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Let {n} be a non-decreasing stochastically monotone Markov
chain whose transition probability Q(.,.) has Q(z,{z})= (x)> 0 for
some function/3(. ) that is non-decreasing with/3(z)T1 as z---, +oo, and
each Q(z,. is non-atomic otherwise. A typical realization of {n} is a
Markov renewal process {(Xn, Tn)}, where j = Xn for Tn consecutive
values of j, Tn geometric on {1,2,...} with parameter (Xn).
Conditions are given for Xn to be relatively stable and for Tn to be
weakly convergent.
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1. INTRODUCTION

In this paper, R is the real line and % the #-field of Borel subsets of R. Let {n)C be

a Markov chain with state space R,}, an initial distribution r and transition probability Q.

The 7r and Q determine completely and uniquely a probability measure P on the countable

product space {R, %oo}. When r(. ) = ez(. (the Dirac measure concentrated at z) we shall

write Px instead of P. The corresponding expectation operator is denoted then by E:.
Throughout this paper it is assumed that the Q is subject to the following regularity

conditions:

()

(ii)

for each z E R the support of Q(z,. is in Ix, oo):
the chain {n}0 is stochastically monotone (Daley, [3]); in other words; for any

xI <_ z2, Q(x2, Bu) < Q(zl, Bu) where Su = oo, y]; (1.1)

(iii) Q(x,(y}) -(
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Concerning the function/3(. we assume that (x1 < x2)

fl(Xl) < fl(z2) and lira oofl(z = 1

From (1.1.i) it follows that

o <- 1 <-"" (1.3)

Markov processes of this type are of considerable interest in reliability theory as models of the

amount of deterioration of a mechanical device subject to shocks and wear during its service

(Barlow and Proschan, [1]; Brown and Changanty, [2]).

Set

7"0 sup{k; k 0}, vn = sup{k; k = rn 1 + 1}, To ro

Tn rn "rn- 1, Xo = o, Xn = 7"n 1 + ’ WO = XO’ Wn = Xn Xn P

From this one readily obtains that

Px{To > i} {fl(z)} = O, 1,...

2. AUXILIAPY ttESULTS

Here we list some basic properties of the bivariate sequence {(Xn, Tn)} needed in the

rest of this paper. Some simple calculations show that this sequence is a Markov renewal

process with the transition probability

P{Xn G du, Tn = Xn_ 1} = P(Xn_,du){1- fl(u)}{fl(u)}i-1 (a.s.)

where i = 1, 2,... and

0
P(x, Bu) Q(x, Bu)

1 fl()

y<x
(2.2)

The P(x, Bu) is the transition probability of the Markov chain {Xn}. It is easy to verify
that

P(x2, By) < P(x, Bu) for all zx < x2. (2.3)

From (2.1) we deduce

P{Xn e du, Tn i} {1 (u)}{fl(u)}i- 1p{xn du} (2.4)

which clearly implies (see (1.5)) that
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In addition, since

P{T,, = X,} = {1 (Xn)}{fl(X,)}i- (a.s.)

= PXn{T0 = i- 1}.

Pz{X1 E du, T1 i} = P(z, du){1 (u)}{(u)}i-

it follows that

P{Xn Edu,Tn =ilXn_} =PXn_{Xl du,Tl=j} (a.s.).

Denote by Pn(z, By) the n-step transition probability of {Xn}, since

X0 < Xx < (2.8)

we have that pn + (z, Bu) < pn(z, By). On the other hand, the stochastic monotonicity and

the Chapman-Kolmogorov equation yield:

Pn(z, By) < (P(z, Bu))n. (2.9)

From this, (2.8) and the Borel-Cantelli lemma it follows that Xn---. + c (a.s.) if P(:,Bu) < 1

for all y < c.

It is clear from (2.5) that Tn is conditionally geometric with parameter fl(Xr,). In

addition, since

P{Tn >_ x,} = {5(x,)}i- ’ (a.s.)

it is apparent that {Tn} is stochastically monotone and that T d_: as

each n = 0, 1,... we have:

Finally, for

P{To = io,’",Tn = in Xo,"’,Xn H P{Tj = i X#} (a.s.). (2.11)

In other words, conditioned on a realization of {Xn} the sequence of sojourn times {Tn}
becomes a family of independent r.v.’s such that the distribution of Tn depends only on Xn.

Consider

U

Pz{Xn du, Tn = i} = / P{Xn e du, Tn = i X,,_ = z}Pn- x(z, dz)

= {1 fl(u)}{fl(u)}i- 1P:{Xn du}
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from which we deduce that

Pz{Tn = X,.,} = {1 5(X.)}{5(X.)}i- (a.s.)

where the right hand side is independent of x.

3. IMARKS ON TIE STRUCTURE OF

In this section we investigate asymptotic structure of the sequence {Wn) assuming

that the following condition holds for all y >_ 0:

where F(-) is a proper d.f.

lira P{I ,> z + y}- P’X{, > Z} -F(U)

Remark 3.1_._: The condition (3.1) is similar to one introduced by Gnedenko [4].

Denote by

Cn(y x) = Pz{Wn <_ y) n = l,2,...

then clearly

O(y x) = P(x, Bx + 9)" (3.3)

Some simple calculations yield:

(bn(Y X) Ez{(bl(Y X,- 1)}" (3.4)

Taking into account (2.2) and condition (3.1), we have:

This, (3.4) and the Lebesgue bounded convergence theorem imply that

/./.(u ) F(u).

In other words, (at least) W:.:.Y, where Y is a r.v. with the d.f. F(y).
proposition generalizes this simple observation.

(3.6)

The following

Proposition 3.1__L

all k = 1,2,...

Assume that (3.1) holds and F(. is continuous, then under Pz, for

(Wn + 1"’" Wn + k)d-;(Y1, "’’, Yk) as

where {Yi} is an i.i.d, sequence of r.v.’s with common d.f F(. ).
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proof: The method of proof will be amply illustrated by the case n = 2. Given

e > O, we obtain

Px{Wn + t
g Yl, Wn + 2 < Y2} (3.8)

oo z + Yl

=/ f P(z, du)ePt(Y2 u)Pn(z, dz)
Z

Xn +Yl
= Ez{/ P(Xn’du)(l(Y21U)}

X
Since by assumption F(. ) is continuousnthe convergence in (3.5) is uniform. Consequently, for

any e > 0 there exists x0 such that

[(y21u)- F(y2) < e for all u > xo and any Y2 E R.

Frorn this and (3.8) we then have:

Px{Wn + 1 < Yl, Wn + 2 -< Y2} -< Pn(x, Bxo)

Xn+Y1

x
x(y2 u)P(X,,du)}

Consequently,

<_ Pn(x,B%) + (e + F(y2))Ex{l(y1 X.)Ztx" >

ldrnooPx{W, + < Yt, Wr + 2 < Y2} -< (e + F(y2))F(yt).

In the same fashion, one can show that

li.__m Px{Wn + 1 -< Yl, Wn + 2 -< Y2} -> F(Yl)(F(Y2) )"

Since e > 0 is arbitrary, the assertion follows.

Remark 3.2__A: The last proposition indicates that, roughly speaking, the remote

members of {Wn} are i.i.d.r.v.’s.

Next, we show that the sequence {Wn} is endowed with a mixing property, which

means, loosely speaking, that its elements far apart are nearly independent. Denote by

fin = cr{Wo,’", Wn} and by fin = r{Wn, Wn + 1""} then we have:

Proos.iti 3.2__.A." For each n = 1, 2,... and k = 1,2,...
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obtain

Proo

n k

j=l

n k

Pz( N (Xj < yj})H F(zi) (z < Yl < <
j=l

(3.9)

By invoking the Markov property of (Xn} and the proposition 3.1, we

n k

Pz(N {Xj <_ Yj}N {Wn+m+i <-
j=l =1

n-1 k
"-* Px(N {Xj <_ yjI Xn = s)H F(zi)Pn(x,es)
(, .1 = i=

as m--.oo which proves the assertion.

Corollart 3.1___2". {Wn} and {yj}o are independent families. Set

It follows from the last proposition that qn and r are independent tr-algebras for all

n = 0,1, Therefore nfff is a trivial a-algebra (its elements are either sure or null

events). By letting n---<x we have that oo D ff and that their intersection is a trivial r-

algebra. This clearly implies that the tail a-algebra Y is a trivial one.

4. RELATIVE STABILITY OF {Xn}

The sequence {Xn} is said to be relatively stable if there exist constants {an} such that

Xn/an--l in probability (Gnedenko and Kolmogorov, [5]). If the convergence is (a.s.) the

sequence is called (a.s.) relatively stable (Resnik, [6]). The following proposition gives a

sufficient condition for (a.s.) relative stability of {Xn}.

:protosilion Assume that

supEx{W12} < oo

then Xn/n---,aI (a.s.) where a1 ----- E{Y1}.
Proof: From (3.4), (4.1) and Fubini’s theorem we deduce that
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Ez{Wk2} f y[1 (k(Y x)]dy
o

= Ex{ f y[1 l(ylXk_ 1)ldy}
o

= Ex(EXk- 1
{W12}) < supEx{W2} <

Consequently,

sup ExtWk2)
x,k

Next, since

{ EWk converges}
1

and ff is a trivial r-algebra, to prove the proposition it suffices to show that

(4.2)

P{llxn- ch > e}--,O as n. (4.3)

Consider
n n--1

1Var{lXn} = " E VarlWk} + E
k=l i=1

_, Co,,(w, w)).
j=i+l

It is clear from (4.1) and (4.2) that under Px
1__ E Var{Wk}’-*O as n---,cx.
22 k=l

On the other hand, due to propositions 3.1 and 3.2

lira Cov(Wk, Wk n) = O lira Cov(Wn,Wn k) = O
k--, + k--,oo +

for each n = 0, 1, Thus, given e > 0 there exists no = no(e) such that

Co.(W,W)l <, Co,(W., w. + )1 <

if rain{i, j} > no and k > no. Now, take n > 2no, then

n 1 n no 2no

i=1 j=i+l i=1 j=i+l
Cov(Wi, Wj)

no
Co,(W, w) +

j=2no+l

n--1 n

Co(w,,w)l
i=no+l j i’1" 1

(4.4)

(4.5)
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no 2n0

Co(W, w)l +( no) +(-0- )(- 0)/"
j=i+l

Consequently, for any c > 0

lira Var{Xn} < 12.

Finally, since Ex{Wn)---+(] as n---,oo it follows that

E Ex{Wk)/n"+(l as noo.
k-1

Therefore, for n sufficiently large

Pz( Xn-% > e} < Px{l E [Wi- Ex{Wi}] > }"

This and (4.1) prove the assertion.

eoroUa .. From proposition 4.1 we readily deduce that for each e > 0

Px{Xn <_ (] + )n}--,l and Px{Xn G (c1 -)n}--+0

as n---+oo. Consequently

i if Y>-i

0 if

(4.6)

(4.7)

Denote by

then for any x < y

T(y) = inf{k; Xk > y}

Px{T(y) <_ n} Px{Xn > y}

1 Pn(x,B).

Proposition Under P

1 in probability as y--, + c.T(y)c1

Assume O1 . 0, then we have to show

Px{ T(y) ] <_ c}---1 as y---, + oo

for any e > 0. Choose e e (0, %-]) then from (4.9) we deduce

Px{ T(y) h
x <_ e} = Px{X ] < y} Px{X 1[(,:, -),1 [(
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= p[(al e)u](z Bu p[(h + e)u](z Bu
where, as usual, [x] stands for the integer part of z. Since

it follows from (4.7) that

Y

lira P[(al 1
e)ul(z Bu) = 1.

Similarly, when y--.oo

+ (a 1 + e)y- 1 1 + ech

This and (4.7) imply
1

lim p,,alr -+e)u](z,Bu)__ = 0

which proves the proposition.

5. WEAK CONVERGENCE OF {Tr}

In this section we show that a sequence of scale factors {dn} exists such that under Pz

(5.1)

where the r.v. Z has an exponential distribution independent of x.

following auxiliary result.

But first, we need the

Provosition 5.1.._’. Assume that condition (4.1) holds, then

where c1 E{Y1}.

1-fl(Xn) P--;1 as n---o (5.2)1

.Proof: Set

then for any e E (0, 1)

Zn].1 <-}-Pz{w <- /- l((ncl)(1 e) +_.}}nc1

(5.3)
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p={,- l(fl(nal)(nall + ) e)}.

Since

,8- l(fl(nal)(l e) + ,:) > naI

fl-l(fl(nal)(l + e)-:) < naI

for all n = 1,2,..., the assertion now follows from proposition 4.1.

proposition 5.e_..A Suppose that (4.1) holds, then

/n/rnooPx{[1- (n:)]Tn > u} = e -u. (5.4)

Denote by

U, [1- fl(Xn)]Tn.

Then taking into account (2.10), we have:

uPx{Un > u} Ez(Pz{Tn > I " fl(Xn) xn})

[1 (Xn)’]= Ez({fl(Xn)} ).

Set
[i " )1

R,(,.1 {(x.(,.,))} (x,(.,).

Since the function

I,, ln(y)}

is non-decreasing on R, it follows that

n,(,. < R, + :(,.

at least (a.s.). From this we readily obtain

mo/.(u,) = e -"

at least (a.s.) P.
that

Invoking now the monotone convergence theorem, we deduce from (5.6)

u,z. (.s)

Finally, write

[1 t3(ncl)]Tn = 1 -/3(Xn)
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then the proof of (5.4) follows (5.8), proposition 4.2 and a Slutsky’s theorem.

Remark 5.1.__2".

following properties:

One can easily show that the sequence of r.v.’s {Un) has the

Ex{Un} 1 Var{Un} = Ex{fl(Xn)}

Ex{Un + 1 UI,"-, Un} - 1.

Set

Remark 5.___’. The result of the last proposition can be easily extended as follows:

v. =
then after some straight forward calculations (see Todorovic and Gard, [7]) one can show that

for each k = 1, 2,...

(v, + v, +

under Px, where {Zk)1 is an i.i.d, sequence of r.v.’s with common non-negative exponential

distribution of z. The sequence also possesses a mixing property.
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