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ABSTI_CT

A large class of Markov chains with so-called Am, n and
A’ -transition matrices delta-matrices which frequently occur }n

applications (queues, inventories, dams) }s analyzed.

The authors find some structural propert}es of both types of
Markov chains and develop a s}mple test for their }rreducibil}ty and apeH-
od}city. Necessary and sufficient conditions for the ergodicity of both
chains are found in the article n two equivalent vers}ons. According to
one of them, these cond}tions are expressed in terms of certain
restrictions }mposed on the generating functions A{(z) of the elements of
the {th row of the transition matt}x, {- 0, 1,2,...; n the other vers}on

they are connected with the characterization of the roots of a certain as-
sociated function in the unit dsc of the complex plane. The nvaHant
probab}l}ty measures of Markov chains of both knds are found n terms
of generating functions. It }s shown that the general method n some im-
portant special cases can be smp]fied and ye]ds convenient and, some-
times, expl}c}t results.
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1. INTRODUCTION

In this article a general analytical method is proposed for the analysis of discrete Mar-

kov processes with, so-called, Am, n or A’ transition matrices2 ("delta-matrices") which

are frequently encountered in applications. (These Markov processes were first introduced in the

earlier work of the authors [3]). A description of a delta-matrix is given in the following defini-

tions.

Definition 1.1: A finite or an infinite stochastic matrix A = {aij} is called a Am, n-
matrix (resp., A’m, n-matrix), n >_ m _> 1, if aij- 0 for > n and i-j > m (resp., aij- 0 for

j > n and j-i > m).

Definition 1.2: If a matrix A -,3,(ai:3 is either a _Am, n- or a ZX’m,n -matrix then it

is called a delta-matrix.

Thus, the transition probability matrix of Markov chains considered in the article has

either the form of matrix

aoo aon m aon m + 1

alo aln- m aln- m + 1

ano
0

ann- m ann- m + 1

0 an + ln- m + 1

0 0

or the form of its transpose A’. Many discrete stochastic processes encountered in applications

have transition matrices which are special cases of A (or A’): imbedded Markov chains

describing the evolution of the queue in queueing systems MX/GY/1, GX/MY/1, GX/MY/n
with bulk arrivals, and batch service, with state dependent parameters, with a threshold, with

warm-up, with switching, with hysteresis service, with queue buildup, with preliminary service,

and with vacations of the server. As examples, there are also Markov chains describing the state

of a storage in the theory of inventory control, or the state of a dam (see, for instance, [2,4,9]).

In this paper the authors consider some properties of stochastic Am, n and

A’ -matrices and their applications to the analysis of the corresponding discrete Markov

processes. A simple sufficient condition for the ergodicity of a finite Markov chain with

2A, denotes the transpose of Am n"m,n
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transition Z,m, n (Z’m,n)-matrix is found. For processes with an infinite number of states the

corresponding necessary and sufficient condition is determined in two equivalent versions

(Sections 3,4). According to one of them, this condition is expressed in terms of certain

restrictions imposed on the generating functions Ai(z = aifi3 = 0,1,2,...; in the other
j=o

version it is connected with the existence and characterization of the roots of the function

zm--- K(z), K(z)= kizi in the closed unit disk of the complex plane.3 In Section 5, the
i=0

authors consider the problem of finding the invariant probability measure of infinite Markov

chains with transition delta-matrix. It is shown that in the case of a Am, n-matrix this problem

can be reduced to the problem of finding a unique solution of a linear (n + 1) x (n + 1) system of

equations whose coefficients may contain the roots of the function zm- K(z). In some special

cases this method can be considerably simplified and yields convenient and, sometimes, explicit

results (see Examples 1-4). In Section 6, the authors analyze the problem of finding the

invariant probability measure of a Markov chain with transition A’ n-matrix. It is shown thatm
the generating function of the stationary distribution of this chain can be implicitly found in

terms of the first (n + 1) invariant probabilities, which, in turn, form a unique solution of the

provided system of (n + 1) linear equations. Using this approach the authors succeed in finding

a relatively simple, compact and explicit expression for the generating function of the stationary

probabilities in a special case corresponding to a GX/MY/1 bulk queueing system with

continuously operating server. The method used in this section is based on the employment of

Liouville’s theorem for analytic functions of a complex variable. In the form of a Pdemann

boundary value problem, this method was previously introduced and developed by one of the

authors in [6,7].

2. DELTA-MATRICES AND THEIR PROPERTIES

A general definition of a delta-matrix is given in Section 1. In this section, keeping in

mind specific features of processes encountered in applications, we will introduce some additional

notions and then mention some properties of delta-matrices.

First we will define a positive N-homogeneous Am, n(A’m,n)-matrix. Discrete Markov

processes with transition matrices of these two types are typical for queueing systems, inventory,

and dam models.

Definition 2.1: Let A = (aij) be a stochastic Am, n-matrix (resp., A’m, n’matrix)" If

there exists a number N (N >_ n) such that aij = kj_i+rn for > N and j >_ i-m (resp.,

3The results obtained in the previous work [3] of the authors were revised and included
in Sections 3 and 4.
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aij- ki-j + m for j > N and >_ j-m) then the matrix A is called a N.homogeneous Am, n-
matrix (resp. an N.homogeneous zX’ n-matriz) If N = n, the matrix A is called homogeneous.

Another definition of an N-homogeneous Am, n-matrix (that is more convenient in the

case of infinite matrices) can be given in the following way. Let Ai(z = _aijz3 be the generat-
j=o

ing function of elements aij of the ith row of a stochastic matrix A = (aij i, j = 0,1, 2,...). The

set of functions Ai(z), i-" 0, 1,2,..., completely determines the matrix A.

Definition 2.2: An infinite stochastic matrix A = (aij, i, j = 0, 1,2,...) is called an

N-homogeneous Am, n-matriz if

Ai(z = zi- N krzr, > N.
r"O

Definition 2.2 is equivalent to Definition 2.1.

Definition 2.3: A stochastic Am, n-matrix (resp., A’m, n-matrix) is called positive if

aij > 0 for < n and any j, and for > n, j >_ i-rn (resp., j < n and any i, and for j > n,

i>_j-m).

We will also need a more general version of a positive delta-matrix which is given by

the following definition.

Definition 2.4: A stochastic Am, n-matrix (resp., A’m, n-matrix) is called essential if

anj 0, j = 0,1,2,..., n-m and aij 0 for all (i, j) such that i-j-m (resp., ain O,

0, 1,..., n rn and aij 5 0 for all (i, j) such that j = m).

Now let us point out some properties of Am, n-matrices (analogous properties hold for

A’ matrices)

Property 1: Let A and B be two infinite essential (resp., positive) Am, n- and

A . matrices, respectively. Then AB is an infinite essential (resp., positive)
m

A m matrix.
m-t- ,nh-m

This fact can be shown by direct verification.

The following statement is an immediate consequence of Property 1.

Property 2: If A is an essential (resp., positive) infinite Am, n-matrix then for

any integer k, k > 0 the matrix Ak is an essential (resp., positive) infinite Akm, n+(k_l)m-
matrix.

Applying this result to a finite positive Am, n-matrix we obtain:

Property 3: Every finite positive Am, n-matrix is primitive (i.e. a matrix M for

which there is a k > 1 such that ]lIk contains strictly positive entries).
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Based on Property 3, a simple test for the ergodicity of a Markov chain with a finite

transition delta-matrix will be established.

Let (r}, r = 0,1,2,... be a homogeneous Markov chain with transition Am, n-matrix
A = (a/j); i, j = 0, 1, 2, We denote:

Pr)-P{(r =i};hm p! Pi, = O 1,2,
r-,-,+O0

P = (;0, Pl, P2,’"); P(z) = pizi, z <- 1.
i=0

Similar notations will be used for a Markov chain {Cr}, r = 0,1,2, with transition A’

matrix. We also denote" F-{z, [zl -1}, r + ={z, zl <1}, F--{z, [zi >1},

+ --{z, [z <1}.

In the next section we will obtain necessary and sufficient conditions for the ergodicity

of Markov chains {r} and {r} with finite and infinite transition delta-matrices.

3. NECESSARY AND SUFFICIENT CONDITIONS FOR. TIIE ER.GODICITY OF MArKOV

CHAINS WITH TRANSITION DELTA-MATR/X

In this section we first mention a simple sufficient condition for the ergodicity of a finite

Markov chain with transition probability delta-matrix.

Theorem 3.1: Every Markov chain whose ransiion matrix can be represented as

a finite positive dela-marix is ergodic.

Proof: The statement of the theorem follows directly from Property 3 of the

previous section. El

Now we consider discrete Markov processes with an infinite number of states. First we

prove that under some natural conditions, any Markov chain with transition delta-matrix is

irreducible and aperiodic.

Definition 3.1: A Markov chain {k} is called queue-type if

(a) {k} takes on only nonnegative integers,

(b) 0 < P{k+l > k = i} < 1, = 0,1,2,...,

(c) 0 < P{k + < i} < 1, = 1,2,3,..., k = 0,1,2,..., (3.1)

Theorem 3.2: A "queue-type" Markov chain {k} is irreducible and aperiodic.

Proof: Due to (3.1), {k} can reach state {0} starting from any state. Therefore,

{0} must belong to every class of essential states. Since these classes are classes of equivalence,
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then having a common element means that they coincide; therefore, {k} has only one class of

essential states.

From (b), taking = 0 we find that P{(k + 1 = 01(k = 0} > 0, which immediately shows

aperiodicity of {k}"

Theorem 3.3: Let {k} be a Markov chain wih transition Am, n (A’m,n)-matri:
A (aij), i, j = O, 1, 2, If

i-1
0< Z:

j=o

(2) 0< E aij<l, O<_i<n and
j=+l

m-1 rn

(z) 0 < =0E
then {k} is queue-type and, therefore, irreducible and aperiodic.

Proof: Due to the definition of a Am, n (A’m, n)-matrix, conditions (1), (2)and (3)
of Theorem 3.3 guarantee conditions (b) and (c)of Definition 3.1. Therefore, {k} is irreducible

and aperiodic.

Remark 3.1: The fact that a Markov chain has only one class of essential states

does not mean that all the states belong to this class (in which case the steady state probabili-

ties are positive). Consider, for example, a standard MX/GY/1 bulk queuing system in which

customers arrive in batches of two and the server’s capacity is also two. The imbedded Markov

chain {,}, where (n is the number of customers in the system at moments of successive service

completions, is aperiodic and irreducible but only even states are essential.

Remark 3.2: Condition (b) of Definition 3.1 guarantees that infinitely many states

can be reached starting from any state (say, {0}), so that the class of essential states is infinite.

Next we will establish the main result of this section. For the sake of simplicity, we will

assume here and later that all considered Am, n-matrices are homogeneous (unless stated

otherwise). However, all results obtained can be easily extended to the general case of N-homo-

geneous Am, n-matrices, N > n.

Theorem 3.4: A queue-type Markov chain {r} with transition Zm,n-matrix
A = (aij), i, j = 0, 1, 2,..., A}(1) < c, 0, 1, 2,... is ergodic if and only if

K’(1) < m.

Proof:

Sufficiency:

(3.2)

Setting zj-- j, j- 0, 1,2,... and using the definition of a homoge-
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neous zXm, n-matrix we obtain:

aijxj- x =
j=0

By the corollary of Moustafa [8] to Foster’s lemma we conclude that (3.2) is sufficient

for the ergodicity of the chain {(r}"

Necessity: Suppose, on the contrary, that K’(1)>_ m and the chain {(r} is

ergodic. Then there are stationary probabilities Pi, not all zero, such that

PJ = E Piaij j = 0,1,2,... (3.3)
i=0

or P- PA, where P- (Po, P, P,--’)" (3.4)

Multiplying both sides of (3.4) from the right by vector 0, 0,.-.,0, 1,z, z2,...)T, we obtain:

n+l

(:x) n oo oo

E P’z’-n-1-- E Pi E a’jz’-n-l+ E aiJz’-n z] _1
i=n+l i=0 j=n+l j=n+l

which is equivalent to

)pizi- n -1 1-- z inK(z)

i=n+l
z-1

E pi E E
__i=0 j=n+l i=n+l j=O

z- 1 (3.5)

Taking the limit of both sides of (3.5) as z--,1 we obtain:

Pi m g’(1)] = Pi (j- n 1)aij + Pi (n j + 1) + m"
i=n+l i=o j=n+l i=n+l j=o

(3.6)

While the left-hand side of (3.6) is supposed to be nonpositive, the right-hand side is a sum of

nonnegative terms, and so (3.6) means that both sides must be zero. Taking into account that

{r} is queue-type, we conclude that there must be an essential state 0 < n + 1 and J0 >- n + 1

such that aioJo > 0 (see Property (b) of Definition 3.1). On the other hand, the right-hand side

of (3.6) being zero means that J0 can only be n + 1, for otherwise the first sum in the right-hand

side will be positive. It follows that n + 1 is an essential state and Pn + 1 > 0, and so the right-

hand side being zero requires that

n m--1

E (n j + 1)kj_ n + m-1 : E (m- r)kr O.
3=0 r=O

Therefore, kr O, r O, 1,..., m- 1.
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Since E pi(m-K’(1)) =0 and Pn+l > 0, K’(1) must be equal to m. This is
i=n+l

possible only if km = 1, which contradicts to inequality (c) of Definition 3.1. This contradiction

proves part B of the theorem. El

A similar result holds for a Markov chain {r}, r = 0, 1,2,... with transition matrix of

A’m, n-type:

Theorem 3.5: A queue-type Markov chain {(r} with transilion n-homogeneous

A’m, n"matrix A = (aij), i,j = 0,1, 2, is ergodic if and only if
K’(1) > m. (3.7)

Proof:

Sufficiency: Setting zj- maz{j-n,O), j- 0,1,2,... and taking into account

the structure of A’ n-matrix A we obtain:

O,

E aijzj z
D(i- n + m + I)K(z) zm

0 z (_ 2)2
where D(xr) is an operator defined by

10F(:, v)D(r)F(Y) -7[. Ozr
x o"

if < n-m+ l

if i>n-m+l

Note that

D!i)K(z) zm

1-z
j=O

E kj-l <_O,
j=o

ifi<m

ifi>m

and therefore, if < m,

Ifi>m

Hence, the sequence

K(z)- zm - j K(z)- zm() () >0.Dz (1 z)2 JZ’-’=0Dz 1 z

Di + l)K(z)- zm
( -z)

< D(zi)K(z) -z
m

(1-z)2

v!,)h’(z) z }-(1._.Z)2 i= 1,2,3,...

(3.9)

(3.10)

either has a finite limit as i--+oo or tends to -oo.

theorem in case of a finite limit we obtain

If K’(1)> 1 then by using a Tauberian

lira D(i)K(z)- zm lira
K(z)- zm

= 1 +m <0.z z--,l Z,--oo (i’)2: -0 1- g’(
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In this case there exist M < 0 and r such that

Z aijxj- x < > 7".M, if
1=0

Applying again the criterion of Moustafa [8], we conclude that (3.7) is sufficient for the

ergodieity of the chain {r}-

Necessity: If the chain {r} is ergodic then there exists a strictly positive

probability vector P = (Po, Pl, P2,’") such that P = PA. Multiplying this equation from the

right by the vector (ZO, Zl, X2,... where xj- max{j-n-l,O}, j = 0,1,2,... after some

transformations, we obtain:

K(z)- zm
D 0 (3.11)Pn+i-m+2 z (l_z)-i=0

Suppose that K’(1) _.< m. Then

= = m > 0.
(1 z) i-. 1 z

3=0

iK z -zm
Together with (3.9) and (3.10), this implies that L D )...(.) > 0 = 0, 1 2 and it is

(X_z) -’ ,,.--,

readily seen that at let for i- 0, L is strictly positive which contradicts (3.11).

4. ERGODICITY OF MARKOV CIIAINS WITII TILNSITION DELTA-MATRIX AND
CHARACTERIZATION OF TIlE ROOTS OF TIIE FUNCTION zm- K(z).

The conditions of ergodicity established in Section 3 are closely connected with the

number and location of the roots of the function zm- K(z). More precisely, the following

theorem is valid.

Theorem 4.1: A.

Proof:

Lemma 4.1"

No

If K’(1)< m, then the function zm-K(z) has exactly rn roots

(counting multiplicities) in the closed unit disk +. The roots

lying on the boundary F are simple and, for some integer r, are

all rlh roots of 1.

/f g’(1)> m, then lhe function zm- K(z) has exactly rn roots

(counting multiplicities) in the open unit disk F+; on the

boundary F there can be r additional simple roots which are all

the rth roots of 1, where r is an integer, and 1 <_ r <_ m.

We will need the following auxiliary result.

The function zm- K(z) has roots on F if and only if there exists a
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common divisor r of m and all such that k 5 O. If this condition is satisfied, then all roots

on F with this property coincide with the roots of the equation zr- 1- O, where r is the

mazimal number having this property.

Proof: Suppose that z0 is a root of the equation

1. Then g(zo) znl = 1. On the other hand,

K(zo)
i=0

 _. kilzol
i=0

=1

zm-K(z)=O such that

and equality is attained if and only if z0 = zol = l for any i, such that k :/: 0 and zn = 1.

The realization of both of these conditions simultaneously is possible only if the conditions of
t’ 1.the lemma are satisfied. In this case, obviously, z0

Suppose now that the conditions of the lemma are satisfied.

the equation zr- 1 0, we obtain

K(zo)- 1 = z
which implies that the root z0 is a root of the equation K(z) zm = O.

Then for any root zo of

Now we return to the proof of the theorem.

A. First we suppose that the number r, appearing in the Lemma 4.1, is 1. Then the

function zm- K(z) has only one root on the unit circle. This root is equal to 1 and it is

simple, since K’(1) m. We will prove that in this case zm- g(z) has exactly m- 1 roots in

Consider an auxiliary function:

f(z)
1 z- inK(z)
l_z-1

Clearly, f(z) 5/= 0 for all z, z = 1 since the numerator of the expression for f(z) may be zero

only if z-1, but f(1)-m-g’(1)>0. Let Indrf(z denote the difference between the

number of the roots and the number of the poles of the function f(z) in I" +. By the argument

principle

Indrf(z = --rArArgf(z) Indr.[1 z- rag(z)]--- Indr(1 z- 1) (4.1)
where ArArgf(z is the increment of the argument of f(z) when the argument of z = e’
increases from 0 to 27r.

Consider the right-hand side of (4.1). Since Argf(1) = 0, it is easy to notice that

0

7rlira Arg[1- e imK(e@)] = lim 1- e i] = +..
At the same time, if , E (0,2r) then e-i’*’K(ei)l <1 and, hence Arg[1-e mK(ei)]
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-, -). It follows that

indr[
and therefore

-mK(z)] = -1/2 Indr[1 z- 11

Indrf(z) = O.

Taking into account that
zm- g(z)

=
z i)

has exactly m- 1 poles inside F, we can conclude that the number of the roots of f(z) inside F

is also m- 1.

Thus, the total number of the roots (including z = 1) of the function zm- K(z) in the

unit disk + is equal to m.

Now consider the general case r > 1. Introduce the function

m oo

F(z)- z-e’- E kizL (4.2)
i=0

From the definition of r it follows that all exponents of z in (4.2) are integers. Applying the

previous reasoning to (4.2) we see that F(z) has exactly -- 1 roots in F +, and one root z = 1

on the boundary. It is clear that the set of all rth roots of F(z) gives us all roots of zm- K(z).
On the other hand, any root of zm- K(z) raised to the rth power is, obviously, a root of F(z).
Therefore, the set of all roots of zm- K(z) is described completely. The number of them is m;

m- r are in the region F +, and r roots are on the boundary.

Suppose now that z0 is a root of zm- K(z) such that z0l 1. Then,

IK’(z0) = Eikizi-1 = zo
i=l

It follows that K’(zo) raze-
Part A of the theorem is proved.

ik
1
Z0

K’(1)= Zo,-=lK’(1)l<m.
which implies that all roots on the boundary are simple.

B. Since K’(1)>m, there exists >0 such that K(p)<pm for any p e[1-6,1].
Therefore, the inequality Ig(z) < zml is correct for any z, such that zl = P- Using

Rouche’s theorem we obtain that zm- K(z) has exactly m roots in the region zl < 1. The

number of roots on the boundary, as before, depends on the value of r. If r > 1 then by

Lemma 4.1 there are r roots on the boundary which represent a set of all rth roots of 1. The

simplicity of these roots can be proved as before.
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5. FINDING THE ERGODIC DISTRIBUTION OF A MARKOV CHAIN
WITH TRANSITION Am,a-MATRIX

Let {r}, r- 0,1,2,... be a queue-type Markov chain with transition homogeneous

Am, n -matrix A = (aij), i, j = 0,1, 2, Suppose that Ai(z), = 0, 1,2,...,N and K(z) satisfy

necessary and sufficient conditions for the ergodicity of {r} established in Section 3. Then the

invariant probability measure P = {P0,Pl, P2,.’-} of the matrix A exists and represents the

only solution of the matrix equation P- PA. In the following theorems P is found in terms

of the generating function P(z) piz’.
’-0

Theorem 5.1: Under conditions (3.1) and (3.2), the generating function

P(z) = E Piz’ of the ergodic distribution of a queue-type Markov chain {r}, r-0,1,2,...

with transition homogeneous Am, n-matrix Aij= {aij}, i,j=O,1,2,.., is determined by the

following relations:

E Pi[Ai(z)zm- K(z)zi]
P(z) i= o

zm- g(z)

The unknown probabilities Po, Pl,’",Pn on the right-hand side of (5.1) form a unique solution

of the system of n + 1 linear equations:

dk i]---_, Pi[Ai(z)- z = 0, k = 0,1,..,rr 1, r = 1,2,...,Razk o z zr (5.2)
N

E Pi[m- + A(1)- g’(1)] = m- g’(1) (5.3)
i--0

where zr are the roots of zn+ 1- zn-m + lg(z) in the region +\{1} = {z, z[ <_ 1,z 7 1}
R

with their multiplicities rr such that rr -n.
rmI

Proof: Taking advantage of particular features of the homogeneous Am, n

matrix A and the matrix equation P- PA after elementary transformations we obtain:

oo E Pi[Ai(z)zm- K(z)zi]
P(z) =’= 0 (5.4)zm-K(z)i=o

In order to find n + 1 relations necessary for determining the unknown probabilities on the

right-hand side of (5.4), we represent this relation in the following form"

E Pi[Ai(z) zi]
E pizi-n-l= i=0

I(,(z)
(5.5)

zn + 1_ zn "m + i
i=n+l

Since the function on the left-hand side of (5.5) is, analytic in the region I"+ and continuous

on the boundary F of this region, so must be the function on the right-hand side of (5.5). On

the other hand, due to Theorem 4.1 the function zn+ 1_ zn- ra + 1K(z) has exactly n + 1 roots
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in + (including the simple root 1). Using the analyticity of the function on the right-hand

side of (5.5) and condition P(1)= 1 we obtain (5.2)and (5.3).

It can be proved that the system of equations (5.2)-(5.3) has a unique solution.

Suppose that there is another solution/30, ibl, ib2,... n" Let us substitute i, -- 0,1,..., n into

the right-hand side of (5.1). Due to (5.2)-(5.3) the function P(z) defined by (5.1)is analytic

in F + and continuous on r. Consider the Maclaurin expansion of ab(z): ab(z)= pizi. It
i=o

can be shown that since A(1), i=0,1,2,...,n and g’(1) are finite the sequence {i} is

absolutely summable (see Lemma 5.1). Rearranging (5.1) for/5(z) in the form

P(z) E iA(z) + E Pig(z)zi- m (5.6)
i=0 i=n+l

and equating the corresponding coefficients we obtain from (5.6), that - abA.

It also follows from (5.3) that Pi = 1. Therefore, we have two different absolutely
0

summable solutions of the matrix equation X = XA with (X, 1)= 1. This contradicts to the

Chung Kai-Lai theorem [5]. El

Pmark 1: The results of Theorem 5.1 can be easily extended to the case of N-

homogeneous Am, n-matrices, N > n.

lmark 2: It is obvious that n-m+l roots of the function zTM

-zn-m+ 1K(z) are zeros. Utilizing these roots and the anMyticity of the right-hand side of

(5.5) we obtain, as one would expect, the first n- m + 1 component-wise equations of the mat-

rix equation P = PA. This part of the system (5.3)-(5.4) in some cases can be simplified.

One of these special cases occurs when the transition N-homogeneous Am, n-matrix of the chain

{r} is essential.. Due to the structural properties of this matrix, every pj, j = n + 1, n + 2,

..., N can be uniquely expressed as a linear combination of Pi, = 0,1,2,...,n which enables us

to reduce the number of equations in (5.2)- (5.3). This fact, in combination with the so-called

"method of continuation" [1], makes it possible in some cases to obtain simple and even

explicit results for the generating function P(z) and other characteristics of the ergodic distri-

bution of {r} (see Example 4).

Another special case is a Markov chain with, a so-called transition Am-matrix, which

was first introduced and studied by one of the authors in [1]. A Am-matrix is a special case of

Am, n-matrix when n-m and is also frequently encountered in applications (see Examples 1,

2, 3). Using Theorem 5.1 for n = m, we can find an expression for the generating function of

the ergodic distribution of a Markov chain with transition Am-matrix:
m

E Pi(zmAi(z) zig(z))
P(z) = i= o (5.7)zm-g(z)
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where the unknown probabilities on the right-hand side of (5.7) can be found from (5.2)- (5.3)
where n = m. However, in this case, since the number of the unknown probabilities is only

m + 1, it is enough to express Pm in terms of Po, Pl,’",Pm-1 to equate the number of the

roots of zm- K(z) and the number of the unknown probabilities on the right-hand side of

(5.7). It follows from the matrix equation P = PA that

ml l-a00
ci = ai--- 1,2,3, m- 1. (5.8)Pm oqPi, where c0 am0 -, amo, ..,

t’-0

Therefore, eliminating Pm from (5.5) we conclude that all probabilities P0, Pl, P2,-", Pro-1 can

be found from the condition of the absence of poles of the function

m-1

E Pi[ai(z) zi + ai(Zm(z) zm)]
i=0z

zm- K(z)

in the closed uni disk 1 + of the complex plane. The uniqueness of the solution of the

corresponding system of equations is proved in Theorem 15.1.

EXAMPLES AND SPECIAL CASES

First we introduce an auxiliary Markov chain {r}, r = 1,2,... and a polynomial R(z)
which will play an important role in the analysis of some practical problems.

Consider a Markov chain with transition probability matrix A {aij}, i, j = 0,1,2,...

such that

g(z), if _< m,
Ai(z) i-z inK(z), if > m

We denote this chain by {r}" The transition matrix of {r} is a homogeneous Am-matrix.
m-1 m

Assume that 0 < k < k < 1 and K’(1) < m. Due to Theorems a.3 and 3.4, the
,=0 i=0

chain {r} is irreducible, aperiodic and ergodic. According to (5.7), the generating function of

the stationary distribution {Tr0, 71"1, 71"2,...} of the chain {r} is

K(z)R(z)7r(z) TriZ’ = zm_. g(z) Izl _< 1

m-1 i=0

where R(z) = E ri(zm- z’).
i=0

It follows that

(5.9)

m--1

Z ri + E 7riz’ -R(z)[zm- K(z)] 1. (5.10)
,=0 i=m

Since the left-hand side of (5.10) is a Taylor series with absolutely summable coefficients, all
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roots of R(z) are the roots of zm- K(z) in + with the same multiplicities. Therefore, R(z) is

completely determined up to a constant factor fixed by R’(1)- m---K’(1) that follows from

(5.10). As was mentioned above, the polynomial R(z) can be used in the analysis of some

practical problems. One of them is the following lemma.

Lemma 5.1: Let [i, = 0,1,2,...,n be any solution of the system of equations

(5.2)- (5.3). Then the function
n

(z) Z [i[zmAi(z) ziK(z)] [zm- K(z)]- 1

i=0

can be expanded in a Maclaurin series in z with absolutely summable coefficients.

Proof: We can represent ab(z) in the form

where
+

i=0

f(z) [R(z)]- 1 Z i[Ai(z) zi]"
s-’0

Due to (5.2), f(z) is analytic on r + and continuous on r. Let us rewrite f(z) as follows:

f(z) = (z 1)[R(z)]- 1 i[Ai(z) zi](z 1) 1.
i--0

The function (- 1)[R()]-1 is rational, with all its poles belonging to I’+ and so it can be

expanded into a Maclaurin series in with absolutely summable coefficients. In other words,

Maclaurin series is absolutely convergent on I’.

On the other hand, all the functions [Ai(z)---1](z-1) -1, i= 0,1,...,n under the

original assumptions that A(1) < cx, are expandable into Maclaurin series in z with absolutely

summable coefficients, or equivalently the series are absolutely convergent on F.

Consequently, the same is true for

Z i[Ai(z)-" zi](z I)--1 E i[Ai(z) 1](z 1)-I + Z i[1 zi](z 1)- I.
i=0 i=0 i=0

Therefore, f(z) on F equals to the product of two series in z and in with absolutely

summable coefficients which is a Laurent series with absolutely summable coefficients.

However, since f(z) is analytic in I’ + and continuous on I’ the principal part of this Laurent

series must be zero. El

Example 1: Consider a M/GY/1 queueing system with bulk service, ordinary

input, and additional exponential service phase provided by the server when the number of

customers in the system at the beginning of a service act is less than the server capacity m (it

is supposed that the server is never idle). The imbedded Markov chain {r} describing the
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number of customers in the system at n + 0 where tn, n = 1,2,... are successive moments of

service completions, has the transition matrix of Am type with

g(z)7(7 + z)- , < m
Ai(z) zi-mK(z), i>_m

where K(z)= B*(A-Az), B is the distribution function of service time, B* is the Laplace-

Stieltjes transform of B, A is the intensity of Poisson arrival process, and 7 is the rate of the

additional phase. Condition A 0 guarantees that k > 0 for = 0, 1,2,... and, therefore, the

chain {r} is queue-type. Due to Theorem 3.3 the chain is ergodic if and only if K’(1)< m.

Using relation (5.7), it can be shown that

m--1

K(z)E Pi[zm zi(7 + A Az)7-1]
,(..) =o "zm- K(z) 7 + )- Az

m-1
It follows that pi[zm- zi(7 + A-Az)7-1], an mth degree polynomial in z, must have the

i=0
same roots with the same multiplicities as zm-K(z)in P+\{1} and must assume value

m- K’(1) at z- 1. Therefore, this polynomial must be equal to R(z) and we get:

P(z) = "r ((z)R(z) . .(z).
7 + A- AZ Z

m K(z) 7 + A- Az

Example 2: Retaining all assumptions of Example 1, suppose in addition that

customers can also arrive in pairs, so that the generating function of the arriving groups of

customers is a(z) pz + qz2, p + q = 1. Then

g()’r(7 +- pz- qz) -, < m
Ai(z)

z inK(z), >_ m

where K(z) B*(A- Aa(z)).

Assuming that K’(1) < m and using (5.7), we obtain

P(z). zmK(Z’!(z)t, 7
m- 1

7 + -a(z) oPi[zm z*7 1(7 Apz Aqz2)].
i=

(5.11)

Repeating the arguments of Example 1, we conclude that the sum in (5.11) must be divisible

by R(z), and, therefore, being an (m+ 1)th degree polynomial, can be factored into the

product of R(z) and a first degree polynomial that equals 1 at z = 1"

m-1

E Pi[zm zi7 1(7 + A Apz Aqz2)] (Z C)(1 C)- 1R(Z), (5.12)
i=0

where c 7(: 1) is a constant. To find c, substitute for z respective roots fll and f12 of the
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quadratic polynomial 3’ + A- Apz- Aqz2. Then
m--1

fl?Z Pi (fiX C)(1 C)- X/(fll)

and we find:

The final formula for P(z) is

m-1

2 Pi (2 e)(1 c) 1/(f12)
t--O

/2R(fl2)fln lR(fll)fln= R(Z). ZF- a(Z)Z’ (5.3)

P(z) = 7 z- c K(z)R(z)
7+A-Aa(z) 1-c zm-K(z) =

-r z (z)7+A-Aa(z) 1-c

with c given by (5.13).

Example 3: Under the assumptions of Example 1 consider two additional expo-

nential phases instead of one. Then

K(z)72(7 +- Az)- 2

zi-mK(z),
i<m

i>m

Assuming again that K’(1) < m and using (5.7) we obtain:

P(z) =
(7 + A- ,z)2 z

mXK(z) E Pi[zm z’7- 2(7 + A Az)2].m g(z) o
Repeating the arguments of Examples 1 and 2, we conclude that

m--1. p[- zr-:(r +- a):]-

_
n(z). (.l)

--0

To find c, we substitute = 1 + 7A-1 for z in (5.14) and in the derivative of both sides of

(5.14) at z = :

It follows that

m-1

Z p (Z )(1 )-
i=0

m-1

.zm p_ R(Z)(l_)-x + (Z- )(-)-R’(Z).
i=0

(m- 1)/?R(/)-/?2R’(/) (5.15)c
-R(Z)- ZR’(Z)

The final formula for P(z) is:

P(z) 72 Z--C

(7+A-Az)2 1-c

where c is found in (5.15).

K(z)R(z) 72= z-()zm- g(z) (7 + A- z)2 1

Example 4: Consider a Markov chain describing the evolution of a dam (or a.

storage) with a single-level control policy [2]. Suppose that Xk units of volume of water (or
any kind of other material) enter a reservoir during the interval (k,k + 1), k = 0,1,2,..., and

Yk units flow out at the instant k + 1. Suppose also that Xo, XI,X2,... are independent
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identically distributed random variables and that Yk "-min{Zk + Xk, m}, where Zk is the

supply of water at instant k + 0 and m is a constant. A single-level control policy requires that

for all k

{ } { G(z), if j = 0, 1,2,...,n
P X<_z[Zk=j

K(z), ifj=n+l,n+2,...

and

so that

r if Zk = 0,1,2,...,n

m if Zk- n+ 1, n+2,...,m > r,

min{Zk+Xk, r},
Yk

min{Zk + Xk, m},

if Zk = 0,1, 2,. ., n

if Zk = n + 1,n + 2,...

Under these conditions {Zk) k- 0,1,2,... constitutes a homogeneous Markov chain with the

following transition Am, n-matrix:
A-

n+l

n+2

n+3

0 1 2

fr gr + 1 gr + 2

fr- 1 gr gr + 1

fo gl g2

0 go gl

0 0 0

0 0 0

o o o

0 0 0

n-m+1 n-r

0 0 0 0 "0 go gl

0 k0 k1 k2

0 0 k0 kI

o o o ko

fj-- Egi,
i=o

where gi P{Xk Z <_ n}, k P{X, = Z > n}, O, 1,2,...,
OOoo

K(z) kiz’. Assuming K’(1)< m and applyingj-0,1,2,...,r. Denote G(z) giz, =
i=0 =0

Theorem 5.1 we obtain the following expression for the generating function P(z) of the ergodic

distribution of the chain (Zk) k 0,1,2,..

r-1 n

zm -rE Pi[Ai(z)zr O(z)zi] + [a(z)zm -r g(z)]E Viz’
P(z) = i=o i=o (5.16)zm_g(z)

The expression in the right-hand side of (5.16) can be simplified by noticing that if

G(z) = K(z) and m- r, the relation (5.16) turns into
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r-1

E Pi(Ai(z)zr- G(z)zi)
P(z) k 0

zr G(z) (5.17)

At the same time, the matrix A turns into a At-matrix and, therefore, by Theorem 2 in [1],
the generating function P() in (.17) can be represented in the form

P(.)
i=0

where i(z) = (z- 1)_l(Z)[zr-G(z)] -1 r_i_l(Z)= r_i_l[ZiG(z)(1-z) -1]

(the operator iF(z) gives the ith truncation of the Taylor’s series of F(z)).

Comparing (5.17) and (5.18), we conclude that

Ai(z)zr G(z)z’ (z 1)qar i- 1(z)

r--1 nand, therefore,
zm r(z 1)E Pier- i- 1(z) + [G(z)zm r K(:)]E Piz’

P(z) =o =o (5.19)zm- K(z)
As was mentioned earlier (see Remark 2), in order to find the unknown probabilities

Po, P, P2,’", P, in the right-hand side of (5.19), we can use the m equations obtained from the

existence of m roots of zm- K(z) and the analyticity of P(z) in F +, and n-m + 1 additional

equations obtained from the matrix equation P- PA. However, in this case due to a special

structure of the transition matrix A, it is possible to simplify this procedure and obtain more

convenient and even explicit solutions. It can be noticed that although matrix A, strictly

speaking, is not essential in the sense of Definition 2.4, all elements a, i_ r of the rth sub-

diagonal, = r, r + 1,..., n and all elements ai, i- m of the mth subdiagonal, = n + 1, n + 2,...

are not zeros, and therefore matrix A possesses some properties of essential matrices. In
m -- ’particular, it can be noticed that piz can be expressed with the help of the matrix

k=O

equations P = PA solely in terms of P0, P,.", Pr- - It implies that
n--m+r r--1

S,
k=O i=0

Using this fact, we can represent P(z) in the following form:

P(z)= { i=orLlpi{zm-r[(Z--1)Wr--i--l(t)+(G(z)zm-r-/((z))]rn_m+ rci(z)} +
. } (.0)

--I+ (G(z)zm-r- If(z)) piz (zm- K(z))
i=n-m+r+l

Now the number of unknown probabilities in the right-hand side of (5.20) is r + n- (n- m + r

+ 1)+ 1 = m and, hence, to determine them we do not need any additional equations. (This
approach is especially advantageous when n >> m).
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Let us consider, for example, the case m r = 1. Then

P(z) Pog z 1 + (G(z) K(z)), z L:G(’"Z) "(z K(z))

po = (1-p) g 1-V. G(z)-
where 6 = G’(1), p = K’(1) < 1.

In particular, if gk = abk, k = 0, 1, 2,...; 0 < a < 1, b = 1- a (a geometric distribution),
bthen G(z) = a(1 bz)- 1 6 = "d

and, therefore,

z 1 } 1 bz b(hz)r’ + 1

% z = a(1

a(z 1)(1 6z) + [G(z) K(z)](1 bz b(6z)n + 1)
P(z) = Po (z K(z))(1 6z)

Po (1-p)[a(l-P)I-6"+21 5 + an +2]- 1.

6. FINDING TIIE STATIONARY DISTRIBUTION OF A MAItKOV CIIAIN
WITII TRANSITION A’ .-MATR/X

Let {r), r = 0,1 2, be a Markov chain with transition homogeneous A’ n-matrix./"/’/’9

Throughout this section, we assume that conditions of Theorem 3.3 are satisfied, so r} is

queue-type and, therefore, irreducible and aperiodic. If, in addition, K’(1) > m then, according

to Theorem 3.5 and Theorem 4.1, {r} is ergodic and inside F, zm- g(z) has exactly rn roots
R

wr, r- 1, 2,..., R with multiplicities 7"r, 7"r -m.
r=l

We introduce the following polynomial:

R
= qo + qlz +"" + qmzm"

r.l

Consider an auxiliary Markov chain {} with transition matrix = (a/j), i, j-0,1,2,...

where

E k, if j O,
l=i+m

(lij ki + m- j, if O < j <_ + m,

O, if j > i+m.

(6.1)

(This matrix is the transition matrix of the imbedded Markov chain describing the evolution of

the number of customers in a bulk queueing system G/MY/1 with continuously operating ser-

ver and customers arriving in groups of m).
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Theorem 6.1:

determined by

The generating function of the ergodic distribution of {r} is

Q(1)P(z) =zmQ() (6.2)

Proof: Multiplying both sides of the matrix equation P = PA from the right by

vector (1, z, z2,...)T, z = 1 and using (6.1) we get:

o i+m
P(z) Po = E PiE ki + m jzj, z = 1. (6.3)

i=o j=l

Now multiplying (6.3) by zmQ()[1-z-mK()] -1 after some transformations, we finally

obtain:

where (I)(z)= Pi
i=0

p(z)zmQ() (Po (z))Q()
= Izl

+
/=i+m

(6.4)

m
Since zmQ()- qizm-i, the left-hand side of (6.4) is analytic in F + and

i=O
continuous on I’.

On the other hand, the right-hand side of (6.4) by the definition of Q(z) and if(z) and

due to the obvious relation P0 = (I)(1) is analytic in I’- and continuous on F. By Liouville’s

theorem, it means that (6.4) holding true on I’ is only possible if both sides are identically

equal to the same constant, say, C. Therefore, P(z)zmQ(l) C. Since P(1) 1, C = Q(1)

which yields (6.2).

Now we formulate the main result of this section.

Theorem 6.2: The generating function of the stationary distribution of a Markov

chain {’r} with transition homogeneous A’m, n"matriz A = (aij) is determined by

P() = E pizi- n + lilPn +1 -i qj-i- j[mO() -1 (,)
i=0 j=O

The unknown probabilities Po, Pl,"’,Pn on the right-hand side of (6.5) form a unique solution

of the system of (n + 1) linear equations

Pj ":" E Piaij-- E Pn + l ibij, J 1,2,...,n (6.6)
i=0

n m m-i

Q(1) E Pi 0(1)- E Pn+I-iE aij (6.7)
i=0 i=1 3=0

where bij = an + l + tjD
/=0

m-1

E qz"-i- "[z Q()]
k=O

D(zt) is the operator defined by
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z=0

Proofi Multiplying both parts of the matrix equations P = PA from the right by

vector (0,0,...,0,1,z, z2,...)T, zl = 1, and using the definition of a homogeneous Am, n-
n+l

matrix, we obtain

i=n+l i=n+l-m
Pi

i+m
= 1.

j=n+l

Rearranging this relation and multiplying both sides by zmQ()[1- zmK()] 1

E pizi-n-1 m 1 z Q()+ 1’z Q(.)- Pn+l-iz m 1 (z)Q

i=n+ i=1 z-m-K()

we get

(6.8)

where (z)- E E E +
i=n+l-m i=n+l-m l=i+m-n

Now we represent

E Pn + 1 -iz
i=1

m m-i m m

t=l 3=0 i=1 j=m-i+l

SO (6.8) can be transformed into
oo m m

E Pizi- nzm(l) + E Pn +1-iE qJzm-i- j

n + 1 1 j 0 (6.9)

qjzm-i-j+
(Z)(()

= Pn+l-i Izl < 1.
,=1 j m-i +1 Z- m_ K(I)

The right-hand side of (6.9) is, obviously, analytic in F + and continuous on F. At the same

time the right-hand side of (6.9) is analytic in F- and continuous on F. To show this fact, i.t

is enough to notice that the first part of the right-hand side of (6.9) is a polynomial in while

the function (z) in the second part is, by inspection, a Maclaurin series in with absolutely

summable coefficients. Since the left-hand side of (6.9) exists at z- 1, so does the right-hand

side of it. Also, by definition of Q(z), Q()/(z -m- K(1-e)) is obviously analytic in F-. Now,

applying again the Liouville’s theorem to (6.9), we conclude that both sides of this relation

must be identically equal to the same constant C. The limit of the expression in the right-

hand side of (6.9) as z---,oo is 0, because if(z) contains only negative powers of z. Therefore,

C 0 and the left-hand side of (6.9) gives

which yields (6.5).

m-i

oo m E qjzm-i-j

Pi’- n-1
Pn + l m,,,1 (6.10)

i=n+l i=l Z t,-)

Applying operators Dl), l-O, 1,2,... to (6.10), we obtain
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m m--i
z = o,Pn+l+l-- Pn+l-i z tj

i=1

Now (6.6) follows from transition equations

PJ = Z piaij j = 1, 2,..., n
i=0

(6.12)

and relations (6.11); relations (6.7) follow from (6.5) at z = 1, and the condition P(1)= 1.

It can be proved that (6.6)- (6.7) has a unique solution. Indeed, suppose/50, bx,---, ibn
is another solution. Then the sequence {ib0,/91,.., ibn, ibn + 1,--’} where Pt, > n, are

recursively defined by (6.11) satisfies transition equations (6.12). Reversing the arguments

that led to (6.5), one can easily verify that this sequence also satisfies (6.12) for j > n and, due

to matrix A being stochastic, for j = 0. Since the right-hand side of (6.10) is a rational

function of z and all its poles belong to F-, the sequence {ib0,ibl,...,ibn + 1,---} generated by

(6.11) is absolutely summable. Therefore, we have two different absolutely summable solutions

of P = PA, the components of which add up to 1 which contradicts the Chung Kai-Lai

theorem [5]. This contradiction proves the uniqueness of the solution of the system

(6.6)-(6.7). [:1
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