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ABSTRACT

A problem of the first passage of a cumulative random process with
generally distributed discrete or continuous increments over a fixed level is con-
sidered in the article as an essential part of the analysis of a class of stochastic
models (bulk queueing systems, inventory control and dam models).

Using drect probability methods the authors find various characteris-
tics of this problem: the magnitude of the first excess of the process over a
fixed level, the shortage before the first excess, the levels of the first and pre-
first excesses, the index of the first excess and others. The results obtained are
llustrated by a number of numerical examples and then are applied to a bulk
queueing system with a service delay discipline.
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I. INTRODUCTION

In many controlled stochastic models encountered in applications (queues, inventories,

dams), a control policy is employed in which a system is restricted in its capability to engage all or

a part of its facilities until the total amount of accumulated "work" reaches or exceeds a certain con-

trol level (or certain control levels). Some examples include systems with warm-up, orientation, hys-

teresis service, and multilevel feedback control, bulk queueing systems with service delay discipline,

queueing systems with server vacations, inventory control systems, and certain controlled dam mo-
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A bulk queueing system acts similar to a service discipline in which the server can start a

new service act only if, after service completion, it finds at least r (r > 1) units in the queue;

otherwise, the server remains idle until the queue length reaches or exceeds level r. It is clear that a

preliminary analysis of the first passage problem is necessary, and it is an essential part of any

attempt to investigate the functioning of such a system. This fact is illustrated by the authors in [1],
where a general control MX/GY/1 bulk queueing system with a service delay discipline of this kind

is considered.

In the present article, the authors study a general first passage problem and its applications

to the analysis of some stochastic models. Having originated from needs of reliability theory, the

first passage problem is traditionally concerned with the distribution of the moment of the first
passage (so-called "passage time") of a cumulative random process with single increments over a

certain level. In this article, the authors, keeping in mind stochastic model applications, concentrate

their attention on the other important aspect of the problem: the distribution of the value of the

first excess of a cumulative process (with generally distributed increments) over a fixed level. This

random variable is especially important in the analysis of queueing and inventory models with bulk

input. In addition, the distribution of the shortage of the first excess, the levels of the first and pre-

first excesses, and the moments of the first and pre-first excesses are found. The authors introduce

various functionals of the above mentioned processes and manage to express them in terms of a cer-

tain function called the "generator." Not only does this generator have a number of fine

probabilistic qualities, but it turns out to be a polynomial which considerably facilitates the further

analysis (for example, by using factorization methods).

Some results obtained by a direct probability approach can be derived (as it was kindly

suggested by Lajos Takcs to one of the authors) after some adjustments of more general results

from Dynkin [4] and Takcs [5]. However, for the sake of simplicity and for an illustration of the

methods used in this article, the authors preferred to use in these cases their original proofs. The

other results are new. A direct approach for finding a number of various characteristics of the first

passage problem, which is developed in the article, is believed to be of independent methodological

interest.

The results obtained in this paper are illustrated by a number of examples and, then, are

applied to a bulk queueing system with a service delay discipline.
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2. FORMULATION OF TIIE PROBLEM AND GENERAL RESULTS

All stochastic processes will be considered on a probability space {12,,P}. Let

Z- n >_ o Sn rn (where a is the Dirac point mass) be a compound random counting measure,

on (R %(R )) (where is the Sorel r-algebra)such that the counting measures, r = n >_ 0 ern +’ +
and S- OOn=oSn on (, %()), C_ R+, be delayed renewal processes, and such that the

compound random measure Z be obtained from 7" by position independent marking. We will

consider two different cases: 9 C_ NO and 9 R (equipped with the usual topology). Observe that,

due to its analytic properties and an importance in applications to stochastic models (for example,

embedded Markov chains in queueing theory), the discrete case is of main interest, and, consequent-

ly, it will be discussed in greater detail than its continuous counterpart.

Therefore, in this section we will study the "critical behavior" of a compound delayed

renewal process, Z, determined by a delayed renewal process v = {rn to + t1 + + tn ;n > 0} on

+, marked by a discrete-valued, delayed renewal process, S = {Sn = Xo + X1 + + Xn ;n >_ 0}
on 9. As mentioned above, we assume that the processes 7" and S are independent. [In the case of

their dependence we may arrive at more general results, but we have to indicate what kind of

dependence is to be employed. This. will not be discussed in this paper.] Let X0 = SO be distributed

as PXo = ie giei and let X be distributed as PX1 = i aiei (both arbitrary atomic probabi-

lity measures). The corresponding generating functions are denoted g(z)= E[zX] and a(z)
= E[zX], analytic inside the open unit ball B(0,1) and continuous on its boundary 0B(0,1), with

finite means y- E[X0] and - E[X]. Without loss of generality we set to -0. We also assume

that inter-renewal times tn -rn- rn_, are described in terms of the common Laplace-Stieltjes

transform V(O) E[e-Otn], with the finite mean = Z[tn] n = 1,2,

For a fixed integer r > 1 we will be interested in the behavior of the process S and some

related processes about the level r.

The following terminology is introduced and will be used throughout the paper.

2.1 Definitions.

(i) Denote v = inf{k >_ 0: Sk > r} and call it the index of lhe first excess (above level r- 1).

(ii) Call the random variable Sv the level of the first excess (above r- 1).

(iii) Call r/- S- r the magnitude of the first excess of S above level r- 1.

(iv) Denote P sup{k _> 0" Sk < r} v- 1. Call S the pre-firsl excess level.

(v) Denote the random variable rv as the first passage time when S exceeds level r- 1.
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(vi) Denote r r- Sy and call it the shortage before the first excess of S of level r.

We shall be interested primarily in the joint distributions of the first passage time and the

random variables listed in 2.1 (i-v) in terms of the following functionals:

7r(0,z) = E[e r’z’], gr(0,z) = E[e or,zSU], g(r)(0,z) = E[e rUzS’ ].
In addition, introduce the following auxiliary functions

Gr(0,z) E j > o E[e
orjz

$
j= z_ (s)],

a; (O,z) E _> xE[-zSz_(S_)],
-OrjzSjIu

rGr"t" (0,z) j > 0 E [e (Sj )]
-I +I

where Up = {0,1,...,p}, and IA is the indicator function of a set A. We call Gr(O,z the generator of
the first excess level. We shall also use the functionals, which we wish to call the projective

funclionals, of the following marginal processes:

7(z) = (0,z), (z) = (0,), a(z) = a(0,), a;" (z) = a7 (O,z), a+ () a+ (0,z).
A very important property of Gr(z and Gr+ (z) is that they are polynomials of (r- 1)th degree. As

mentioned in the introduction, this fact plays an important role in the analysis of stochastic proces-

ses, specifically, it enables one to factor some functionals in polynomials and in known analytic func-

tions.

2.2 Theorem. The joint functional %(0, z) of the first passage lime and the index of the first
excess can be determined from the following formula:

(.)
where

(2.2b)

7r(O,z)- 1--(1--zV(O))rz--l{ g(z)
(1 x)[i zV(O)a(x)]

Okkz-lira ! k>O.
z--*O ok

Proof. Using the routine calculus of indicator functions, we get

7r(0,z) j>_{E[e -Orj (Sj)]+E[e
-Or" (Sj)]}z3Zur- I(Sj- 1)Iu 1 JIu 1

zE[,-*v (S_:)]- :oZZ[,-= 1 + j 1
_ alu_ I(Sj)]

Let 7(z,0,z)- (1- z)p oZPTp+ l(0,z). The function 7(z,0,z)is obviously analytic in the region

(2.2) e = B(0,1) x {R(0) > 0} B(0,1)
and continuous on B(0,1) x {Re(O) 0} x 3(0,1). By the monotone convergence theorem,

zE[- (S_:)]7(,O,z) = (1 ) E: : E o v
(i-):oZ[ ’=o,Iv(S)]+l
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zJE[e-Orj zJE[e-rjj>l xSJ-]-j>o xSj]+l
m E j >_ 1 zJYJ()g(x)aj l(x) E j >_ o zJYJ()g(x)aj(x) + 1

()= 1 (1 zV(z)) i zV(O)a’(z)"
Formula (2.2a) follows after the application of the operator - to 7(z,0,z)(1- z)-

Formula (2.2a) yields the following pair of corollaries.

formula
(2.3a)

(2.4a)

2.3 Corollary. The mean value of the index of the first excess can be determined from the

r = E[] = _1{ g(x) }il z)[ a(x)]
2.4 Corollary. The Laplace.Stieltjes transform of the first passage time E[e-Oru] equals

E[e -Orv] =1-(1-V(O))- 1{ g(x) }(i, )[,v(o)()]
Specifically, the mean first passage time is

2.5 Proposition. The generator Gr(O,z of the first excess level can be determined from the

following formula:
(.)

Proof. Denote

g(z) }Cr(O,z - 1

(1 X)[i "’V(O)a(X’z)]

G(x,O,z) (1 x) E p >_oGp+ I(O,Z)xp"

The function G(x,O,z) is obviously analytic in the region E, defined in (2.2c), and continuous on

B(0,1) x {Re(0) >_ 0} x (0,1). By the monotone convergence theorem,

G(z,O,z)-(1 z)Ei>oE[zSSe- Ep>_o Iup(s)]

= (1-)E>o[si E 1= E E[e-OrJ(zz)SJ]
pSj

()= 1 v(o)()’ (,o, ) e e.

Formula (2.5a) follows from the last equation when we apply the operator - to the function

G(x,O,z)(1-x) -1.

The rationale behind the use of the term "generator of the first excess level" comes from the

following major theorems and properties, which follow from corollary 2.3 and proposition 2.5.

2.6 Corollary. The "projective" generator Gr(z of the first excess has the following proper-

ty:
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Gr(1 = ,. = E[u].

2.7 Proposition. Gr" (0, z) can be obtained from the following formula:

{ V(O)a(z)g(zz) } = a(z)V(O)G,.(z).G" (O,z) = rz- 1

(iL’:)["V(O)a(zz)]

Proof. Let

a- (, O,z) (1 z) E v >_ o a;+ l(O,z)Po
Then, by reasonings similar to those in the proof of theorem 2.2, we get

G- (x,O z)
V(O)a(z)g(xz)= ’i"-’ V(O)a(xz)’ (z, 0, z) e g.

The statement of the proposition follows.

2.8 Proposition. The functional ar+ (0, z) can be obtained from the following formula:

Gr+ (O z) = ,rz_ { a(z)g(zz) }(1 z)[1 V(O)a(zz)]

Proof. The proof of proposition 2.8 is an analog to that of proposition 2.7.

2.9 Theorem. The functional Or(O, z) of the first passage time and the first excess level can

be expressed in terms of the generator of the first excess as

r(O, z) = g(z) -[1 V(O)a(z)]ar(o z).

Proof. From

(S0) + Z[e or, zS I(S0)]E[e -Oru zSU] E[zSOZuc
r 1 Iur

we have that

, ,E[e Ory zS,] El= giz’ + Z j l E[e Orj zSjZu _I(SJ-1)Iu_I
Using the routine calculus for indicator Nnctions we get

zSJirz(2.9a) E[zS] E giz’ + E j > 1 E[e Orj
=,

> zS%r-1
r-1The third sum in (2.9a)is obviously Gr(O,z less E[zSIur_(So)]- i=0Yiz’, and the second

sum in (2.9a) is G (0, z). The statement of the theorem follows from propositions 2.5 and 2.7.

2.10 Corollary. The mean value of the first excess level can be determined from the following

formula:
(2.10a) (Jr E[Su] - +Proof. The validity of formula (2.10a) is due to corollary 2.6, theorem 2.9 and routine

calculus. F!
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2.11 Remark. Observe that the "total magnitude" Sv -SO of the first excess level has the

mean value {}r- and, due to (2.10a), equals r, i.e., the product of the mean "batch" size and the

mean value of the index. Thus, it seems as if we could proceed with Wald’s formula to get the same

result. However, it would be unjustified, since, in Sv, X1,...,Xv are not independent of v (as trivial

counterexamples show); consequently, a similar factorization of other functionals of Sv SO is not

possible. This tells us that Wald’s equation apparently holds true for weaker sufficient conditions.

2.12 Theorem. The functional }(r)(, z) of the pre.first passage time and the pre-first excess

level can be determined from the following .formula:
(2.12a) O(r)(O, z) = Gr(O z) Gr+ (0, z) + P{So >_ r}

}(i Z)[i- V(o)a(ZZ)] + P{S >- r},

where we define S~ = 0 and r~ = 0 on the set {SO > r}.

Proof. The functional 0(r)(0, z) can be decomposed as

(2 12b) E[e
Or~ S~ Or~ S~

IVru z "1 E[e " z u (S0)]+E[e
Or~ S~

u z u Iuc (So)].
-I r--I

Then, formula (2.12b) is reduced to

(2.12c) E[e -Or’ zSY]= E[e
-Or~

u z " Iur_ 1(S0)] + P{So >_ r}.

The expected value on the right-hand side of (2.12c) can be modified as follows.

E[e
or~ S~

U z U IUr_l(SO)]- _,j>_oE[e Or:i::iIur_l(Sj)IUcr_l(Sj+l)
zSJ Ivr- 1

(qj + 1/1"= i >_ o E >_ o

Thus,

E[e
O-~ S~

v z v iur I(So)] Gr(O Z) Gr"F (O, Z),
Finally, formula (2.12a) follows from propositions 2.5 and 2.8.

3. CONTINUOUS-VALUED PROCESSES

In this section we obtain joint functionals of the first passage time and the first excess level

above some positive real number s. We assume that Z = n >oSner is a compound random

measure obtained from r by position independent marking, where S- ]n >_ o esn is a counting

measure on (R +, N(R + )) such that S is a delayed renewal process. We denote

Vo(O = E[e- r], V(O)= E[e-tl], 7())- E[e- s], c(tg)= E[e- Xl], and

g,(o,o)
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We evaluate {}s(0,tg) in terms of the Laplace transform by using methods similar to those in

the previous section. And we let

s=O
e tSs(O,O)ds Re(t) > O.

.1 Theorem. The functional (0, O, t) can be determined from the following expression:

{ I-V(0)(0) }(0, O, t) = !
i Vo(O 7(0) 7( + O) 1- V(o)a’(t / Oi

Proof. By the monotone convergence theorem,

(0,0, t) = j>_lE[e-OrJ f oe-tSe-OSji
+ E[e Oru OSt, f

oo

s-’0
e., ts It,,oo)(So)ds].

This reduces to

(O,O,t)- j>lE[e-rje -Osj I sj
s=Sj_ 1

rOe s 0
e-tSds]e tSds]+E[e o -OSo So

__Ej>_1__
1 Vo(O)VJ(O),,l,(t q.. t)ozj 1( -t- l)[c(tg) c($ q- 1,9)] -{- } Vo(O)[’),(t9 "/’(t +

1 V(O)a(O) }_- 1 Vo(O) 7(e)- 7(t + e) V(O)(t + )

3.2 Examples.

(i) For O = 0 and for 7(0) = 1, we get from (a.la) the functional of the first excess level as

(3.2&) (0, 9, t) 1 Ce(tg) Ce(t q-/9)
=Z 1-(t+0)

Consider (3.2a) under the additional sumption that

(3.2b) a(O)- a
a+O’

(as the Laplace-Stieltjes transform of an exponential distribution with mean 1/c), which reduces

(3.2a) to

Then,

(o , t) #(a+) t+"

(o, ) E o[ es.] o, ,,

and, therefore, St, has the probability density function ae (= S)l[s, )(z

time,

(ii) For 0 = 0 and Vo(O = 1, we obtain the formula for the functional of the first passage

(o,o,t) = V(O)[1 a(t)]
t[1 a(t)V(0)]



A First Passage Problem and Its Applications 91

which under assumption (3.2b) reduces to

(0, 0, t) = all’ rV(0)] + t"

Then, the inverse of the Laplace transform in t gives the Laplace-Stieltjes transform of the first

passage time of level s:

s(O,O) = V(O) ezp{ -as[1 V(0)]}.

4. SPECIAL CASES AND APPLICATIONS

4.1 Remark. The special case of formula (2.2a) for 0 = 0 can be derived by using different

arguments. Denoting {S_1 > r} O, we obviously have, for all n = 0,1,..., that

Consequently

Thus,

(4.1a)

P{t,, : n} : P{Sn >_ r}- P{Sn_1 >_ r}.

7r(Z) = (1 z)hr(z),
hr(z) = E znp{Sn > r}12-0

Let h(z,z) = hk(z)zk. Then, after some transformations we obtain that
k=0

1 zg(z)

The formula,

7r(z) = l (l z)rx_ l{ (1’ ’x)[1 za(x)]

where

follows from (4.1a) and (4.1b) along with the use of the operator (2.2b).

In what follows we assume that g(z) z (i.e. So -i a.s.). We then label the corresponding

functionals of all discussed random variables with index "i."

4.2 Corollary. The joint functional 7!i)(O,z) of the first passage time and the index of the

first excess level satisfies the following formula:

(4.2a)
V(O)zrx_i_l( 1-a(x) }z) =

1,

Proof. From (2.2a) it directly follows that

i<r

i>r.
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(4.2b)

(4.2c)

7i)(O, z) = l (1- V(O)z)O])r=- l( 1 ) < r,

!i)(o, z) = 1, >_ r,

after noticing that

O, i>_r.

It is readily seen that formulas (4.2a) and (4.2b-4.2c) are equivalent.

From formulas (4.2b-4.2c), we immediately obtain the mean value of the first excess

index:

(4.3)
O, i>_r.

4.4 Corollary. The generating function i)(z) of the first excess level is determined by the

following formula:

(4.4a)
z -i-l{ a(z)-a(xz) }(ri)(z)
rx (l’L’ X)(i a(xz)) i<r

i>r.

(4.4b)

By using change of variables in (4.4a) we can transform it into an equivalent expression

Oi)(z)
rx- (’L-’x)[l"- a(X)’] < r

z i>_ r.

Proof of corollary 4.4. Formula (4.4a) follows from (2.3a) by direct computations. Alterna-

tively, formula (4.4a) or its equivalent (4.4b) can be derived from entirely different probability

arguments that can be of independent interest.

Our preliminary target is the generating function 3i)(z) of the magnitude r/--r/i) of the

first excess level with the above assumption that SO -i a.s. Since obviously r/!i)= r/!_) i, we can

operate with r/!) to determine !)(z). Then we shall return to the general case by restoring corres-

ponding indices. Introduce the following notation:

(4.4c) qns- P{Sn- s}, qno = O, s = . =0 q.s, 10 1,

(4.4d) b,(z) E zm- k, n,s 0,1
rn=l

an’t" rn

r-1From direct probability arguments it follows that P{r/!) k} s o lsar + k-s, and thus

(4.4e) 50)(z) E r br_s_l(zll
S 0

On the other hand, the series
o

n =obn(z)zn (with bn(z defined in (4.4d)) converges in the region
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c = { II II < II II t}; and in C w have that

a(z) a(z) oo 1(4"40 En bn(zlxn= and Es= Is:S=o - o

_
()

Applying (4.4e) and (4.4f) to 5(z,z)= 3)(z)xr, we obtain that in region C

(4.4g) (,) = a()- ()1

11 a(z)-a(x) } which implies thatTherefore, ll?)(z) = rz- l. (z LZ)[1" a(z)]

which by definition of S, yields (4.4a).

[Observe that since both the left- and right-hand sides of (4.4g) are analytic functions in the

region B(0,1)x B(0,1) and since they coincide in the region C, by the uniqueness theorem for analy-

tic functions, these two functions also coincide in the whole region B(0,1) x B(0,1).] 13

Although the following result could follow from (2.12a), we shall use another direct method.

4.5 Corollary. The generating funclion E[z(r] = C(ri)(z) of lhe shortage before lhe first excess

is determined from the following formula:

{1-a(zz) }(4.5a) c!i)(z) z;-i- 1

(1 XZ)[i a(xz)] O,...,r 1.

Proof. For convenience denote o’i) -or = r-Sy. Because o’i) -or(or-i)we can operate

with C)(z) and then restore the original indices.

By direct probability arguments and, using notation (4.4c), we have

C(r’ k) = p{(rr(0) = k} = E j > o E n >_ 0 qj, r-kak + n = lr-kfk
where fk n > 0 ak + n" Thus,

Co(x,z) = Z r > 1 C0)(z)xr ] n > 1 fn(xz)n E m > llmm"
Now, since obviously

1 -a(u)
m >_ l froum U’ i""’ U"’

and by (4.4f), we have that

Therefore,

and formula (4.5a) follows.

Co(,z) = zz[1 --a(zz)]
(1-zz)[1-a(x)]"

4.6 Corollary. The generator of the first excess level can be determined from the following

formula:
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zx i<r
(4.6a) Gir(z)-E[zy]= )(1 a(xz))

O, i>_r.

4.7 Corollary. The 9enerating function !i)(z) of the level of the first ezcess can be expressed

in terms of the enerator Gir(z) of the first excess level by the followin relation:

(4.7a) O!i)(z) = zi- (1 a(z))Gir(z), i- 0,1,

4.8 Examples.

(i) Consider a trivial case when ai(z -a(z)- z. From (4.4g) we have that 3(x,z)-
which yields that 5!)(z)- 1, and thus Oi)(z)- zr, as it should be.

(it) Let ai(z -a(z)- z2. Then, from (4.4g) we have 5(x,z)= z(Z+ x) which yields that21--c

!O)(z) Zr(md2), and thus O!i)(z)= zr + [(r-i)(mod2)] as it should be.

(iii) Let ai(z)=a(z)-pz+qz2 (p>0, p+q=l). Then, from (4.4g) it follows that

zip + q(z + x)]
which after elementary transformations yields(z,z) (i_ x)[l + xq]’

oi)(z = zr + zr 1 ,..z. [z-r_ 1], where z1
_1

l_Zl q.

(iv) Suppose that batches X1,X2,... are distributed geometrically. In other words, let

ai(z a(z)= pz(1-qz)-1. Then, from (4.4g) we have 9(x,z) ’(i" ’q)(i ’) and thus

(4.8a) ]0)(Z) p(1 qZ) 1,

which yields 0i)(z) = zrp(1-qz) -1.

4.9 Remark. Observe that the random variable r/!i) -Su -r is memoryless in this special

case. This can be rigorously formulated as follows.

Let S- -n >_OESn be a delayed renewal process on qt C_ No, such that So = a.s. and the

magnitudes S1 -So, S2- $1,... are geometrically distributed with the common generating function
pz(1- qz)-1. Then the distribution of the magnitude yi), of the first excess of level, is independent

of and r, and it is also distributed geometrically with the generating function given by formula

4.10 Example. We shall apply the results of section 2 to a special case of one stochastic

queueing model (studied in Abolnikov and Dshalalow [1]). Consider a single-server queueing system

with an infinite waiting room and a compound Poisson input (described by the compound counting

measure Z = on=0Snern and a queue length dependent service delay discipline. According to

this discipline, the server immediately starts the next service act if the queue length is at least r; in
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this case all available units, or R (capacity of the server) of them, whichever is less, are taken for

service. Otherwise, the server delays the service act until the number of units in the queue reaches or

exceeds level r.

Let {ft, ff,(PX)x,, Q(t); t_> 0} ---, @ = {0,1,...} be a stochastic process describing the

number of units at time t in this queueing system; and let
n >_ O eTn (T0--0) be a counting

measure on (R+, %(IR+ )) which gives the sequence of successive completions of service; and let

Qn Q(Tn + 0). If at time Tn + 0 the queue length, Qn, is at least r (a positive integer less than or

equal to R), the server takes a batch of units of size R (a positive integer denoting the capacity of

the server) from the queue and then serves it during a random length of time an + 1" Otherwise, the

server idles until the queue length for the first time reaches or exceeds the level r.

Let X1, X2,... be the sizes of successive groups of units arriving at the system after TO and

let Sk = Xo + X + + Xk, where X0 Q0" Then, given Q0, S = {Sk; k E No} is an integer-valued

delayed renewal process. Recall that u- u0 -inf{k > O" Sk >_ r} denotes the random index when

is the firstthe process S first reaches or exceeds level r and the queue length is Q0" Thus,

passage time of the queueing process over level r by the queueing process after time T0.

Define
Xo = Q,, <

On(Qn)
Tn, Xo = Qn Sn >- r.

Then, at the instant On of the first passage time, the server is supposed to take a batch of the size

min{Q(On),R} for service. In other words, if Qn >-r, Tn +-Tn coincides with length of service

time rn + of the n + 1st batch. If Qn < r the interval (Tn, Tn + 1] contains the waiting time for

X1 +... + Xu units to arrive and the actual service time an + . In both cases we assume that

an + has a probability distribution function B with a finite mean b.

Finally, we can abbreviate the definition of the servicing process tl’rough the following

relation for {Qn}"

(4.10a) = ( +Z(o’n+l),

(Q.- R) + + +

Qn<r

From relation (4.10a)it follows that the process {f,ff,(PX)xe, Q(t);t >_ 0} has at Tn,n >_ 1,

the locally strong Markov property (see Dshalalow [3]). Thus {f, if, (PZ)xe, Q, ;n E No} is a

homogeneous Markov chain with transition probability matrix denoted by A- (aij).

In [1] it was shown that the generating function Ai(z of the ith row of the matrix A can be

determined from the following formulas:
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(4.9b)

where

K(z) = fl(A-,a(z)),where fl(0), Re(O)> O, forms the Laplace-Stieltjes transform of the probability

distribution function B, and !i) satisfies formula (4.4a) or (4.45).

Observe that since i)(z) zi, for i> r, formula (4.9b) reduces to

= z(i_ n)+, i> ,-.

It can be shown that A is reduced to a form of the homogeneous AR-matrix, which is a

special case of a Am, n-matrix introduced and studied in [2]. There the stochastic matrix A- (aij;
i,j E = {0,1,...}) is called a homogeneous AR-malrix if it is of the form A = (aij" i,jE "
aij = kj-i + r > R ,j > i- R aij = 0 > R, j < i- R), where ki is an atomic probabili-j=0

ty measure.

In [2] it was shown that the embedded queueing process Qn is ergodic if and only if

cAb < R. Under this condition, the generating function P(z) of the invariant probability measure P

of the operator A is determined by the following formula:

 121 , ,}
P( z)

zR K(z)
where //r,R) satisfies (4.9b). In addition, it was shown in [1] that the probabilities Po, "",PR form

the unique solution of the following system of//linear equations:
R dk I.E i= OPi-zk(g(z)__r’R)(z)- zi} O, k- 0,..., ks 1, s 1,...,S.

z=z
8

In the above, the values of zs, for s 1,...,S, are R roots of the function z zR K(z) in the region

(0,1)\{1} with their multiplicities k such that s-s 1 ks R- 1. Also, the (R + 1)th equation is

as follows

E R
o Pi ,i)_i+u i1"’, = R--aAb.
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