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ABSTRACT

Differential equations of the form y’= f(t,y,y’), where f is not
necessarily linear in its arguments, represent certain physical phenomena and
are known for quite some time. The well known Clairut’s and Chrystal’s
equations fall into this category. Earlier, we established the existence of a
(unique) solution of the nonstandard initial value problem (NSTD IVP)
y’ = f(t, y, y’), Y(to) = Yo under certain natural hypotheses on f. In this paper
we present some first order convergent numerical methods for finding the
approximate solutions of the NSTD IVPs.
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1. INTRODUCTION

Differential equations of the form y’= f(t,y,y’), where f is not necessarily linear in its

arguments, represent certain physical phenomena and are known for quite some time. The well

known Clairut’s and Chrystal’s equations fall into this category [2]. A few authors, notably E.L.

Ince [3], H.T. Davis [2], et. al. have given some methods for finding solutions of equations of the

above type. In fact these methods are best described as follows.

If there exists (to, Yo) such that the equation y’ = f(t, y, y’) can be solved for y’ as a single

valued function of (t,y) in a neighborhood of (t0,Yo) say y’= g(t,y), then the solution of the initial

value problem (IVP) y’= g(t,y),y(to) = Yo, if it exists, is also a solution of the original equation

y’ = f(t, y, y’) (and satisfies the initial condition y(to) = Y0)- Or, if there exists (to, Y0) such that the

equation y’= f(t, y, y’) can be solved for y’ as a multivalued function of (t, y) in a neighborhood of
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(t0,Yo) then a (nonunique) solution of the IVP y’= f(t,y, Vt),y(to)= Y0 is given by certain (not
necessarily convergent) infinite series.

In our earlier paper [7], we have established the existence of a (unique) solution of the

nonstandard IVP ’ = f(t,y,y’),y(to)= 0 under certain natural hypotheses on f, and have shown

the continuous dependence of the solution on initial conditions, and parameters. The existence

result that we established in [7] is of theoretical nature and it does not provide methods of finding

the solutions explicitly either analytically or numerically. Our aim in this paper is to present

numerical methods for finding the approximate solutions of the nonstandard IVPs.

Before proceeding to numerical methods, we introduce few notations and the nonstandard

IVP. Let R denote the real line, and let Rn denote the n-dimensional real space where ’n’ is a

positive integer. Let (to, Yo) ER2 and let D be a convex subset of R3 defined by

D-{(t,,z)R3[ It-to[ <a, 1-0[ <b,lz[ <c} where a,b and c are some positive

constants. Let f be a continuous real valued function defined on D.

Consider the nonstandard IVP (NSTD IVP)
y’ = f t, y, y’), Y(to) = Yo

where y denotes the derivative of y.

Definition: By a solution y of the NSTD IVP (1), we mean a continuously differentiable

real valued function y(t) defined for t I, where I is some interval of the real line containing the

point o such that

 (t0) =
ii) the triplet (t, y(t),y’(t)) E D for all t E I, and

iii) y’(t) = f(t,y(t),y’(t)) holds for all E I.

In Section 2, we shall prove the existence of a unique higher order regular solution of the

IVP(1). In Section 3, we shall present linearly convergent numerical schemes for constructing the

solution of IVP(1). In Section 4, we shall illustrate our methods by solving some NSTD IVPs.

2. EXISTENCE OF A UNIQUE (HIGHER. ORDER. REGULAR) SOLUTION OF THE IVP (1)

Theorem 1: Suppose that he real valued function f defined on D satisfies the following

conditions:

I) f is ’p’ times continuous differentiable with respect to (t,y,z) D where p > 1 is an

integer.

IZ) f(t,y,z) < c for at (t,y,z) D, and
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!xx) Of(t,y,z)10v--::,Of(t’v’z) _< kl, and -’-Oz < k2 for all (t,y,z) E O where k1 > 0 and 0 _< k2 < 1

are constants.

Then the NSTD IVP (1) has a unique solution y existing on the interval [to-c,to+],
where c is any number such that 0 < c < rain(

1- k2. _b a). Moreover, the solution y is ’p + 1 timeskl c
differentiable on [to c, to + c].

Proof: To prove the existence of a unique solution, it is enough to verify conditions

(i)-(iii) of Theorem 1 [7]. Clearly conditions (I) and (II) imply the conditions (i) and (ii) of

Theorem 1 [7]. To verify condition (iii), let (t, y1, z) and (t, y2, z2)E D. Then by the mean value

Theorem [1], we have that
Of(t, t, )]f(t, Ya, Zl)- f(t, Y2,z2) -< 0--- Yl Y21 /

-<b yx-yl +blz-zl (by

where (t,9,) is a point on the line segment joining (t, yx, z) and (t, y2,z2). Thus f satisfies

conditions (i)-(iii) of Theorem 1 [7], and hence the IVP (1) has a unique solution y existing on

the interval [to -c to + c], for every a such that 0 < a < rain(
1- k2 b a) To show that y is ’p + 1’
kl c,

times continuously differentiable, we proceed as follows.

From the definition of a solution, it follows that y’ is a continuous function on

[to -c, to + c] and we now claim that y" exists on [to -c,t0 + c] and is continuous function. For,

let t [to a, to + c] and h 0 be sufficiently small. Consider the difference quotient

/’(t + h)- /(t) f(t + h, y(t + h), y’(t + h))- f(t, y(t), y’(t))

By the mean value theorem, there exists a point (r,r/,q) on the line segment joining (t,y(t),y’(t))
and (t + h, y(t + h), y’(t + h)) such that

y’(t + h) y’(t) Of(v, 1, q) Of(r, , q)(y(t + h) y(t) Of(r, 1, f)(y’(t
h = 0-? + O h )+ O--i h

But we have

(2)

oy(,,) o/(,,)I1- o > 1- o > 1- k2 > 0 (by (III)). (3)

Therefore, from relation (2), we get that

(t + h)-
h

.Of(r, rl, ) O._[.f(r, rl, )(y(t + h) Of(r,= t- + Oy h Y(t))}/[10z
Now, taking the limit as h---,0, we get that

i, ’(t + h)- ’(t)
h--*O h

Of(t,y(t),y’(t))y,(tO_[.f(t,y(t) y’(t)) +__Ot i)y
Of(t,y(t),y’(t)) (4)



72 M. VENKATESULU and P.D.N. SRINIVASU

We observe that the right hand side of (4) is a well defined quantity and is a continuous function of

t. Hence (Of(t,y(t),y’(t)) Of(t,y(t),y’(t))y,(t
= o--i. +

1 o_[.y(t,
exists and is continuous.

Now, from condition (I) and inequality (3), it follows that the right hand side of (5) is a ’p-1’

times continuously differentiable function of ’t’ on [to a, to + c], and hence the solution y is ’p + 1’

times continuously differentiable on [to c, o + c].

3. NUMEItICAL SCHEMES FOR THE SOLUTION OF IVP (I)

We assume that the conditions of Theorem 1 be satisfied and p = I. For each positive

integer ’n’, we divide the interval [to, to-t- a] into ’n’ subintervals of equal length, i.e., we take a

partition of the form to<tl<...<tn_<tn-to+c, where ti=to+ih, h=a/n, i=0,1,...,n.

For t E (to, to + a) and h sufficiently small such that t + h E [t0, t0 + a], by Taylor’s theorem, the

solution y of the IVP (1) satisfies the relation

y(t + h) = y(t) + hy’(t) + --y It + 0h), 0 </? < 1. (6)
From (5) and (3), and condition (I), we easily get that ly"(t) _< N, fo all t [to-C,t0+c]
where N > 0 is a constant.

Let r/i denote the approximate value of y at ti, = 0,1,...,n, and let e denote tolerance

limit.

Scheme I (Contraction-Euler Method):

We define

a) % = Yo
for = 0,1, 2,..., n 1

r/lio-0; j=0

b) repeat

j-j+l

rltij f(ti, rli, rltij 1)
until k < hl and IY’ij-Y’ij-1[ <e are satisfied;

c) i + 1 i -F hritij
ti+ = ti+h.

This algorithm computes the approximate value of y(ti) at t = o + ih, = 1,2,...,n.
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To show the validity of the above algorithm, let rn be the smallest non-negative integer j

which satisfies the conditions k < hl and rl’ij- rl’ij_ 1 < e, for a fixed ’i’. We have

I%-Yol -0<-b

In1 Yo[ = [r/x r/o[ = h lrl’om <- -c <_ b

12-y)_< Irh-Yol +hlr/a,,I </_<b

COIoi+--Uol < Ioi Yol/hl0’il<-e--Ai/’n-<-b

(n- 1)caIr/n--Yol < Ir/,-1-’Yol /h]r’(,-),l <- n /- c < b,

since a is such that O<a<min((1-k2)/kx, b/c,a). Clearly, we hve I’.1 _<c fo ll

0, 1,..., n.

I,emma 1: [6] If the numbers i satisfy the estimates of the form
[i + 1 --< (1 + ) + B, where > O, B > O, = 1,..., q,..., then q[ eas o + (eq--l)B,
q- 1,2,3,

Theorem , (Error estimate and Convergence of the Scheme I): Letei=rli-Y(ti),
i=0,1,...,n. Then levi <_lqh(e(akl/(-k2))-- l), fori=O, 1,...,n, where 1 >0 is a constant.

Proof: Clearly, we have eo -r/o- Yo = Yo- Yo" For brevity, let Yi- y(ti) and consider

ei + l = rli + l "Yi + l
h2-"/" Oh)),O 0 1,= rti + hrl’i, (Yi + hY’(ti) +- [ti + < <

(by (6)and (7)),
h2_tt= (- V) + h(’ V’(t))--V t + Oh)

Therefore, we have that

el + 1 <_ eil +-+ h ll’im- Y’(ti)], (8)
where N is the bound for y.

Also, we have that ltim = f(ti,li, Ytim_l) and f, for a fixed (ti, Yi ), is a contraction on the

closed set {z E R z _< c} with the contraction constant ’k2’.
such thatmapping theorem [4], there exists a unique value

,}), ril < c,1 f(ti,li,
and

Il’im-rli[ < 1-_k
2

c.

Therefore, by the contraction

(9)

(10)
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Moreover we have that

which implies that

10- y’(ti) f(ti,i,o)- f(ti, yi, Y’(ti))

<-- kl r/i- Vii / k21 r/:-

Thus in view or (10)and (11), from (8) we get that

lei+ll leil +hz+h( o’im- il + Io Y’(ti)
k1 kceil ++h(i kleil + 1- k2

= (1 + i:: -) e ++ 2’ i 0, 1,..., n- 1.

Hence by lemma 1, we get that

qhk1
qhkl ak1

e
l- k2- 1 [(/Vh2 hkrc e

1" k2 -!)(h krc[eq[ <_ e
I k2e0 + hk1 -- + i :’k2)] -< k1 ---- + i "k2 (since e0 = 0)

1 k2 1 k2

c )(!’/2)- (since-fh(e(akl/(1-k2)) 1), where/r-(q-l-k2 ’1 k2m < Ihl),

for q- 1,2,...,n.

(11)

(12)

Influence of the round-off errors: Let Yi = y(ti) be the value of the exact solution y of the

IVP (1), r/i be the approximate solution produced by the scheme I, and f/i be the approximate

value of r/i actually obtained in the digit floating point arithmetic, at t for i- 0,1,...,n. Let

Ri fl- rli be the round-off error at the i-th step. Then we have

rli + 1 rli + hrl’im- Ri + 1, (13)
and

h2- "’ 0h). (14)Yi + 1 Yi -t- hy’(ti) +-y [ei +
Letting e Yi- rli, and subtracting (13) from (14), then in view of (12), we get

h, h"clei+l < (l+iski) leil + +i2k2+Ri+1" (1)

m .hklDenoting R max, 0,1,...nR and since k 2 < hl we get from (15) that I + < (1 + 1 ’- k
c 3h2leil + (ff+l_k2 +R, i=0,1,...,n-1, and hence by lemma l, wegetthat

qhkl ak
1 k2 ll.k2)h 1- 1) 5 (Yl +)(1-_ 1)(

1
)’((ff + , + n)(

1 -k2

q 1, 2,..., n, where N ff + C

1 -k2"

(16)
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In the above inequality, Nlh represents the truncation-contraction error term, and R/h
represents the round-off error term. We observe that as h---,0, the truncation-contraction error term

goes to zero where as the round-off error term becomes infinity. On the other hand, as h + cx, the

round-off error term goes to zero where as the truncation-contraction error term becomes infinitely

large. Here, on account of the round-off errors, the total error begins to increase once again if h is

1
reduced beyond a certain critical value and that value is h = (R/N1)2.

Scheme II (Euler-Contraction Method);

We define

a) r/0 = Y0
for = O, 1,..., n- 1,

r/i + 1,o = r/i, J 0

b)

c)

repeat

j=j+l
rli + l,j-1-" i

rli + 1,j = rli+ hf(ti,i, h
until k < h and r/i + t, j oi + 1, j 1

< e are satisfied

rli ri + l,j

ti+ 1 = ti+h.

As in the scheme I, the following theorem can be easily proved.

Theorem 3 (Error estimate and Convergence of the Scheme II):
O, 1, 2,..., n.

as in theorem 2.

Then eli <_ h(eak1/(1-k2)

(i7)

For the next two schemes to be developed below, we assume, in addition to the hypotheses

of theorem 1, the following conditions:
o2f(t,IV) y,z) exists and continuous for (t,y,z)E D, and hence O’/(t’y’z)l" < k3 for all
Oz2 Oz
(t,y,z) . D where k3 > 0 is a constant,

Of(t,y,O)]-IV) I[1 0" -< k4 for all (t,y,O) E D, where k4 > 0 is a constant such that

k3k4c < 2/3, and

From theorems 2 and 3, it is clear that the numerical schemes I and II

are equivalent in the sense that in both the cases the approximations converge to the true solution

at the same rate. Also, it can be shown that the influence of the round-off errors in both the cases

are same.

Let e = rli- y(ti),

1), i-0,1,2,...,n, where is the same constant
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vz) If(t, y, O) <_ ct for all (t, y, 0) E D, where ct > 0 is a constant such that

ck4 < (1 k3k4c)c.
Scheme m (Newt0n-Kantorovich-Euler Method):

We define

a)

b)

c)

r/O = YO
for = 0, 1,2,..., n- 1,

r/’i0 0; j = 0

repeat

j=j+l

rltij rltij- 1
U’ij- 1 f(ti, rli, rltij_ 1)

1 Ol(ti, rli, rl’ij 1)
Oz

until (k3k4c/6(1 k3k4c))2j-
1

are satisfied;

qi + = qi + hl’ij
ti+l ti+h"

< h and rl’ij- rltij_ 1 <-- e.

(18)

(19)

We note that the approximations rltim are the Newton’s approximations and by conditions

(IV)---(VI), they are well defined (see section 1.4 of [5]). The values r/i are the Euler’s

approximations and are well defined as in scheme I.

Theorem 4 (Error estimate and Gonvergence of the Scheme III):
i-0,1,2,...,n. Then levi <_h(ek/(1-k2)-- l) where >0 is a constant.

Let e = li-

Proof: Let m denote the least non-negative integer such that the conditions

(k3k4c/6(1 k3k4c))2m-
1
< h[ and rl’im- rl’im_ < e are true, for a fixed i. Clearly, we have

eo = r/o- Yo = Yo- Yo = 0. For brevity, let Yi = y(ti) and consider

which implies that

ei+l =i+l--Yi+l
h2_ tt/= qi+hrl’im-(yi+hy’(ti)+-y ti+Oh)),O < 0 < 1

(by (6)and (18)),

Nh2
el + 1 --< ei[ "+’’---’-’[- h lo’i.- y’(ti)

where N is the bound for

(20)

Under the hypotheses of theorem 1 and conditions (IV)-(VI), for each fixed (ti, rli ),

f(ti,i,z as a function of ’z’ satisfies the conditions of theorem 1.4.5 [5] in the closed ball

( e R I < c} and hence by theorem 1.4.5 and problem 1.4.8 of [5], there exists a unique value
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’-’ such that

and

rl = f(ti rl

o’i,..- oil <_ (A/3)z’

where A = k3k4c/2(1- k3k4c < 3).

Now proceeding as in the proof of theorem 2, we get that
ak1

lea < el k2 I) (’ :klk2lNh’"2 + ()2m-)
akI

(21)

(22)

Influence of the round off errors: If we take the round-off errors into account, then as in the
ak1

case of Scheme I, we get an estimate of the form lea < [(-+)h +](-:ie::)(e1-’- -k2-1),
1

1,2,...,n, and hence the critical value for h is given by h = (R/(v--+’t)".q

Scheme IV (Eulcr-Newton-Kantorovich Method):

We define

a)

b)

/o Yo
for O, 1, 2,..., n 1,

/i + 1,0 /i; J = 0

repeat

j-j/l

r/i + 1,j = i+ 1,j- 1--

ni+l,j-l-ni
i + , (ri + hf(ti, rli, h ))

Of(t rli + 1,j- 1
1--.,, rli, h

(23)

c)

until (k34C h I/6(1 k3k4c hl))2-
1

r/i + 1, j r/i + 1, j- 1 _< e are satisfied

}i+l : }i+l,j

< hl and (24)

Let rn denote the

(za hl/(- ,c h I))’-1

i.

least non-negative integer such that the conditions

< Ihl and Ir/i+l,m-r/i+l,m-ll <e are satisfied for afixed
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As in Scheme III, the approximations rlim are the Newton’s approximations and by

conditions (IV)- (VI), they are well defined, and the following theorem can be proved similarly.

Theorem 5 (Error estimate and Convergence oi’ the Scheme IV): Let e = rli-Y(i)
= 0,1,2,...,n. Then levi < h(eak/(-2)- 1), = 0,1,2,...,n, where the constant is same

as in Theorem 4.

From Theorems 4 and 5, we note that the numerical Schemes III and IV are equivalent in

the sense that in both the cases the approximations converge to the true solution at the same rate.

Also it can be shown that the influence of the round-off errors in both the schemes are same.

The above schemes give approximate values of the solution in the interval [t0,t0 + c]. By

changing h to -h, the schemes can also be used to find approximate values of the solution in the

interval [to- a, to]. For this case, in the above discussions h needs to be replaced by hl whenever

h appears in an inequality.

4. COMPUTATION OF TIIE SOLUTIONS OF SOME NSTD IVPs

Example 1: Consider the NSTD IVP

y’ = +e -1 +y + -y2cosy’, y(0) 1. (25)

Taking the domain D {(t,y,z) R3I tl _< 1, y- 11 _< 1, z < 1}, it can be shown

using theorem 1, as in section 3 of [7], that the IVP (25) has a unique solution existing on the

interval 1, 1].
a) Computation of the solution using Schem._._.._e I"

The solution of (25) is computed using Scheme I and the graphs of the (numerical) solution

for various step sizes h are given below.

SCHEME I SCHEME I

0 C -C 0

0.02 h 0.04
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SCHEME I SCHEME I

0

h 0.004 h 0.008

b) Computation of the solution using Scheme II_.2:

The solution of (25) is computed using Scheme II and the graphs of the (numerical) solution

for various step sizes h are given below.

SCHEME II SCHEME II

i O-

0
0.02

0
0.04

SCHEME II

0
h 0.004

SCHEME I I

h 0.008
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Example 2: Consider the NSTD IVP

(26)

Taking the same domain D as in Example 1, it can be shown, using Theorem 1, that the IVP (26)
has a unique solution existing on the interval [- 1,1].

c) Computation of the solution using Scheme III:

The solution of (26) is computed using Scheme III and the graphs of the (numerical)

solutions for various step sizes h are given below.

SCHEME III SCHEME III

0 1 -i 0

h 0.02 h 0.04

SCHEME III

h O. 004

SCHEME III

0
h O. 008
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d) Computatiou o._f th..._e s0!ution, Scheme Iv_.A

The solution of (26) is computed using Scheme IV and the graphs of the (numerical)
solution for various step sizes are given below.

SCHEME IV SCHEME IV

o o
-i 0 i -i 0

h 0.02 h 0.04

SCHEME IV SCHEME IV

h 0.004
i -i 0 i

h O.OOB
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