55) m = [2cr/r] where 0 < a < oo, then we

obtain that

exists for r > 2 and

(56)

O<x1 <... < Xr_ 1 <1

)2(1 + z: +... + zr x)e 2a2(i + =z +"" + =r : dz:...dzr 1

(57)

or
1 1

ktr(a) (r /’"f (l + Xl + + Xr_ l)e
0 0

2a2(1 + 1 + + Xr- 1)2dZl...dzr_ 1 (58)

where ar = 2r + lr!cr. This proves (48) for r _> 2. In (49) gr-1(:g) iS the density function of

1 + 2 +---+ r-1 where l,2,’",r-1 are independent random variables each having a

uniform distribution over the interval (0,1). For the density function gr_(z), formula (50)
was found by P.S. Laplace [34], pp. 256-257. For a simple proof of (50) see L. Takgcs [48].

We note that

tt3(c = 122q-[2(I,(4c)- O(2cr)- (59)
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and

p4(a) = 4Sale- 2c2-3e-8a2
+ 962c2[(2a)- 6(I)(4a) + 9(6c)- (60)

where

1 / u/2du() = -is the normal distribution function.

(61)

For the asymptotic distribution of (m) given p = n we have the following result.

Theorem 3: Ij’0 < c < oo, if

E jrpj < oc (62)
j=o

fort>_2 and if n = sd + l (s = O, 1,2,...), then

j’2([/11 }lmP [ 2- < x p = n = Ga(x (63)

for x > 0 where G(x) is the distribution function of a nonnegative random ratable and is

given by

ac(x = 1 2E j- 1 --(x + 2cj)2

j 1
k

e /2( x)kHk + 2(z + 2aj)/k!

for z 0 where Ho(z), H(z)... are the He,ire polynomials defined by

[1 (--1)ixn- 2j

.() = n

We have

and

ifx>O.

G.(O) I 2E (4c2j2 1)e 22j2

d
j=l ----

(64)

(65)

(66)

(67)

Proof: Since

u2ue- < (2e)-t/2 < 1/2 (68)

if u >_ 0, it follows from (49) that

(69)
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for r >_ 2. Accordingly, there exists one and only one distribution function Ga(z) such that

Ga(z = 0 for z < 0 and

zrdGa(z) = pr(aO (70)
-0

for r > 0. By the moment convergence theorem of M. Frchet and J. Shohat [16] it follows

from (48) that

’2([2/]) }ldmP L r- _< z p = n = G(x)

in every continuity point of G(z). If sl < 1/(2a), then the Laplace-Stieltjes transform

a(s) = f e-SZdGa(z)
-0

can be expressed as

(s) = (- 1)"#,,():/r!.
r--O

By (49) we obtain that

(2ors)k [oo@a(s) = i +2=i(k_..1)!. (1-4a2u2)(u-k)k-ie-2alu2-ia(u-l)Sdu
k

for Is < 1/(2a). Hence we obtain (64) and (67) by inversion.

(7i)

(72)

(73)

(74)

The limit distribution (63) has already been determined by D.P. Kennedy [26] in a

different form. By his results we can conclude that

for z > 0 and

o <. < /()
0 < v < l/(4a2)

e
q2u2/(2(1 4(2v))(1 4C2V) 3/2UI(u, v)dudv

<:x:> sinh(2) fsinh(77}
0

-1

(75)

(76)

for Re(s) >_ 0 and Re(w) >_ O. See also A.G. Pakes [421.

We have P{p < m P = "} = P{(m) - o1, = -) and thus it follows from Theorem 3

that if n sd + 1 (s = 0,1, 2,...), then

for c > 0 where #J is defined by (2) and Ga(0 is given by (66). For a direct proof of (77) we

refer to V.F. Kolchin [31]. See also V.F. Kolchin [32] p. 128.
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4. THE DISTRIBUTION OF "r

It is assumed that (10), (11), (12) and (13) are satisfied. The conditional distribution

of 7" given p = n is determined by the generating function

(z,) = E{:op} (S)

defined for z < 1 and w _< 1.

Theorem zf <_ ,d w <_ , o haw

(z, w)=wf((z, zw)). (79)

Proof: Obviously,

E{zrwp} = wE PJ[E{zr + PwP}]J

for I1 _<land wl _<1. This implies (79).

(80)

In what follows we need the following auxiliary theorem.

Lemma 1: Let q(w) be the generating function of a discrete random variable

whose possible values are integral multiples of d and let h(w) be a4a nu (20). if p = 2,z,...

and

oq(o) oo

(8)[1 h(w)l %w"
n-’0

for wl < 1, then

dn(p-2)[2

whenever n = sd + 1 (s = O, 1, 2,...) and

(82)

Proof: Since h(w) 1 if wd :/: 1, and since by (23)

lim(l_w)p/2 wq(w) 1 (83)
w--,1 [1-:’h(’b)] 2)/2p

(82) follows from a theorem of R. Jungen [24]. See also the Appendix.

If we form the derivative of (79) with respect to z and let zl(Iz < ), we obtain

that

Hence we obtain that

E{vwp} = wf’(g(w))E{(v + p)wP}. (84)

E{rwp} w2g’(w)f’(g(w)) g(w)h(w) (85)1 wf’(g(w)) =
[1 h(w)]2
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if w < 1. By (16)and (23)it follows that

lim (1 w)E{rwp} = 11(2r2). (86)

Hence by Lemma 1 if n = sd + 1 (s = 0,1,2,...), then

/n/LnooP{p = n}E{r P = n} = d/(2a2) (87)

and by (15)

lira
erE{rip = n} N (88)noo 2n3/2 =

If we form the second derivative of (79) with respect to z and let --,l(I zl < 1) we

obtain that

E{7.2wp} = g(w)h(w)[1 "4" 4h(w) 4" h2(w)]
[1 h(w)]4

+ ,!(w)12f,’(,())[ +,,,3,h() /
[-h()]

for wl <1. By (16) and (23) we get

(89)

lim (1 w)B/2E{r2wp}

= lira 5w(1 w)5/2[g(w)]2f"(g(w))
= 5

w--,1 [1 h(w)]5 4Fa"3" (90)

By Lemma 1 it follows from (90) that if n sd + 1 (s = 0,1, 2,...), then

E{r p = n}P{p = n} 5dn3/2

and by (15)

lira
’2E{r21 P = n} 5__

n--.oo 4n3 12"

(91)

(92)

We can continue the above procedure for r = 3, 4,... to obtain the following result.

Theorem 5: If

jrpj < x

,for r >_ 2, nd n = sd + 1 (s = 0, 1,2,...), hen he limi

lira El/rr }ezists for r 0 and
n k2n3/2) P = n = Mr

(93)

()

4ff’r!Mr = KrF’i(3V i)/2)2r/2 (95)
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where Ko = -1/2, Kt = 1/8 and
r--1

3=1
for r = 2, 3,

(96)

Proof: By (88) and (92), the theorem is true for r = 1 and r--2. Let us assume

now that r >_ 2. By forming the rth derivative of (80) with respect to z and letting

z"*l(Iz < 1) we obtain that

(97)

Hence
r-I

rE{vrwP}[1 h(w)] 2

+ rh(w)E{vr- lpwP} +.... (98)

From (98) we can draw the conclusion that

E{} K +x!-x[()T[l,,(())]- x

[1 h(w)]3r- 1 +""

where Kr is a constant. If (93) is satisfied, then in (99) each neglected term has the form

(99)

Cwq(w)[1-h(w)]- (oo)

where C is a constant, q(w) is the generating function of a discrete random variable whose

possible values are integer multiples of d, and p is an integer < 3r- 1.

By (23) and (99) we obtain that

lira (1 w)(at 1)[2E{rrwP} = Krrl2(r + 3)/20" (r 4- 1) (101)

for r>_2. By (86), (101)is true for r-1 if we define K1=1/8. By (90) we obtain that

g
2 5/64. If we multiply (98) by (1- w)3(r- 1)/2 and let wl, we obtain (96) for r >_ 2. By

Lemma 1 we obtain from (101) that if n sd + 1 (s = 0,1, 2,...), then

E{rr p n}P{p = n}
grr!2(r +3)/2dr3(r- 1)/2

+ ’r((3r 1)/2)
(102)

for n---,cx, and by (15)
2Krr!2(r + 3)/23r/2E{r p n} r((3,:l)/2)ar
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for n---,oo. This proves (94) for r >_ 2. If r = 1, then (94) is true by (8S). Since M0 = 1, (94)
is true for r = 0 too if we define K0 = 1/2. This completes the proof of the theorem.

For the asymptotic distribution of r given p = n we have the following result.

Theorem : If

E jrpj <
j=O

for r > 2, and if n = sd + 1 (s = 0, 1, 2,...), then

lira Pf < P n W(x) (105)n--.oo q4n3
z = =

for z > 0 where W(z) is the distribution function of a positive random variable and is given by

W(x) = E e- Vkv2k/aU(1/6,4/3, vk) (106)
k--1

for x > O, W(O) = 0 and

Wt(x) 2"[’ E e- Vk’o2k/3U( 5/6, 4/3, vk)

for z > 0 where U(a, b, z) is the confluent hypergeometric function,

( 07)

vk = 2a/(27z2), (108)

and z=-ak (k= 1,2,...) are the zeros of the Airy function Ai(z) arranged so that

O < a1 < a2 <... < ak<

Proof: We can prove by (96) that

and this implies that

as r--,oo. Hence

r K
r"’k3] (r-- 1)! 2r

---r--rr/2 (110)Mr q-2"/, 12e/

E Mr- 1/r = c. (iii)

By (94) the sequence {Mr} is a moment sequence. Since the condition (lii) is satisfied, we

can conclude from a theorem of T. Carleman [4], [5] that there exists one and only one

distribution function W(x) such that W(0) = 0 and

xrdW(z) Mr (112)
0
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holds for r = 0, 1, 2, By the moment convergence theorem of M. Frchet and J. Shohat [16],
(94) implies that (105) holds for every continuity point of W(z).

Let

(s)- / e-n:dW(x) (113)
0

be the Laplace-Stieltjes transform of W(x). We have

(s) = Z (- 1)rMrstir!
rO

and the series is convergent on the whole complex plane. This follows from (110).
positive real number, then by (95) and (96) we can prove that

(114)

If s is a

= 2i Ai(z)
ezs2/3121/3dz (115)Ai’(z)

where C denotes integration along a contour which starts at infinity on the negative real z-

axis, encircles the origin counter-clockwise, and returns its starting point. Here Ai(z) is the

Airy function defined by

/Ai(z) = # cos - + tz t. (IIS)
0

The function Ai(z) has zeros only on the negative real axis; namely z =-ak (k = 1,2,...)
where 0 < a1 < a2 < < ak < By the theorem of residues, we obtain from (115) that

oo /3
aks /3/21@(s) Z e (117)

k=l

for s > 0. Hence we obtain (106) and (107) by inversion. For the definitions of the confluent

hypergeometric function and the Airy function we refer to L.J. Slater [45], J.C.P. Miller [40]
and M. Abramowitz and I.A. Stegun [1]. The first 50 zeros of Ai(z) and Ai’(z) can be found in

J.C.P. Miller [40], p. 43 for 8 decimals. See also M. Abramowitz and I.A. Stegun [1], p. 478.

5. THE ALTITUDE OF ILNDOM TREES

The results derived for branching processes can also be used in the investigation of the

distribution of the vertices of random rooted trees by altitude. A tree is a connected

undirected graph which has no cycles, loops or multiple edges. A rooted tree has a vertex, the

root, distinguished from the other vertices. The height of a vertex in a rooted tree is the

distance from the vertex to the root, that is, the number of edges in the path from the vertex

to the root. The total height of a rooted tree is the sum of the heights of its vertices.
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Let Sn be a set of distinct rooted trees with n vertices. Let us choose a tree at random

in the set Sn, assuming that all the possible choices are equally probable. We shall consider

different models of random rooted trees with n vertices and define rn(m) as the number of

vertices in layer m, that is, the number of vertices at a distance rn (m = 0, 1,2,...) from the

root and

vn = m’n(m)

as the total height of a tree chosen at random in Sn. The height of a random tree is

(118)

Izn = sup{m:rn(m > 0}. (119)

For several models of random trees we have

P{vn(m k} P{(m) = klp = n},

P{/zn = k} = P{/z = kip = n} (121)

and

P{vn = k} = P{r- kip = n} (122)

where {(m),m >_ 0} is a suitably chosen branching process and p,# and r are defined by (1),

(2) and (3) respectively.

(i) Distinct rooted tress ,ith n labeled nertices. In 1889, A. Cayley [7] observed that

the number of distinct trees with n labeled vertices is nn- . Since then various proofs have

been found for Cayley’s formula. For a simple proof see L. Takcs [51]. The number of

distinct rooted trees with n labeled vertices is

Rn=nn- (123)

for n = 1, 2, Since among the n vertices we can choose a root in n ways, (123) immediately

follows from Cayley’s formula. Now denote by Sn the set of distinct rooted trees with n

labeled vertices. In this case

for z > 0 and 0 < < c,

for ce > 0 and

ldrnP I. <_ z}- Ga(z) (124)

(125)

W(z) (126)



280 LIOS TAKCS

for z > 0.

If we consider a branching process {(m), m >_ 0) in which V{(0) -- 1) = 1 and

pj = e- i/j! (127)

for j = 0,1,2,..., then by (120), (121), (122), (63), (77) and (105) we obtain (124), (125) and

(126). Now a = 1, (r2= 1 and d = 1. For this model the limit distribution (124) has been

found by V.E. Stepanov [46], the expectation of r,, has been determined by 3. Riordan and

N.J.A. Sloane [44], and the limit distribution (125) by A. R6nyi and G. Szekeres [43] and V.F.

Kolchin [30].

(ii) Distinct rooted trees with n + 1 unlabeled vertices. Denote by C,n

distinct rooted (ordered) trees with n + 1 unlabeled vertices. Obviously

the number of

c.=
i=1

for n- 1, 2,... where CO = 1. Hence it follows that

c. ( 29)= n/n+l’

the nth Catalan number. For other proofs of (129), see F. ttarary, G. Prins and W. Tutte [21],
N.G. de Bruijn and B.J.M. Morselt [13] and D.A. Klarner [27], [28]. Now denote by Sn + 1 the

set of distinct rooted (ordered) trees with n + 1 unlabeled vertices. In this case

{2rn + 1([aq"]) } = G(z) (130)lim P < z

for x > 0 and 0 <

for c > 0 and

f/’in + } Gc,(O (131)v <- =

fv. + } W() (132)

for z > O.

If we consider a branching process {(m),m >_ 0} in which P{(0) = 1} = 1 and

pj I/2j + (133)

for j- 0,1,2,..., then by (120), (121), (122), (63), (77)and (105)we obtain (130), (131)and
(132). Now a = 1, (r2 = 2 and d = 1. For this model the expectation of r, + l(m) has been

determined by A. Meier and J.W. Moon [39], the expectation of rn by Ju. M. Voloshin [52],
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and the limit distribution (131) by I.V. Konovaltsev and E.P. Lipatov [33]. See also L. Tak&:s

[50]. N.G. de Bruijn, D.E. Knuth and S.O. Rice [12] demonstrated that

It is plausible that for r > 1

where

is the Riemann zeta function.

ln/--m 2x[’ =. (134)

= f   d Oo(0) 2(r:- )r((
2/

0

(135)

(,(r) = nr (136)

(iii) Distinct trivalent rooted trees with 2n + 1 unlabeled vertices. In 1859, A. Cayley

[6] proved that the number of different trivalent rooted trees with 2n + 1 unlabeled vertices is

the nth Catalan number Ca, defined by (129). In a trivalent rooted tree every vertex has

degree 3 except the end vertices which have degree 1 and the root which has degree 2. Now

denote by S2n + 1 the set of distinct trivalent rooted trees with 2n + 1 unlabeled vertices (n + 1

end vertices). In this case

for : > 0 and 0 < c < oo,

for c > 0 and

for x > 0.

lira P {2"r2.+ <_ =

fl2n + 1 d- ooe < = G (0) (1 81

n--oolimP I.3"n3-2n+1 < z) = W(x) (139)

If we consider a branching process {(m),m>_0} in which P{(0)= 1} = 1 and

Po = P2 = 1/2, pj = 0 for j = 1,3,4,..., then by (120), (121), (122), (63), (77) and (105) we

obtain (137), (138), and (139). Now a = 1, r2- 1 and d- 2.

(iv) Distinct rooted binary trees faith n nertices. A rooted binary tree with n vertices

is a tree imbedded in a full binary tree of depth n in such a way that its root coincides with

the root of the full binary tree. If Cn denotes the number of distinct rooted binary trees with

n vertices, then Cn satisfies (128) for n > 1 where CO = 1. Consequently, Cn is the nth

Catalan number defined by (129). Let us choose a tree at random among the Cn distinct trees

with n vertices, assuming that all the possible choices are equally probable. Denote by r(m),
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#n* and rn* respectively the number of vertices at a distance m from the root, the height and

the total height of a tree chosen at random. Then we have

,--oolimP {q-V].) <x}_ = G(x) (140)

for z > 0 and 0 <

for a > 0 and

for x > 0.

} v (o) (x4 )Idmv[ -<

lim,_.,ooe [ 8’n3-
: r;:_ < z} = W(x) (142)

There is a simple relation between binary trees and trivalent rooted trees. If m >_ 0,

* has the samethen v(m) has the same distribution as v2,+l(m)/2, if n >_ 1, then r,
distribution as (r2n + 1- 2n)/2, and if n >_ 1, then tt has the same distribution as P2n + 1- 1

where v2, + l(m), v2, + 1 and P2, + 1 are defined under (iii).

For this model the limit distribution (141) has been determined by Ph. Flajolet and A.

Odlyzko [15] and G.G. Brown and B.O. Shubert [3].

6. BROWNIAN EXCURSION

and

Let {r/+ (t),0 _< f _< 1} be a Brownian excursion process. Let
1

w + = / 1 + (t)dt (143)
o

r + = + (t)).
o<t<l

Furthermore, let -+ (a) be the local time at the level cz for c > 0.

(144)

For the definition and

properties of the Brownian excursion process we refer to P. Lvy [35], [36], K. It6 and H.P.

McKean, Jr. [23], and K.L. Chung [S].

Now we shall prove that

if z > 0 and c > 0,

P(" + (a)

_
x} Ga(x)

P{7 +
_
a} Ga(0)

(145)

(146)

for c > 0, and
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P{ + < z} =

for x > 0. In addition,

+

for r >_ 0 where/zr(a is defined in Theorem 2 and

E{( + )r} = Mr
for r >_ 0 where Mr is defined in Theorem 5.

( 4s)

(149)

Figure 1: Traversing a tree

All these results can be deduced from the results of (ii) for rooted trees with n + 1

unlabeled vertices. Let us suppose that in the set Sn + 1 the edges of the trees have unit

lengths. Let us choose a tree at random in Sn + 1 and suppose that a bug, starting at the root

of the tree, crawls all over the branches of the tree. See Figure 1. Suppose that the bug crawls

with unit velocity and follows the edges of the tree, always keeping to the right, until it returns

to the root again. In this way the bug traverses all the n edges twice. Denote by r/n+ (t) the

distance of the bug from the root at time 2nt where 0 < t < 1. The distance is measured along

the edges of the tree. The process {r/n+(t), 0 < t < 1} is a Bernoulli excursion and

{tin+ (t)/q’,O <_ t < 1} converges weakly to the mownian excursion as --,.

Since

1

rn + =+ n tin+ (t)dt, (150)
o
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and since the integral is a continuous functional on the process it follows from (150) that

By (132) this proves (147). In a similar way we obtain that

lim P{2’nl([]) } = +

for 0 < a < . By (130) this proves (145). Furthermore

for c > 0. By (131) this proves (146).
respectively.

(151)

ln/--mP 2 _< a = P{7 + <_ a} (153)

Formulas (148) and (149) follow from (48) and (94)

The distribution function of r + (a) has been studied extensively. It has been expressed

in the form of a complex integral by R.K. Getoor and M.J. Sharpe [17], :I.W. Cohen and G.

tIooghiemstra [9], G. Louchard [37], E. Cski and S.G. Mohanty [10], and Ph. Siane and M.

Yor [2]. F.B. Knight [29] and G. Hooghiemstra [22] expressed P{r + (c) _< } in explicit forms,

but their formulas are too complicated for numerical calculations. The Laplace transform of

P{w + <: z} has been determined by b.A. Darling [11] and G. Louchard [38], and by numerical

integration G. Louchard [38] calculated P{w + _< } for 0.25 < a: < 1.35. By using formulas

(64), (67), (106) and (107) and the remarkable program MATtIEMATICA by S. Wolfram [53],
we can easily produce tables and graphs for Ga(z), G(z), W(z) and W’(z).

7. APPENDIX

In what follows, we shall give detailed proofs for formulas (16), (17), (23), (24) and

(82). We can use the following Abelian theorem to prove (16) and (17).

Theorem 7: Let

where an >_ O,

an

as n--,oo where A > O and a > O. Then

a(z) = E anzn (154)
r-’0

A(n +a-n 1) = A(-1)"(-a) (155)

a(z) A(1 z)- a (156)

For the proof of this theorem we refer to W. Feller [A1] p. 423.
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By (15) we have

v{, >-}

as n---,oo and thus by Theorem 7

i- #() zP{P > n}wn I-w ’(i’-’W)n.O

as w---l w < 1). This proves (16).

By (15) we have also

p{Nn=n_l}. d d(-1)(-1/2)

if n sd + 1 (s = 0, 1,2,...) and s---,oo. Thus by Theorem 7

EP{N.

as w-*l(lw < I). Clearly (I wd) d(l w) as w-,l. This proves (17).

Formula (23) can also be proved by Theorem 7. By (19)

d d(,-1)"(-1]2)

if n = sd (s = 0, 1,2,...) and s---,oo. Consequently,

1

n o 1’" h(w) ’2 ’i"-" ’a

as w---,l(lw < 1). This proves (23).

We can use the following Tauberian theorem to prove (24).

Theorem 8: If ao, al,...,an,.., are nonnegalive real numbers, if

is convergent for zl < 1 and if

lira (1 z)aa(z) = A,

where c > O, then

lira aO ’+ al /’"+ .an A= r(g

(157)

(58)

(159)

(I1)

(162)

(163)

(164)

(165)
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For the proof of this theorem, we refer to W. Feller [All p. 243.

Let an = fn + 1 j" fn / 2 +"" for n

_
0. Then by (23)

E anwn= -i"W 1- w

if w---*l( w [) < 1). Hence by Theorem 8

lira a + al +"" + an

Since an _< an : for n >_ 1, by (167) it follows that

This proves (24).

Formula (82) can be proved directly by using the following two auxiliary theorems.

Lemma : Let

i=0

for n = 0,1,2,... where an > 0 and fin > O. Let us suppose that an/Tn---O, fln/Tn---*O and

7n- 1/Tn-’.1 as n---c. If an n and bn fin as n--oo, then

aibn -i aitgn -i (170)
i=0 i=0

as

Proof: For any e >0 there exists a positive integer m-re(e) such that

an-an[ <can and [bn-/9.[ <eft, if n>m. Also there exists a constant C such that

lan--an[ < Can and ]bn-fln < Cn for all n>O.

If 0 < < n, then

aibn -i ain -i (ai ai)(bn -i n i)

+ (ai- ai);gn -i + ai(bn -i- fin -i)"

If m > 2m and if we use the aforementioned inequalities in (171), we obtain that

Eaibn-i- Eaifln-il <_e(6+2)7n+
i=0 i=0

(171)

(172)
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By assumption

lim aifl -i + an -ifl.,. = 0 (173)

for 0 < _< m. Consequently, by (172)

ldrrtoosup Tfl- Z aibn- i- 11 < e(C + 2)

for any e > 0. This proves (170).

In a more general setting Lemma 2 has been proved by K. Knopp [A2].

Lemma 3: Let us suppose that ao, al,...,an,.., are nonnegative real numbers with sum

an 1, (175)

and that bo, bl,..., bn,.., are real numbers for which

lira b_n -/3 = b

where fl > O and b > O. If

:for n = O, 1, 2,..., then

Cn = . aibn-

lira c_n- [ b.

Proof: Let 0 < e < b/2 and choose an m = re(e) so large that

ak<e
k>m

(179)

and

Ibnn--bl < e ( 80)

ifn>m. Ifn>2m, then

Cn (bn-k y bn-k1 + ak" h-
m<k<n-m

bn_k+ s-
n-m<k<n "n k>m

Hence if fl >_ O, then

(181)

ldmoauPln- 11 < 5/2 (182)

for 0 < e < b/2. On the right-hand side of (181) in the first sum bn_l/bn 1 if k _< m and

ncx. In the second sum
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=,
ifm<k<n-m. The third sum

ak -k= bian_iO
n-m<k<n

n. The fourth sum h absolute value < e. Hence (182) and (178) follow.

Another version of Lemma 3 has been proved by O. Szhsz [A3].

If in Lemma 2

and

where a > 0 and/3 > 0, then

Accordingly, if in (177)

+ n- 1) n-1
Cn = n r(c)-

/3n =(fl +n-1),.., nfl-1

c +/3 +n- 1)7n-- n
na+13-1

+

an na 1/F(c)

as n--,cx where c > 0, and if

bn l,fl 1/r(fl)

as n---,eo where/3 > 0, then

Furthermore, it follows from the above formulas that

(x83)

(184)

(185)

(186)

(187)

(188)

(190)

for p- 1, 2,... as n---<x.

nO,r,- 1/r(ap)Z a,lai2. .a,p
ii+...+ip=n

(191)

If in (191)

an-- 22ttnd/d (192)

for n = 0,1,2,... where un is defined by (lS), then (lSS) is satisfied with c = 1/2 and (191)
proves (82) in the particular case where q(w)- 1 and p >_ 1. If p > 2 and q(w) is defined in

Lemma 1, then (82) is true by Lemma 3.



Conditional Lbnit worelns for Branching Processes 289

[1]

[A3]

W. Feller, "An Introduction to Probability Theory and Its Applications", Vol. II, John
Wiley and Sons, New York, 1966.

K. Knopp, "0bet Summen der Form aobn+albn_l +’"+anbo’,
Circolo Matematico di Palermo 32, (1911), pp. 95-110.

Rendiconti del

O. Szhsz, "Ein Grenzwertsatz fiber Potenzreihen",
Mathematischen Gesellschafl 21, (1921), pp. 25-29.

Sitzungsberichte der Berliner

[1]

[3]

[10]

[II]

[12]

[13]

REFERENCES

M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", Dover, New
York, 1965.

Ph. Blanc and M. Yor, "Valeurs principales associes aux temps locaux browniens"
Bulletin des Sciences Mathkmatiques 111, (1987), pp. 23-101.

G.G. Brown and B.O. Shubert, "On random binary trees", Mathematics of Operations
Research 9, (1984), pp. 43-65.

T. Carleman, "Sur le problme des moments", Comptes Rendus Acad. Sci. Paris 174,
( e), ,. 80- a8.

T. Carleman, "Les Fonctions Quasi-Analytiqnes", Gauthier-Villars, Paris, 1926.

A. Cayley, "On the analytic forms called trees, Second part", Philosophical Magazine
18, (1859), pp. 374-378. [The Collected Mathematical Papers of Arthur Cayley, Vol. IV,
Cambridge University Press, 1891, pp. 112-115].

A. Cayley, "A theorem on trees", Quarterly Journal of Pure and Applied Mathematics
23, (1889), pp. 376-378. [The Collected Mathematical Papers of Arthur Cayley, Vol.
XIII, Cambridge University Press, 1897, pp. 26-28].

K.L. Chung, "Excursions in Brownian motion", Arkiv f6r Matematik 14, (1976), pp.
157-179.

J.W. Cohen and G. Hooghiemstra, "Brownian excursion, the M/M/1 queue and their
occupation times", Mathematics of Operations Research 6, (1981), pp. 608-629.

E. Cski and S.G. Mohanty, "Some joint distributions for conditional random walks",
The Canadian Journal of Statistics 14, (1986), pp. 19-28.

D.A. Darling, "On the supremum of a certain Gaussian process",
Probability 11, (1983), pp. 803-806.

The Annals of

N.G. de Bruijn, D.E. Knuth and S.O. Rice, "The average height of planted plane trees",
Graph Theory and Computing, edited by R.C. Read, Academic Press, New York, 1972,
pp. 15-22.

N.G. de Bruijn and B.J.M. Morselt, "A note on plane trees", Journal of Combinatorial
Theory 2, (1967), pp. 27-34.



290 LAJOS TAKCS

[14] M. Dwass, "The total progeny in a branching process and a related random walk",
Journal of Applied Probability , (1969), pp. 682-686.

[15] Ph. Flajolet and A. Odlyzko, "The average height of binary trees and other simple
trees", Journal of Computer and System Sciences 25, (1982), pp. 171-213.

[6] M. Fr6chet and J. Shohat, "A proof of the generalized second-limit theorem in the
theory of probability", Transactions of the American Mathematical Society 3, (1931),
pp. 533-543.

[17] R.K. Getoor and M.J. Sharpe, "Excursions of Brownian motion and Bessel processes",
Zeitschrift fiir Wahrscheinlichkeitstheorie und verwandte Gebiete 47, (1979), pp. 83-106.

[IS] B.V. Gnedenko, "On the local limit theorem in probability theory", (Russian), Uspekhi
Matematicheskih Nauk 3, No. 3, (1948), pp. 187-194.

[19] B.V. Gnedenko, "On the local limit theorem for stable limit distributions", (Russian),
Ukranskii Matematicheskii Zhurnal No. 4, (1949), pp. 3-15.

[20] B.V. Gnedenko and A.N. Kolmogorov, "Limit Distributions for Sums of Independent
Random Variables, Addison-Wesley, Cambridge, Mass., 1954.

[21] F. Harary, G. Prins, and W.T. Tutte, "The number of plane trees", Nederlandse
Akademie van Wetenschappen, Proceedings, Set. A, t}7, (1964), pp. 319-329.

[22] G. Hooghiemstra, "On the explicit form of the density of Brownian excursion local
time", Proceedings of the American Mathematical Society, 84, (1982), pp. 127-130.

[23] K. It6 and H.P. McKean, Jr., "Diffusion Processes and their Sample Paths", Springer-
Verlag, Berlin, 1965.

[24] l. Jungen, "Sur les sries de Taylor n’ayant que des singularitSs alg6brico-
logarithmiques sur leur cercle de convergence", Commentarii Mathematica 11elvefici 3,
(1931), pp. 266-306.

[25] D.G. Kendall, "Some problems in the theory of queues", Journal of the Royal Statistical
Society, Set. B, 13, (1951), pp. 151-185.

[26] D.P. Kennedy, "The Galton-Watson process conditioned on total progeny", Journal of
Applied Probability, 12, (1975), pp. 800-806.

[27] D.A. Klarner, "A correspondence between two sets of trees", Nederlandse Akademie
Wetenschappen, Proceedings, Set. A, 72, (1969), pp. 292-296.

D.A. Klarner, "Correspondences between plane trees and binary sequences", Journal of
Combinatorial Theory, 9, (1970), pp. 401-411.

[29] F.B. Knight, "On the excursion process of Brownian motion", Transactions of the
American Mathematical Society, 258, (1980), pp. 77-86. [Correction: Zentralblatt fiir
Mathematik 426, (1980), #60073].



Conditional Lirnh Theorems for Branching Processes 291

[30] V.F. Kolchin, "Branching processes, random trees, and a generalized
arrangements of particles", Mathematical Notes 2, (1977), pp. 386-394.

scheme of

[31] V.F. Kolchin, "Moment of degeneration of a branching process and height of a random
tree", Mathematical Notes 24, (1978), pp. 954-961.

[32] V.F. Kolchin, "Random Mappings", Optimization Software, Inc., New York, 1986.

[33] I.V. Konovaltsev and E.P. Lipatov, "Some properties of plane rooted trees", Cybernetics
6, (1970), pp. 660-667.

[34] P.S. Laplace, "Thorie analytique des probabilitks’, Paris, 1812.
Gauthier-Villars, Paris, 1886, Culture et Civilisation, Bruxelles, 1967].

[Oeuvres VII,

[35] P. Lvy, "Sur certains processus stochastiques homognes’, Compositio Mathematica 7,
(1940), pp. 283-339.

[36] P. L6vy, "Processus Stochastiques et Mouvement Brownien’, Second edition, Gauthier-
Villars, Paris, 1965.

[37] G. Louchard, "Kac’s formula, Lvy’s local time and Brownian excursion", Journal
Applied Probability 21, (1984), pp. 479-499.

[38] G. Louchard, "The Brownian excursion area: a numerical analysis", Computers and
Mathematics with Applications 10, (1984), pp. 413-417. [Erratum: Ibid A 12 (1986),

[39] A. Meir and J.W. Moon, "On the altitude of nodes in random trees", Canadian Journal
of Mathematics 30, (1978), pp. 997-1015.

[40] J.C.P. Miller, "The Airy Integral", Cambridge University Press, 1946.

[41] A.G. Pakes, "Some limit theorems for the total progeny of a branching process",
Journal of Applied Probability 3, (1971), pp. 176-192.

[42] A.G. Pakes, "Further results on the critical Galton-Watson process with immigration",
Journal of the Australian Mathematical Society 13, (1972), pp. 277-290.

A. Rnyi and G. Szekeres, "On the height of trees", The Journal of the Australian
Mathematical Society 7, (1967), pp. 497-507.

[44] J. Riordan and N.J.A. Sloane, "The enumeration of rooted trees by total height",
Journal of the Australian Mathematical Society 10, (1969), pp. 278-282.

[45] L.J. Slater, "Confluent Hypergeometric Functions", Cambridge University Press, 1950.

[46] V.E. Stepanov, "On the distribution of the number of vertices in strata of a random
tree", Theory of Probability and its Applications 14, (1969), pp. 65-78.

[47] L. Takcs, "A generalization of the ballot problem and its application in the theory of
queues, Journal of the American Statistical Association 57, (1962), pp. 327-337.



292 LAJOS TAKCS

[48] L. Takhcs, "On the method of inclusion and exclusion", Journal of the American
Statistical Association 62, (1967), pp. 102-113.

[49] L. Takcs, "Ballots, queues, and random graphs", Journal of Applied Probability 26,
(1989), pp. 103-112.

[50] L. Takhcs, "Queues, random graphs, and branching processes", Journal of Applied
Mathematics and Simulation 1, (1988), pp. 223-243.

[51] L. Takhcs, "On Cayley’s formula for counting forests", Journal of Combinatorial
Theory, Ser. A, 53, (1990), pp. 321-323.

[52] Ju.M. Voloshin, Enumeration of the terms of the object domains according to the
depth of embedding", Soviet Mathemaics-Doklady 15, (1974), pp. 1777-1782.

[53] S. Wolfram, "Mathemalica. A System for Doing Mathematics by Computer", Addison-
Wesley, Redwood City, California, 1988.


