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In this paper we shall first study solvability of mixed monotone
systems of operator equations in an ordered normed space by using a
generalized iteration method. The obtained results are then applied to
prove existence of coupled extremal quasisolutions of the systems of first
and second order mixed quasimonotone differential equations with
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a Banach space ordered by a regular order cone.
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1. INTRODUCTION

In [6] existence of coupled minimal and maximal quasisolutions of the system

u(t) = fi(t, ui(t),[u]pi(t),[U]qi(t)) t e [0, T], ui(O = Uol, i = 1,...,n (1)

is studied by assuming that the functions fi are continuous, mixed quasimonotone and satisfy

one-sided Lipschitz condition with respect to ui. The last assumption is replaced in [5] by g-

monotonicity of the functions fi"

In this paper we shall extend the above mentioned results to the case when the

functions fi are allowed to be discontinuous in all of their variables. These extensions will be
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obtained as applications of a result proved first for operator equations of mixed monotone type

in an ordered normed space. This result will be applied also to the second order mixed

quasimonotone system

uT(t = fi(t, ui(t), [u]pi(t), [u]qi, u(t)), t e [0, T],

= u (0) =

in an ordered Banach space.

2. ON MIXED MONOTONE OPEILTOIt EQUATIONS

In this section we shall study solvability of the operator equations

v = A(v, w), w = A(w, v)

in an ordered normed space X.

Theorem 2.1: Given a subset Z of X possessing the least and the greatest element,

and a mapping A: Z x ZZ, assume that

(A1) A(.,z) is increasing and A(z, ) is decreasing for each z g.

(A2) (A(vj, wj))= 1 converges in Z whenever (vj)= 1 and (wj)je= are sequences in

Z, one being increasing and the other decreasing.

Theu the system (2.1) has a solution (v, w) such that

(i) v <_ w and, Iv, w] for any other solution (V, ) of (2.1).

Proof: Note first that X x X, equipped with componentwise addition and scalar

multiplication, is an ordered normed space with respect to the norm and the partial ordering

given by

II (v, w) II II II / II w II and (v, w) < (,) if and only if v _< and < w. (a)

Denoting Y = Z Z it follows from (A1) that the equation

F(v, w) = (A(v, w), A(w, v)) (b)

is an increasing sequencedefines an increasing mapping F: Y.---,Y. If (uj)j = ((v1, wj))j
in Y, then (vj)j__x is increasing and (wj)=x decreasing in Z. The hypothesis (A2)implies

that the sequences (A(vj, wj))=: and (A(wj, vj))jcx= converge in Z. Thus, by (a)and (b),
the sequence (Fuj)= 1 converges in Y.

The above proof shows that the mapping F: Y---,Y given by (b) is increasing and right

compact. Moreover, since vo = minZ and wo maxZ exist, then a = (v0, w0) is the least
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element of Y. Thus, F has by Theorem 3.1 of [2] the least fixed point u = (v,w) in Y.

Moreover, u = sup{Fua [a E A}, where (ua)a e A is the longest transfinite sequence, indexed

by ordinals, which satisfies

u0 = a, and if 0 < c E A then ua = sup < aFu and ua < Fua.

The above results imply by (a) and (b) that (v, w) is a solution of (2.1), and that

v = sup{A(v, wa) a A} and w = inf{A(wa, va) la A}, where (va) A and (wa)a A are

the longest transfinite sequences which satisfy

(I) If 0 < a e A then va = sup < aA(v, w#), wa = inf# < aA(w/, v#), and the

inequalities va < A(va, wa) A(wa, va) < wa hold, at least one of them being

strict.

If (, @) is a solution of (2.1), it follows from (2.1) and (b) that (,) is a fixed point of

F in Y. Because (v,w) is the least one, then (v,w)< (V,@), i.e. v < and @_<w. In

particular, we can choose V = w and @ = v, whence v _< w. Since (@, ) is also a solution of

(2.1), it follows that V, @ e Iv, w], so that (i) holds.

ttemark 2.1: If A in Theorem 2.1 is continuous, then also F is continuous,

whence the sequence (ua)a e h is reduced to a finite or infinite sequence of ordinary iterations

Fie, j e . In particular, v = lira vj and w = lira w:, where (vj)= o and (wj)=o are

defined by

vj + 1 = A(vj, wj), wj + = A(wj, vj), j e N.

3. APPLICATIONS TO FIRST OI)ER DIFFERENTIAL SYSTEMS

Given an ordered Banach space E and J = [0, T], consider the differential system

u(t) = fi(t, ui(t),[u]pi(t),[ulqi(t)) for a.e. t J, ui(O = Uoi i = 1,...,n, (3.1)

where fi: J x En-,E, and Pi, qi , i = 1,..., n satisfy Pi + qi = n 1. In the notation

u = (ui,[u]vi,[u]qi) for u En the term [u]v is formed by Pi coordinates of u, different from

ui, and [u]a contains the remaining ones.

The absolutely continuous and a.e. differentiable functions v=(vx,...,Vn) and

w = (wx,... Wn) from J to En are called coupled lower and upper quasisolutions of (3.1), if

and
v(t) < fi(t, vi(t),[v]pi(t),[W]qi(t)) for a.e. t J, vi(O <_ Uoi, i = 1,..., n, (3.2)
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w(t) >_ fi(g, wi(t),[w]pi(t),[vlqi(t)) for a.e. g E J, wi(O) >_ Uoi, i= 1,..., n. (3.3)

If the equalities hold in (3.2) and in (3.3), we say that v, w are coupled quasisolutions of (3.1).
If v = w = u, we say that u is a lower, an upper or an ordinary solution of (3.1), respectively.

In the following, we shall equip C(J,En) with the maximum norm and pointwise ordering, and

Lfspaces with p-norms and a.e. pointwise orderings.

g-monotone and mixed quasimonotone real systems.

Consider first the case when E = R. Given fi:J x Rn--*R and Uoi R, i = 1,...,n,

assume that

(fl)
(f2)

(3.1) has coupled lower and upper quasisolutions Vo, wo such that vo <_ wo.

fi( .,u(. )) is Lebesgue measurable on J and whenever u e [Vo, Wo] is absolutely

continuous.

(f3) fi(t, ui[u]pi,[U]qi) is increasing with respect to [u]pi on [[Vo]pi(t),[Wo]pi(t)] and

decreasing with respect to [Uqi oll [[Vo]qi(t),[Wo]qi(t)] for all u e [Voi(t), Woi(t)]
and for a.e. t J.

(f4) There is a Borel measurable function gi Loo(R,R+ with positive essential

infimum such that ui-.
fi(t’ul’ tti Un)

i(ui)
is increasing in [Voi(t), w0(t)] for

u = (ux,..., u,) e [vo(t), wo(t)l and for a.e. t e a.

Who a.l: g th, vot,,, (l)-(f) od fo i= 1,...,n, t, (.1)
has coupled quasisolutions v, w satisfying vO <_ v <_ w <_ Wo, such that , E Iv, w] whenever

e [v0, w0] are coupled quasisolutions of (3.1).

Proof: Denote Z = {z Iv0, Wo]]Z is absolutely continuous}, and let i {1,...,

be given. The hypotheses (fl)- (f4) imply that for all v, w Z

fi(g Yi(;;g), [V]pi(;;g), [W]qi!.))dgg fi(T’’ WOi(T’)’ [WO]Pi(g)’ [0]q’(;;g))dZ,
0 0

From (3.3)it follows (see also [71, V. 38.3) that

The reverse inequalities hold when Woi is replaced by Voi and vice versa.

Thus, the equation

Woi(t)
dy
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Ai(, )()
dy _--

0u0

fi(x, vi(;g), [vlpi(X), [W]qi(X)) e s

defines a mapping Ai: Z Z--,C(J,) such that Voi < Ai(v w) <_ Woi. From (a) it follows that

Ai(v, w) is absolutely continuous on J for each (v,w)E Z x Z. The hypotheses (f3) and (f4)
ensure that Ai(-,z) is increasing and Ai(z,. ) is decreasing for each z E Z.

The above considerations hold for each = 1,...,n, so that the equations (a) define a

mapping A = (A1,...,An):Z x Z-.Z which satisfies condition (A1) of Theorem 2.1. To prove

that condition (A2) holds, let (vj)jo= be an increasing and (wj)= a decreasing sequence in

Z. For given (1,..., n) the functions

e s

in LI(j,R), bounded above by a functionform an increasing sequence (hj)j 1

hio(x)
fi(x’ Woi(X), [Wo]pi(x), [Vo]qi(a:))

= e s.

(hix converges by the Monotone Convergence Theorem to a functionThus, the sequence ,._j,j 1

h L1(J, i), and

Defining ui:J--,R by

li. mj,/ h(x)dx = / hi(x)dx, tJ. (c)
o o

ui(t)

f dy / hi(x)dx, t J, (d)=
oUo

and denoting M = ess sup gi, it follows from (a), (b) and (d) that

ui(t) T

Ai(vj, wj)(t 0

This and (c) imply that the sequence (Ai(vj, wj))j= converges uniformly on J to ui. Thus,

denoting u = (u,..., Un) then A(vj, wj)--,u in X = C(J,Rn) with respect to the uniform norm.

Moreover, it is ey to see that u Z, whence (A(vj, wj))= converges in Z. This

convergence can be proved similarly also in the ce (vj)= is a decreeing and (wj)j = x an

increing sequence in Z. Thus, A satisfies the condition (A2) of Theorem 2.1. Noting aho

that v0 is the let and w0 is the greatest element of Z, it follows from Theorem 2.1 that (2.1)
has a solution (v, w)such that (i)holds.
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Denoting v = (Vl,... vn) and w = (Wl,... wn) it follows from (2.1) that v = Ai(v,w)
for each = 1,..., n. Thus, (a) is equivalent to

(t)

o oUo

This is in turn equivalent to

(t) l(t,,(t), [](), []a())
i(V(i))= (,(t)) ro a.. t e , ,(0)= %,

and hence to

,(t) = l(t,.(t), [.](t), []q(t)) fo a.. t e J, (0) = =o, i = ,...,,.
Similarly, it can be shown that

(t) = l(t, (t), [1.(), []q(t)) fo a.. t e J, (0) = =o, i = 1,...,..

Thus, v and w are coupled quisolutions of (3.1) and vo v w wo.

If , are coupled quisolutions of (3.1) in Ivo, Wo], then they belong to Z, whence

the above equivalences imply that (,) is a solution of (2.1) when the components of A are

dnd by (). This and the result (i) of Theorem 2.1 imply that , q [v, w].

As a consequence of Theorem 3.1 we obtain,

Proition 3.1: Given the funclions gi (R,R + and hi: J xn, i = 1,..., n,

assume lhal for each i = 1,...,n, gi has positive essenlial infimum, that h is Borel measurable,

that hi(t ) is increasing on Rn for a.e. t J, nd that lhere is m x(J,R +) such that

hi(t, u) <_ mi(t) for all u Rn and for a.e. t e J.

Then the system

u(t) = gi(ui(t))hi(t, u(t)) for a.e. t e J, ui(O) = Uoi, i = 1,..., n

(u01 nhas for each ,..., Uon) E + the least and the greatest solution.

Proof:

(3.4)

(3.5)

The assumptions given for gi and condition (3.4) imply that the equations

,% .(t) (t)Voi

/i(y)= / m(z)dz, / :dy =() / ()d
o oUo Uo

define an upper solution wo = (wol,...,Won) and a lower solution v0 = (vOl,...,VOn) of the

system (3.5). Moreover, it is easy to see that the functions fi = gihi satisfy the conditions
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(f2)-(f4) when Pi = n-1 and qi = 0, = 1,...,n. (Borel measurability of gi is not needed

since = hi. As for the proof of (f2) see [8]). Thus, Theorem 3.1, applied to this special case,

implies that the system (3.5) has the least solution v and the greatest solution w between v0

and w0.

If u=(ul,...,un) is any solution of (3.5), then its components are absolutely

continuous in J. Thus, it follows from (3.5) that

ui(t)

/ d_._.y_ / hi(z,u(z))dz, t E J, i= 1 n.’" "’
Uoi 0

From (3.4), (a) and (b) we obtain

(b)

Voi(t <_ ui(t < Woi(t for all t e J.

Thus, v0 _< u _< w0, so that v is the least and w is the greatest of all the solutions of (3.5).

3.2. Mixed quasimonotone systems in an ordered Banach space.

Next we shall give an extension of Theorem 1.4.1 of [6] to the case when

f = (fl,’",fn) is a mapping from J x En to En, where E is an ordered Bausch space, by

allowing f also to possess discontinuities.

Theorem 3.2: Let E be an ordered Banach space with regular order cone, and let

fi:J En--.E and Uoi E, i- 1,..., n satisfy the conditions (fl), (f3),

(fS) fit’,u(’)) is strongly measurable whenever u:J--.En is absolutely continuous and

a.e. differentiable, and

(f6) there is Pi Lx(J,R+ such that ui-,fi(t,u,...,ui,...,Un)+ Pi(t)ui is increasing

on [Voi(t), Woi(t)] for all u = (Ul,... Un) e [v0(t), w0(t)] and for a.e. t e J.

Then the results of Theorem 3.1 hold.

Proof: Denote Z = {z e Iv0’ w0]lz is absolutely

differentiable}. The given hypotheses imply that the equation

continuous and a.e.

Ai(v,w)(t) = fi(t, vi(t),[v]pi(t),[w]qi(t))-t-pi(t)vi(t), t e S (a)

defines for each i = 1,...,n a mapping i:Z x Z--,L(J,E), which is increasing in the first

argument and decreasing in the second one. Thus, the initial value problem

u(t) + ti(t)ui(t) = i(v, w)(t) for a.e. t E J, ui(O) = Uoi
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has for each = 1,...,n and v,w E Z a unique absolutely continuous solution u = Ai(v,w)
given by

Ai(v w)(t) = exp( f Ii(x)dz)(Uoi + ezp( f li(s)ds)Ai(v, w)(x)dx), t E J. (c)
0

0
0

The so obtained functions Ai:Z x Z--.C(J,E) have absolutely continuous and a.e. differentiable

values, and they possess the mixed monotonicity conditions stated for the functions i above.

Moreover, from (3.2), (a) and (b) it follows when v = v0 and w = w0 that r = u Voi satisfies

for each i = 1,..., n

(t) + s,(t),.(t) > o o ,,.. t e J, ,.(o) > o,

which implies that

ri(t > ri(O)exv( / #i(a:)dz) > 0 for each J.
0

Thus, Voi _< Ai(vo, Wo), i = 1,..., n. By the analogous reasoning it can be shown that

Ai(wo, Vo) < Woi i = 1,..., n.

The above results imply that A- (A,...,An) is a mapping from Z x Z to Z, and

satisfies condition (A1) of Theorem 2.1.

is an increasing and (wj)= 1 a decreasing sequence in g.Assume now that (vj)j 1

The.sequences (i(vj, wj)(t))= 1, t e J are increasing and are contained in the order interval

[Ai(Vo, Wo)(t),)q(Wo, Vo)(t)], whence they converge, because the order cone g of E is regular.

Denote

h(t) = ti, (v, o)(t), t e J.

Since K is also normal, there is a positive constant c such that

II a(,,o)(t)II <_ ( + )( II (,o, Oo)(t)II + II (Oo, Vo)(t)II) for .. t e y.

Thus, hi6 LI(J,E) by the Dominated Convergence Theorem for Bochner Integrals (cf. [4]),
and

0 0
Defining ,i: J---,E by

0 0
0

it follows from (c), (d) and (e) that

(d)

lim Ai(vj, wj)(t) = ,i(t) t Y. (f)



On Solvability of Mixed Monotone Operator Equations

Moreover,

o <_ () a(.o)() < (j"u().) (h()-(.o)()). s.
o o

which implies by (d) and the normality of K that the convergence in (J’) is uniform on J.

Thus, denoting u--(u,...,un), then a(vj, wj)-.u in C(J, En). Obviously, u Z, whence
oo is decreasing andoo converges in Z. This convergence in the case when (vj)j(A(vj, wj))j=l

(wj)= 1 is increasing is proved similarly. Thus, A satisfies the condition (A2) of Theorem

2.1, whence (2.1) has a solution (v, w) such that (i) holds.

Denoting v = (1)1,..., vn) and w = (Wl,... wn) it follows from (2.1) and (c) that

v(t) = ,p(- f ,()d)(,o + p(y,()d)(v,)()d), t e S.
o o o

This is easily seen to be equivalent to

and hence to

v(t) + u(t)v(t) a(. )(t) to, a.. t j, v(0) = -o.

(t) = y(t.,(t), [,]p(t). []q(t)) fo, .. t e s, v(0) = -o, i = ,..., .
Similarly, it can be shown that

w(t) fi(t, wi(t), [w]pi(t), [V]qi(t)) for a.e. t J, wi(O) Uoi, i= 1,.. ., n.

Thus, v and w are coupled quasisolutions of (3.1) and vo < v < w _< w0.

If , are coupled quasisolutions of (3.1) in Iv0’ w0], then they belong to Z, whence

the above equivalences imply that (,) is a solution of (2.1) when the components of A are

defined by (c). Thus, the result (i) of Theorem 2.1 ensures that , e Iv, w].

Lemma 3.1: The hypothesis (fl) holds in Theorem 3.2 for all fixed

Uox,...,Uon E, if for each i= 1,...,n there exist ai LI(J,R) and b LI(J,E), j = 1,2 such

that

1 1 2(t)ui + b(t) for a.e. t e S and for all u e En.ai(t)u + bi(t) <_ fi(t, u) < a (3.6)

and

Proof: E E be given. Direct calculations show that the equationsLetu0t, un
1 ; x

Voi(t) = ezp( f ai (z)dl(uoi + j ezp( f a(s)dslb(z)dx), t e J, i = 1,..., n
o oo

(3.7)
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2(:r)da:)(Uoi+ ca:p(- fa = ,.,
o oo

define coupled lower and upper quasisolutions vo = (vol,...,VOn) and wo = (wol,...,WOn) of the

system (3.1) such that v0 _< w0.

In the special case when Pi = n- 1 and qi = 0, = 1,..., n we obtain from Theorem 3.2

the following result for the system

u(t) = fi(t, u(t)) for a.e. t e J, ui(O) = Uoi, i = 1,...,n, (3.9)

which generalizes Theorems 3.1 and 3.2 of [1].

Proposition 3.2: Given an ordered Banach space E with regular order cone, assume

that the functions fi: J x EnE satisfy the hypotheses of Lemma 3.1, that fi( u( )) is

strongly measurable whenever u: J---En is absolutely continuous and a.e. differentiable, and that

there is Ii Lx(J,R + ) such that u1’(t, u) + ui(t)u is increasing for a.e. t J and for each

., .., E the least and thei= 1,.. n. Then the system (3.9) has for each choice of uol, UOn
greatest solution.

Proof: Given u01,..., Uon E, it is easy to see that hypotheses of Theorem 3.2

hold with v0, wo defined by (3.7)- (3.8). Thus, the system (3.9) has the least solution v and

the greatest solution w between vo and wo.

If u = (Ul,...,un) is any solution of (3.9), it follows from (3.6), (3.7) and (3.9) that

r = u Voi satisfies for each = 1,..., n

which implies that

1r(t)- ai(t)ri(t > 0 for a.e. t e J, ri(O) = O,

Thus, v0 < u.

ri(t) >_ ri(O)exp( / a](x)dx) = 0 for each t e J.
0

Similarly it can be shown that u _< w0, whence all the solutions of (3.9) are

between v0 and w0. Consequently, v is the least and w the greatest of all the solutions of the

system (3.9).

lmarlm 3.1: Condition (f2) holds, for instance when fi is a "standard function"

in the sense defined in [8], and in particular, when fi is Borel measurable. If each h in

Proposition 3.1 is standard, then the assumption on the Borel measurability of h is not

needed.

Condition (f5) of Theorem 3.2 holds, if E is separable and each fi is a standard
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function (cf. IS]).

If in Theorems 3.1 and 3.2 the functions gi are continuous and each fi is a

Carathodory function, it follows from lemark 2.1 that the asserted coupled quasisolutions v

and w of (3.1) are obtained as the uniform limits of the successive approximations given by

(2.2). Moreover, if the functions fi and Pi are continuous then v, w are coupled extremal

quasisolutions of the system (1) given in Introduction. Similar special cases are obtained also

for Propositions 3.1 and 3.2.

Theorem 3 in [9] contains the special case of Theorem 3.2 where E = R and the

functions fi are mixed monotone, i.e. each Pi is the zero function in the condition (f6).

4. APPLICATIONS TO SECOND OttDER DIFFERENTIAL SYSTEMS

Given an ordered Banach space E, consider the differential system

7() = fi($, i($),[Z]pi($),[l]qi($), ($)) for a.e. J,
(4.1)

ui(O) = Uoi u(O) = Uli i = 1,...,n,

where fi:J x En + IE, = 1,...,n. The functions v = (vt,...,vn) and w = (wl,...,wn):JEn

are said to be coupled lower and upper quasisolutions of (4.1) if their components possess

absolutely continuous and a.e. differentinble first derivatives, and if

and

vT(t) < fi(t, vi(t),[v]pi(t),[w]qi(t), v(t)) for a.e. t J,

vi(O < Uoi, v(O) < Ul.,, i= 1,...,n,
(4.2)

w’(t) >_ fi(t, wi(t),[w]pi(t),[v]qi(t), w(t)) for a.e. t J,
(4.3)

wi(O > Uoi, w(O) >_ ui = 1,...,n.

If the equalities hold in (4.2) and in (4.3), we say that v, w are coupled quasisolutions of (4.1).
In particular, if v = w = u, we say that u is a lower, an upper or an ordinary solution of (4.1),
respectively.

Our considerations are based on Theorem 2.1 and the following Lemma, which is a

consequence of Example 2.1 and Lemma 6.1 of [3].

Lemma 4.1: If p LI(J,i and C LI(J,E then the IVP

u"(t) + p(t)u’(t) = C(t) for a.e. t J, u(O) = Uo, u’(O) = uI (4.4)
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has for each choice of Uo, u1 6 E the unique solution
z

0 z
0 0 0

Moreover, V v, w are lower and upper soluions of (4.4) then v u w and v’ S u’ S w’.

Assume now that the functions fi: J x En + 1--,E satisfy for each i = 1,..., n

(fa) (4.1) has coupled lower and upper quasisolutions v0, To, such that v0 _< wo and

(fb) fi(’, u(. ), v(. )) is strongly measurable on J whenever u 6 Ivo, Wo], v e [Voi, woi],
and u’ and v are absolutely continuous and a.e. differentiable.

(fc) fi(t, ui,[u]pi,[u]ai, v) is increasing with respect to u on [Voi(t), Woi(t)] and to [u]p
on [[Vo]pi(t),[Wo]pi(t)] and decreasing with respect to [U]q on [[VO]qi(t),[Wo]qi(t)]
for all v e [v’oi(t), Woi(t)] and for a.e. t J.

(fd) There is I e LI(J,R+) such that v--fi(t,u,v)+i(t)v is increing on

[vi(t), wi(t)] for all u [v0(t), Wo(t)] and for a.e. t e J.

Threm 4.1: Let E be an ordered Banach space with regular order cone K. If
the functions fi:J x En +IE satisfy the hypotheses (fa)-(fd), then the system (4.1) has

coupled quasisolutions v, w satisfying (Vo, v) (v, v’) (w, w’) (To, w), such that V,

[p, w] and ’, ’ Iv’, w’] whenever V, [Vo, To] are coupled quasisolutions of (4.1) such

t v’, e [v, %1
Proof: Denote Z = {u 6 Iv0’ w0] u’ is absolutely continuous a.e. differentiable and

u’ e Ivy, w]}, and define a norm and a partial ordering in X = C(J,En) by

II u !1 = p{ II (t)!1 + II ’(t)II It J}

u < v if and only if u(t) < v(t) and u’(t) <_ v’(t) for all t e J.

The given hypotheses imply that the equation

C(v, o)(t) y(t, v(t), [,]p(t), [o](t),,(t)) + ,(t)v(t), t e ()

defines for each i= 1,...,n a mapping Ci:ZxZL(J,E), which is increasing in the first

argument and decreasing in the second one. Thus, the initial value problem

7(t) + ,(t)(t) = c(, o)(t) fo .. t e , u(0) = Uo, u(0) =

has by Lemma 4.1 for each i = 1,...,n and v,w Z a unique absolutely continuous solution,
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u = Ai(v, w), given by
x

Ai(v w)(t) = Uoi + ezp( f #i(Y)dy)ulidz + ezp( f #i(s)ds)Ci(v, w)(y)dydz.
0 z

0 0 0

The so obtained functions Ai(v w):JE have absolutely continuous and a.e. differentiable first

derivatives, and they possess the mixed monotonicity conditions stated for the functions C

above. Moreover, from (4.2), (a) and (b) it follows when v = v0 and w = w0 that r = Voi -u is

for each i = 1,..., n a lower solution of

e’(t) + z,(t)e(t) = 0 fo a.. t J, (0) = e(0) = 0.

Since the zero function is the only solution of this IVP, it follows from Lemma 4.1 that

Voi _<Ai(vo, Wo) and V’oi _<Ai(vo, Wo)’. Similarly, it follows from Lemma 4.1 that

Ai(wo, Vo) <_ Woi and Ai(wo, Vo)’ _< W’oi for each = 1,..., n.

The above results imply that A- (A1,...,An) is a mapping from Z xZ to Z, and

satisfies condition (A1) of Theorem 2.1.

Assume now that (vj)=x is an increasing and (wj)j=l a decreasing sequence in Z.

The sequences (Ci(vj, wj)(t))% 1, t e J are increasing and are contained in the order interval

[Ci(vo, Wo)(t),Ci(wo, v0)(t)] whence they converge, because the order cone g of E is regular.

Denote

hi(t) = li.m Ci(vj, wj)(t), t E J.
3--*00

Since K is also normal, there is a positive constant c such that

II c(5, 5)(t)II _< (t + )( II C(vo, o)(t)II + II c(Oo, Vo)(t)II ).

Thus, h . LI(J,E) by Dominated Convergence Theorem for Bochner integrals end

limj-*oo f Ci(vj’ wj)(x)dx- J hi(x)dx, t C S.
0 0

Defining i:J--,E by
x

ui(t) = Uoi + exp( fo #i(Y)dy)ulidX + ezp( fx #i(s)ds)hi(y)dydx, t e J,
0 0 0

then
y

hese equations, together wigh e) and (d) fmp thag

li.m Ai(vj, wj)(t) = vi(t), lim Ai(vj, wj)’(t) = v(t) t e J.

(d)



14 S. HEIKKII_, M. KUMPULAINEN AND V. LAKSHMIKAN

Moreover,
T

o o
and

T

0 < v(t) Ai(vj, w)’(t) < ezp( f ii(z)dz (hi(z) Ci(vj, wj)(z))dz, t E J.
o o

These inequalities, (d) and the normality of K imply that the convergence in (e) is uniform on

J. Thus, denoting t, = (t,1,...,n) then A(vj, wj)r, in C(J, En). Obviously, t, Z, whence

(A(vj, wj))jo= converges in Z. This convergence in the case when (vj)j= is decreasing and

(wj)j__ is increasing is proved similarly. Thus, A satisfies the condition (A2) of Theorem

2.1, whence (2.1) has a solution (v, w) such that (i) holds.

Denoting v = (vl,...,vn), and w = (wl,...,wn) it follows from (2.1) and (c) that for

each i = 1,..., n
x

vi(t) = Uoi + ezp( fo bti(y)dy)ulidZ + ezp( Ix Ii(s)ds)Ci(v’ w)(y)dydz.
o o o

(g)

By Lemma 4.1 this holds if and only if

,7(t) + ,(t)v(t) = c(,, o)(t) to, .. t e J, (o) = o, v(O) =

or equivalently,

vT(t) yi(t, vi(t),[v]vi(t), [w]ai(t), v(t)) for a.e. t e J

(0)- o, v(0) = x
for each = 1,..., n. Similarly, it can be shown that

(0) = 0, (0) =

for each i = 1,...,n. Thus, v and w are coupled quisolutions of (4.1) in Z. The above

equivalences imply in turn that such coupled quisolutions of (4.1) form also a solution of

(2.1) with the components of A given by (c). From the definitions of Z and the partial

ordering in X =CI(J,E) and from the result (i) in Theorem 2.1, it then follows that

(v0, v) (v, v’) (w, w’) (Wo, w), , Iv, w] and ’, ’ [v, w’] whenever , e [v0, w0]
are coupled quisolutions of (4.1) such that v’, q Iv0, w]

Next we shall give some special cases of the above result. Given an ordered Banach
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space E with order cone K, denote by L(E) the Banach space of all bounded linear mappings

A:EE with the norm [[ AII = sup{ I[ A: II II z [I <- 1}. We say that A e L(E) is positive if

A[K] C K. Denote by I the identity mapping of E.

Imma 4.2: The hypothesis (fa) holds, for each choice of Uoi, uli
i= 1,...,n, i] foe each i= 1,...,n there exist At, BI e L(J,L(E)),C e Lt(J,E) and

h! e Lx(J,R), j = 1,2 such that each A(t)+ h(t)I and B(t) is positive for a.e. t e J, and

that

A(t)v + B](t)u + C](t) <_ fi(t, u, v) < A(t)v + B(t)u + C(t) .for a.e. t e J. (4.6)

Proof:

that the IVP

Let Uoi, uxi E, = 1,...,n be given. From Lemma 6.1 of [3] it follows

u"(t) = A!(t)u’(t) + B!(t)u(t) + C!(t) for a.e. t e J, u(O) = Uoi, u’(O) = uli (4.7)

has for each i = 1,...,n the uniquely determined solution u = Voi when j = 1, and u = Woi
when j = 2, and that Voi _< Woi and V’oi _< W’oi for each = 1,..., n. From (4.6) it follows that

v0 = (v01,... Von and wo (Wox,..., WOn are coupled lower and upper quasisolutions of (4.1).

In the case when Pi = n- 1 and qi = 0 for each i = 1,...,n we obtain the following

result concerning the existence of extremal solutions of the system

-7(t) = for t e s,
(4.s)

ui(O) = Uoi ui(O) = uli i= 1,...,n.

Proposition 4.2: Given an ordered Banach space E with regular order cone and

fi: J En +I’’*E, i = 1,...,n, assume that the hypotheses of Lemma 4.2 hold, that

f(.,u(.),v(.)) is strongly measurable whenever u’ and v are absolutely continuous and a.e.

differentiable on J, and that there is i Lx(J,R+) such that (u,v)fi(t,u,v)+ti(t)v is

increasing for a.e. t J and for each i= 1,...,n. Then for each choice of Uoi, uxi E,

i= 1,...,n the system (4.8) has solutions v and w such that (v,v’)< (u,u’)< (w,w’) for all

solutions u of (4.8).

Proof: Let Uoi ui fi E, i= 1,...,n be given. It is easy to show that the

hypotheses of Theorem 4.1 hold with v0, w0 given as in the proof of Lemma 4.2. If

u = (ux,...,un) is any solution of (4.8), it follows from (4.6) that u is for each i= 1,...,n an

upper solution of (4.7) when j = 1, and a lower solution when j = 2. This implies by Lemma
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6.1 of [3] that (v0, v) _< (u, u’) _< (w0, w)). This holds for each solution u of (4.8), so that the

assertions follow from the results of Theorem 4.1.

Remark 4.1: If E is separable and each fi is standard then the condition (fb)
and the corresponding hypothesis of Proposition 4.2 hold (cf. [8]). These assumptions hold also

without separability of E in the special cases when each fi is a Carath6odory function, or all

the functions in question are continuous. In these special cases we obtain analogous

consequences for systems (4.1), (4.8) and (2) as stated in Remarks 3.1 for first order systems.

The regularity of the order cone K of E is essentially used in the proofs of Theorems

3.2 and 4.1. This holds if, for instance, E is finite-dimensional, or E is a real Hilbert space,

and (z[y)>_0 for all z, yE K, or E is reflexive and K is normal. In particular, the

nonnegative elements form a regular cone in the LP-spaces of real-valued functions, defined on

any measured space , if 1 _< p < oo. More generally, if K is a regular order cone in E, then

the cone LP(f,K) of a.e. K-valued functions of LP(f,E) is regular in LP(f,E). The

nonnegative sequences form a regular order cone in/P-spaces with 1 <_ p < oo, and also in c0.

The above examples of ordered Banach spaces with regular order cone imply that the

results of Theorems 3.2 and 4.1 can be applied to finite and infinite systems of first and second

order initial value problems, as well as to finite systems of first and second order stochastic

initial value problems.
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