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ABSTlCT

This study s concerned wth boh hydrodynamic nd
hydromgnetc unsteady slow flows of wo mmisdble visco-elastc fluids
of lvln-Eficksen ype between two porous prllel nonconducting plates
nclned certain ngle to the horizontal. The exact solutions for the
velocity fields, skin frictions, and the interface velocity distributions are
found for both fluid models. Numerical results are presented in graphs.
A comparison is made between the hydrodynamic and hydromagnetic
velocity profiles. It is shown that the velocity is diminished due to the
presence of a transverse magnetic field.
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1. INTRODUCTION

The study of fluid flows in a porous medium plays an important role in the recovery of

crude oil from the pores of reservoir rocks by displacement with immiscible water and forming

polymetric adhesive joints between the solids. Various hydrodynamic and hydromagnetic flows

in different fluid configurations have received considerable attention in recent years by several

researchers including Kapur [1], Kaput and Sukhla [2], Bhattacharya [3], Gupta and Goyal [4],
Gupta and Singh [5-6], and Sengupta and his associates [7-9]. In spite of this progress, some

problems remained unsolved. Two such problems are considered in this paper.
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This study is concerned wih both hydrodynamic and hydromagnetic unsteady slow

flows of two immiscible visco-elastic fluids of Rivlin-Ericksen type between two porous parallel

nonconducting plates inclined at a certain angle to the horizontal. The exact solutions for the

velocity fields, skin frictions, and the interface velocity distributions are found for both fluid

models. Numerical results are presented in graphs. The hydrodynamic and hydromagnetic

velocity profiles are compared. It is shown that velocity is diminished in the latter case due to

the presence of a transverse magnetic field.

2. FORMULATION OF TIlE PROBLEM

We consider the unsteady flow of two incompressible, immiscible Rivlin-Ericksen fluids,

each occupying a certain height between two porous parallel stationary plates inclined at an

angle a to the horizontal. We set a Cartesian coordinate system with the z-axis along the

interface of the two fluids and parallel to the direction of the flow while the z-axis is chosen
0upward. Assuming that uj = uj(z, z, t), vj = O, wj = 0 and = 0 where j 1, 2, the equation

Ouj
of continuity = 0 leads to uj = uj(z, t).

The unsteady equation of motion for the incompressible visco-elastic fluids in a porous

medium is

duj 1 i)p d2uj aj

where #j, v,j, j, kj and r/j are densities, coefficients of kinematic viscosigy, kinematic visco-

elasticity coefficients, permeabilities, and coefficients of viscosity of ghe fluids respectively, j = 1

refers o he first fluid (0 _< z <_ L), and j = 2 refers to he second fluid (- L _< z <_ 0).

The required boundary conditions are

u1 -0 at z = L,
for the first fluid (2.lab)

u1 = u0 at z 0 J
u2 = 0 at z L,

for the second fluid. (2.2ab)
u2 = uo at z = 0 J

3. SOLUTIONS OF TIIE llYDRODYNAMIC PROBLEM

With the usual initial conditions, it is convenient to introduce the Laplace transform

with respect to time oo

j = / e-Stujdt, Re(s)> 0 (3.1)
o
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Application of this transform reduces equation (2.1) to the form

d2uj Rj( pj)z --j u + = o,
aj 10pwhere Rj=s+---kj, Nj=j+st3j and -pj= --j-b-+gsinO with j= 1,2.

The solution of the transformed velocity 1 for the first fluid is

Uo Pl )sinh(L- z)v/Ri/N1 Pll(z, s) = -- + ] SRsnhLv/Ri.]N.,1. ..
The inverse Laplace transform gives the velocity in 0 _< z < L,

2pL2kUlr Z (-In0o= )n {sin-[(Ln(L2 --+ z)2r2k1)4- sir"} Vl(r2n2kl q- L2)
h(,::Zx + z)

t

The transformed velocity 32 in -L _< z _< 0 is

oo n( l )nsin(L + z\ zzd-b 27rUoL2(k2 2)n=lZ (L2 q_ r2.22)(L2 -t- 7rzr’:k2) "(

2P2L2k2 n{siny(L + z)- sin}.
.=

(- ) (+) -(r.+)
t

(3.3)

(3.4)

(3.6)

In the limit as too, the exponential terms in (3.4) and (3.6) tend to zero and hence the

steady state solutions are attained and are given by the first two terms in (3.4) for ul(z,t), and

by the first two terms in (3.6) for u2(z, t).

Interface Velocity: The tangential stress is continuous at the interface of the liquids.

Thus we get

Oul Ou21rh--- = r/:- (3.7)
z=O z=O
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The interface velocity can be written as

On putting qj = 2V%( in the steady-state solutions, we obtain

u2 sinh(L+z)/ (sinhz/22 )u-’ = (1 2q2k2) ’sinhL/2 + 2q2k2 SinhL] + 1

(3.9)

(3.10)

4. SOLUTIONS OF THE IIYDRODYNAMIC PROBLEM

We consider the visco-elastic fluids electrically conducting in the presence of a constant

transverse magnetic field B0 along the z-axis. Thus, the equation of motion is

Ouj 10p 02uj vjuj <rjB

where o’j is the electrical conductivity of the fluids. This equation is to be solved by the same

initial and boundary conditions as for the hydrodynamic problem. The Laplace transformed

equation of (4.2) is

where

az N--y +sM = o,

v:i <rjB2o
Mj = s +-j+ ..pj and j = 1,2.

The solution of (4.3) with the transformed boundary condition is

(4.4)

) sinh(L- z)v/Mi/NI Pl sinhzv/Mi/Ni Pll(Z, s)= + S}a ’s’inhv/ml/N1
+ SMi SinhLv/M’;/i SM;

The inverse transform gives

uo +

(4.5)
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c
hn

nL2(klPlPl 1Pl/21 (rlBlkl)Sin(L Z)---I" 271"0n=lE(- I]
(L2 +r127rl)(r22.lPl...+.L2.pll..+.o.1Boi2],)

gl(n2rr2kl + L2)pl + a’lB20L2kl )ex t
klPl(L2 + n2’21)

(4.6)

Similarly, we find

.h( +)v//i2(z, s) = - + S-M2) ::SinhL"
The inverse Laplace transform gives

p2 f sinhzv/M2/N2 )+ (4.7)

n(k2u2p2 u2p2 r2B2k2)(sin(L + z)--). 1 )n
+ 2ruLEn=,(L2 + ’n;22f2)(’N22"r"’k2’p"V2 ;’2P;v + L2’,;2"+"a’B2L22 2i"

v(n2r2k + L2)p2 + o’2B2oL2k2 )ex t
(L2 + n2rr2fl2)k2P2

2p2L2k2
(- 1)n

p2(sin-(L + z)- sin-q-)
,,__,

(L: + n2;’2f3:)’k:p: (4.8)

In the limit t, the transient terms involved in (4.6) and (4.8) decay and the

steady state solutions are attained and given by the first two terms in each of the results (4.6)
and (4.8). These steady state solutions can be written

( PlsihL-z’ Pl (sinhz )u,(z,t)= Uo+v,r) sinhL +lTi ksinhL 1 (4.9)
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and

where

( sinh(L +z)x2 psinhz

1Ti = --jj
and H.. are the Hartmann numbers.

2
’JBo2 1 Hj

(4.11)+

Finally, the interface velocity is

form

In terms of the notation qj = the steady state solution can be written in the

and

u" = 1-’x ] sin’hL’ Tx\sinhL- 1 (4.13)

u2 ( 2q2sinh(L + z)x2 2q2 sinhzv )u" = 1- -2 ] sinhLy2 + T2sinhL2 + 1 (4.14)

5. DISCUSSIONS AND CONCLUSIONS

It follows from the numerical calculation that, for a conducting fluid in the presence of a

transverse magnetic field, the velocity on the interface is at its maximum and then gradually

decreases with continuous increase of distance in the upward or downward direction according to

whether the upper or lower fluid is involved. For the upper fluid, the velocity attains the

minimum value zero at the upper boundary plate, while for the lower fluid, the velocity reaches

the minimum value zero at the lower boundary plate. In both cases, the velocity profile is very

smooth and continuous. For nonconducting fluids (or in the absence of a magnetic fields), the

maximum velocity does not occur at the interface; rather, it is attained for the upper fluid at a

point a bit higher than the interface, while for the lower fluid it is attained at a point a bit

lower than the interface. This shows a striking difference in the flow pattern between a

conducting and a nonconducting fluid mode. However, the nature of the variation of the flow

patterns of the conducting and nonconducting fluids remains very similar.

In both fluid models that Ul/Uo and u2/uo increase with the increase in ql and q2 where

ql and q2 represents the pressure gradients. On the other hand, these velocity ratios increase



On the Unsteady Flow o]’ Two V’tsco-Elastic Fhdds 137

with the increase in permeabilities k1 and k2 of the fluids. It is important to observe that when
u1 u1rlB/PlU = o’2B/P2U2 = 1, then n’ = 0.68 and when O’lB2o/PlUl = o’2B/P2U2 = 0, = 0.785

for the same value of z/L. This means that the velocity decreases by 13% in the presence of a

transverse magnetic field. Thus the decrease of the velocity for the hydromagnetic case is worth

noting.

The velocity profiles are drawn in Figure 1 and Figure 2 for the hydrodynamic and

hydromagnetic fluid models.
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