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ABSTRACT

The author studies a generalized sngle-server queueng system wth
bulk arrivals and batch service, where the server takes vacations each time the
queue level falls below r (>_ I) n accordance wth the multiple vacation
dscpIine. The nput to the system is assumed to be a compound Poisson
process modulated by the system and the service s assumed to be state depen-
dent. One of the essential part n the analyss of the system s the employment
of new techniques related to the first excess level processes. A prefiminary
analyss of such processes and recent results of the author on modulated proces-
ses enabled the author to obtain all major characteristics for the queueng
process expficitly. Various examples and applications are dscussed.
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I. INTRODUCTION

The class of queueing systems, where a server (or servers) periodically goes on "vacation"

was offered in many works published in seventies because of its connection with congestion pheno-

mena in local area networks. The interest in such systems has been further enhanced in the eighties

and the beginning of the nineties due its applicability in communications, computer and production

systems. Such models also apply to manufacturing processes that exhibit uninterruptible mainte-

nance tasks, for instance, tool changes or alterations of a flexible manufacturing system. Vacation

models have been studied in many queueing systems of types M/G/1, GI/G/1 and closed systems

(see Dshalalow IS]).
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Since the first publications on vacation models over twenty years ago the number of works

on this topic has increased tremendously and as a result several survey papers appeared (see for ins-

tance Doshi [10]) classifying various systems and their modifications. One of the most frequently

studied types of vacation models are those with so-called exhaustive service and general nonexhaus-

live service. The exhaustive service refers to the systems, where the server takes a vacation only

when the queue of primary customers is empty. General nonexhaustive service refers to many other

systems, where the server may go on vacation even if there are some customers waiting for service.

For example, if the server takes batches of customers of some minimum size (say r), he prefers not

to wait until the queue accumulates so many and it goes on vacation. Upon his return the server

checks if the queue length is of an appropriate size, and if not, leaves the system again, and so on.

Such systems are also classified as having multiple vacations. Clearly, this particular nonexhaustive

system generalizes a class of exhaustive systems with r = 1. But there are also some other modifi-

cations of general nonexhaustive models, such as those with Bernoulli schedules (see Pamaswamy

and Servi [16]). It is assumed in such a system that after each return to the system after a vacation

the server may interrupt his vacation cycle regardless of how many customers are in the system, in

the general case, with a probability dependent on the number of vacations taken (see Kella [13]).
Many papers in the literature on queueing theory dealt with such models under different assump-

tions to the input stream, service discipline and the waiting room capacity. Queueing processes,

busy period processes, and other processes were analyzed in those papers. The methods applied in-

eluded decomposition (see Footman and Cooper [11] and Shanthikumar [17]) and supplementary

variables techniques (see Takagi [19]).

In the present paper the author considers a class of queueing systems of type MX/Gr/1
with general nonexhaustive service and multiple vacations. It is assumed that if after completion of

a service there are at least r customers in the waiting room the server takes a batch of customers of

size r and begin their service. Otherwise, the server leaves the system for a vacation and upon its

return the server checks if during its absence more customers arrived at the system and there are

enough customers to pack the batch. If this is still not the case the server again leaves the system

and so on. It is assumed that the input stream is compound Poisson. Under these assumptions, the

model studied in this article generalizes a class of multiple vacations systems treated by various

authors in the recent past (Abolnikov, Dshalalow and Dukhovny [3], Harris and Marchal [12], Lee

and Srinivasan [14], Minch [15] and Shanthikumar [17]).

One of the central problems in the analysis of such systems is the behavior the queueing



On a Filet Passage Ptvblem in General Queueing Systems with Multiple Vacations 179

process at the time the server begins processing groups of customers. Excluding trivial cases, it is

clear that at those instants of time, the queueing process is more likely to exceed level r (first

excess level) than just to reach it, and thus the results on "level crossing analysis" of processes

[4,6,18] are inappropriate. Fortunately, as the author will show it, the paper [1] by Abolnikov and

Dshalalow contains relevant results for the analysis of excess level processes needed for multiple va-

cations systems.

The author will also show that the analysis is well suited for generalized versions with mo-

dulated input and state dependent service times. In the present article queuing processes with con-

tinuous and discrete time parameters are treated. The author establishes necessary and sufficient

conditions for the ergodicity of the processes, and by the use of the semi-regenerative analysis, the

author derives a simple and explicit relation between the stationary distributions for the both pro-

cesses. The embedded Markov process is analyzed by methods developed by Abolnikov and

Dukhovny [2] and Abolnikov, Dshalalow and Dukhovny [3]. The invariant probability measure of

the transition probability matrix of the embedded process is obtained in terms of the probability

generating function in an explicit form. Various examples and applications are discussed.

2. MODULATED INPUT PR.OCESS

2:1 Definition (Dshalalow [9]). Let E be a locally compact and (r-compact space with a

countable base. Let be the space of all Padon measures on the Borel (r-algebra (E), and let

be the Borel (r-algebra in alg generated by the vague topology ff. Denote by (K the space of all

continuous functions on E with compact support and denote by the Baire (r-algebra in atg

generated by all maps/ J" fdp, f E g"

(i) Let {f2,r,P,(t), t E E} be a stochastic process on E and let o denote the -sec-

tion of . Then for F C_ I, and B @ (E) we define }/ = B Cl (F) and call it the holding time

of in F on set B. For each fixed w, )/. is a measurable subset of E which can be measured by

any Pdon measure on (E). In general, OF is a mapping from f2 into (E) which can be made a

random sei with respect to the (r-algebra {A C_ %(E): /7 I(A) }.

(ii) Consider for each j a marked random measure Zj = Sijer.. (where e: denotes the
,3

Dirac point mass) with mark space {0,1,...} and introduce

= = o

The random measure Zb:(f,ff) (.Ag,iff/) is called a marked random measure modulated by the
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process . The marked random measure Z can be more vividly represented in the form

Z= Sn n

(iii) Consider he following special case. Let Zj be a compound random measure (with

mark space { 0,1,... })

(2.1b) Zj = E Si=ij’
obtained from the underlying counting measure Ni = E irij by independene marking, i.e. for

each {j}, {Xii = Sii- Si_l,j;i = 1,2,...} is a sequence of independen and identically distributed

random variables with common mean denoted aj. Assume that N is a Poisson counting measure

with mean measure #5 = AiL art,, where denotes the Lebesgue measure and A5 is a positive con-

san. Then, we call such a marked random measure modulated by a compound Poisson random

measure modulated by the process

Assume that E=IR+with its usual topology. Let {f2,,(PZ)z,,Q(t); tE}

= {0,1,...} be a stochastic process describing the evolution of the number of units in a single-

server queueing system, and le {Tn;n No, TO = 0} be the sequence of successive completions of

service and Qn = Q(Tn + 0).

2.2 Notation. Denote C = n 0T and (t) = Q(Tc([o,t]) + 0), E. Then the input

is a compound Poisson process modulated by according to definition 2.1 (iii), from which it fol-

lows that customers arrive at random instants of time 7"n, n = 1,2,..., (with arrival intensity

A(t)), that form a point process modulated by with Xn(t as the ith batch size of the input

flow. Thus, in our case X = {Xn(t)} is an integer-valued doubly stochastic sequence describing the

sizes of groups of entering units. We assume that, given (t), all terms of X are independent and
X

identically distributed. Denote a(t)(z E[z n(t)], n = 1,2,..., the generating function of the nth

component of the process X.

3. CONTROL OF THE SERVICING PROCESS

At time Tn + 0 the server can carry a group of units of size r and it takes that many for

service if available. Otherwise (that is if Qn < r), the server leaves for vacation for a random period

of time with probability distribution function VQn {Vo, V,...,Vr_.}, after which the server

returns to the system and leaves again if the total number of customers in the system is still less

than r. The server will immediately start processing a group of customers if upon its return the

queue has accumulated at least r customers. [Since the server leaves the system for a random time
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and it does not interrupt its vacation even if the queue length has accumulated the desired level,

and because customers arrive in batches, it is more likely in general that the queue level by that

time exceeds the level r rather than it will equal r.] The service time of that group of customers is

supposed to last a random time (r
n + distributed BQn i8 = {B0,B,...}, where !B is a given set of

arbitrary probability distribution functions with finite means {b0,b,... }. By pi or E we denote the

conditional expectation induced by the initial measure Q. We denote

B(O) = Ei[e- Oal], (0)
_

O.

The capacity of the waiting room is assumed to be unlimited.

We need more details and formalism of how exactly vacations and service are functioning.

Suppose that the server leaves the system at time Tn and returns at time Tn + q[’ reaching the

system with Q(Tn + q(’) < r. Then the server leaves the system again and it is coming back and

forth until upon its arrival at Tn + "i’ + + f the queue length for the first time reaches or ex-

ceeds level r, where is an integer-valued random variable counting the total number of server va-

cations prior to the service begin. [Of course, (u) = also depends upon n.] Let Yn,Yn2,... be the

increments of the arrival process over time intervals (Tn Tn + ], (Tn Tn + "(’], Then,

nk = Yno + Ynl "t" + Ynk where Yno = Qn
is a modulated integer-valued delayed renewal process with the increments Ynl,Yn2,..., distributed

in accordance with a common generating function qQn(Z) which can easily be computed as

(3.1) qQn(Z) = Vn(Qn- QnaQn(Z)),
where V(a) denotes the Laplace-Stieltjes transform the distribution function Vi. Thus

v(n) = inf{k: Snk >_ r) and the instant 5rn = Tn + q[’ + + q[’ is the first passage time (after

Tn) of the queueing process to reach or to exceed level r. In a situation when Qn >-r, we may

denote ff’n to be Tn to extend the notion of the first passage time for all cases.

Finally, figuring that Z((rn) gives the total number of customers that arrive during the

period of nth service, an, we obtain the following relation for process {Qn}:

f + + 1), Q. <
(3.2) +

Qn r+ Z((irn + 1)’ Qn -> r.

4. FIRST EXCESS LEVEL PROCESSES

Throughout sections 4-8, we will use some basic results on a first passage problem stated

and developed in Abolnikov and Dshalalow [2].
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Let {f2,,P} be a probability space. Consider on this probability space a delayed renewal

process {Sn = o +1 +’’’ + n n >- O} valued in a set __N. Let o =So = a.s. (for some

E hio) and let 1 be distributed in accordance with the generating function q(z) = E[zl], analy-

tic inside the open unit ball B(0,1) centered at the origin and continuous on its boundary 0B(0,1),
and with finite mean q = E[I].

For a fixed integer s >_ 1 we will be interested in the behavior of the process {Sn} and

some related processes about level s.

The following terminology from [2] will be used throughout the paper.

4.1 Definitions.

(i) Denote t/= inf{k >_. O: Sk >_ r} and call it the in&a: of the the first excess of level r.

(ii) The random variable S, is called the level of the first excess of r.

(iii) The random variable ff is known as the first passage time of {Sk} of level r.

(4.1a) 7i)(t,z) = E[e OTz], i)(t,z) = E[e OTzs’], Gis(e,z)

joE[e-Jzsj o Sj] e(O) = E[e off]=Ius- +0"

where Up = {0,1,...,p} and IA is the indicator function of set A. We call G(O,z) the generator of
the first excess level. We will also use the following functionals of marginal processes:

(4.1b) 7i)(z)- 7i)(0,z),
=
=

It is readily seen that Gis(z is a polynomial of (r- 1)th degree.

We formulate the main theorems from Abolnikov and Dshalalow [2] and give formul for

the joint distributions of the first psage time and the random variables listed in 4.1 (i-ill). To

adopt these results for the processes to be treated in the next sections we additionally sume that

the parameters ( Ai, ai(z), ai and qi(z)) of the point, compound and vacation processes intr

duced sections 2 and 3 may depend on index (in agreement with the modulation). Consequently,

these parameters will be indexed by i. The random variable ff will then become the first term 1
of the point process {n} of first psage times.

4.2 Threm. The functional 7i)(fl, z) (of the firsf passage fime 1 and of fhe index 1 of

Let
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the first excess level) satisfies the following formula:

(4.2a)

where

(4.2b)

I,
(i z)(1 zei(a)qi(z)) j’

I,

From formula (4.2a) we immediately obtain that the conditional mean value of the first

excess index equals

(4.3)
O, i>_r.

(4.4)

Specifically, the conditional mean value of the first passage time is

Ei[I] = //
4.5 Theorem. The generator Gir(O,z) of he first ezcess level can be determined from the

following formula:

(4.5a) Gir(O, z) =
z- (i ")[1 " ei(o)qi(Z)]

0,

The use of the term "generator of the first excess level" is due to the following theorem.

4.6 Theorem. The functional i)(O, z) (of the first passage time and of the first excess level)
can be determined from the formula
(4.6a) !i)(O, z) = zi- I1 ei(O)qi(z)]Gir(O, z).

4.7 Remark. To obtain the functionals of the marginal processes defined in (4.1b-4.1d) we

set ei(O) = 1 in formulas (4.2a), (4.5a) and (4.6a).

5. SEMI-REGENETIVE ANALYSIS

In this section we will analyze the queueing process {Q(t)}. It will be shown that this pro-

cess is semi-regenerative relative to the point process {Tn} and we will obtain its ergodicity condi-

tions.



184 JEWGENI H. DSHALALOW

We need the following notion introduced in Dshalalow [7].

5.1 Definition. Let T be a stopping time for a stochastic process {,, (P)ze, Q(t); > 0}
---. (4, !B()). {Q(t)} is said to have the locally strong Markov property at T if for each bounded

random variable : gt r and for each Baire function f" r, r = 1,2,..., it holds true that

EX[f o (o 0T iT] = EZT[f o (] PX-a.s. on {T < 0},
where Ou is the shift operator.

From the nature of the input process and relation (3.2) it follows that {f,hr, (PZ)x, Q(t);

t >_ 0} ---, = {0,1,...} possesses a locally strong Markov properly at Tn, where Tn is a stopping

time relative to the past of the process r(Q(y);y < t), for each n = 1,2, Thus the embedded

process Qn is a homogeneous Markov chain with the transition probability matrix denoted A = (aij;
i,j E t). In the next section we will show that Qn is irreducible and aperiodic, and that under a

certain (necessary and sufficient) condition, it is recurrent-positive. We assume that this condition is

met and denote by P the invariant probability measure of the operator A. Consequently, the two-

dimensional process {Qn,Tn} is a Markov renewal process. Therefore, we conclude that the process

{,zh,(PX)xe (t); t>_ 0) --+ 4, defined in notation 2.2, is the minimal semi-Markov process

associated with Markov renewal process {Qn, Tn} and therefore, following definition 2.1, the input

process {12, , (PZ)ze Z([O,t]);t >_ 0} is a compound Poisson process modulated by the semi-

Markov process {(t)}. Then the value Zi = Zi[T1] is obviously the mean sojourn time of in state

{i}. Denote fl= (flz;z E )T. In one of the next sections we show that the value Pfl (scalar
product of the invariant probability measure and the vector of the mean sojourn times of the process

) which is called the mean inter-renewal time of the Markov renewal process, is finite.

5.2 Notation. Let

= p {ze([0, Tx >
Then, given that (0)=z and because Z is not modulated by a new value

input process takes on value Zz (introduced in definition 2.1 (it)). Therefore, we have

of , the

= t]) =

Let {fl,, (PZ)xe Q(t); t >_ 0} (, !8()) be a semi-regenerative process relative to the

sequence {Tn} of stopping times. Introduce the probability

gik(t = Pi{Q(t) = k, T1 > t}, i,k 4.

We will call the functional matrix K(t)--(Kik(t); i,ke) the semi-regenerative kernel. The follow-

ing proposition holds true. [We set the value of any sum is zero whenever the lower index is greater
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than the upper index.]

5.3 Proposition. The semi-regenerative kernel satisfies the following equations:

(5.3a) Kjk(t =

where 6j, t is as defined in (5.2a) or (5.2b) and j denotes the joint probability density function of
the first excess level Sv and the first passage time fit"

Proof. The above assertion follows from direct probability arguments.

Now we are ready to apply the Main Convergence Theorem.

5.4 Theorem. Let {f2,, (PX)x,, Q(t); t>_ 0} --(, ()) be a semi-regenerative process

relative to { Tn} and let K(t) be the semi-regenerative kernel. Suppose that the associated Markov re-

newal process is ergodic, the embedded Markov chain Qn is ergodic (and its invariant probability

measure is P) and that K(t) is integrable over +. Then the stationary distribution x = (rz; x E )

of Q(t) exists and it can be determined in terms of its generating function 7r(z) as follows. Denote H

= (hjk; j, k E )= fo K(t)dt, hi(z) the generating function ofjth row of matrix H and h(z)= (hi"
j )Z. Then,

(5.4a) a’(z) = Ph(z)

where P is the stationary probability vector of Qn and fl is the vector of mean sojourn times of the

semi-Markov process .
One of the main results of this section follows.

(5.6b)

(5.6c)

5.5 Theorem. Given an equilibrium condition for the embedded process Qn, the stationary

distribution r = (rz;x ) of the queueing process Q(t) exists; it is independent of any initial

distribution and is expressed in terms of the generating function r(z) of r as:

= E o

hi(z) = Kj(z) Gjr(z + j(z), 0 j < r,

hi(z) = zAj(z), r j, and

(5.6d) Aj(z) = A(1 aj(Z))’
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where Gjr(z is the generator of the first excess level.

Proof. By the reasoning similar to those in Dshalalow [7] the Markov renewal process

(Qn,Tn) is ergodic. By theorem 5.4 the semi-regenerative process Q(t) has a unique stationary

distribution r. From proposition 5.3 we can see that the semi-regenerative kernel K(t) is integrable

over R+. Following 5.4, we evaluate the integrated semi-regenerative kernel H and then vector h(z).
First we find that

(5.6e) ]o zp foo 6j, p j(u)[1 Bj(u)] du = zJAj(z)
Then it follows that

-j-{ 1 } Aj(z)r(z),Oj<r,(5.60 hi(z) =x (1 x)(1 qj(xz)) + r)

where G)(z) denotes the tail of the generating function G_ir(z summing its terms from r to

is ey to show that G.?(z) and Gjr(z coincide. Then it appears thatHowever, by

= j

Then the statement of the theorem follows.

6. INVAPdANT PROBABILITY MEASURE OF OPEILTOI A

Let Ai(z denotes the generating function of ith row of matrix A. Since Ai(z = E i[zQ1] we

obtain from (3.2) that

(6.1) Ai(z = gi(z)z-r(j!i)(z), e , where

(6.1a) Ki(z = B(A Aiai(z)),
B(O), Re(O) >_ O, is the Laplace-Stieltjes transform of the probability distribution function Bi, and

!i) satisfies formulas (4.5a) and (4.6a), taking into account remark 4.7.

For analytical convenience and without considerable loss of generality we can drop the modu-

lation of the input process and service control when the queue length exceeds a fixed (perhaps very

large) level N. In other words, we assume that

(AS) Bi(x = B(z),i(O (o),gi(z = g(z),b = b,(i)- i = ,ai(z) = a(z),ai = a, i> N,

N

_
r- 1, where i = a(1), E .

Given assumption (AS), it can be shown that the transition probability matrix A is reduced

to a form of the At, N-matrix introduced and studied in [2]. According to Abolnikov and Dukhovny

[2], the Markov chain {Qn} is recurrent-positive if and only if
d A i(z) < cx), = 0,1,...,N,(6.2) d" z

and
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(6.2a) d- K(z) < r.
z---1

Condition (6.2) is obviously met and condition (6.2a) is equivalent to

(6.2b) p = Aab < r.

Therefore, given that p < r, the Markov chain {Qn} is ergodic. Let P = (Px ;x ) be the

invariant probability measure of operator A and let P(z) be the generating function of the compo-

nents of vector P. Denote (0,1)= {z e C: II z I! <-1}. Now we formulate the main result of this

section.

6.3 Theorem. The embedded queueing process { Qn} is ergodic if and only if p < r. Under

this condition, P(z) is determined by the following formula:

z" K(z)
Probabilities Po, "",PN form the unique solution of the following system of linear equations:

(.Zb) E =o{-K(z))() } = O, = 0,...,,- , = ,...,S,

(.Z) E 7= 0 [P- + ’)] = - P,

S ks = N, and wheresuch hat
s

(6.3d) Pi = iaibi

and i) can be determined from (4.5a) and (4.6a).

Proof. Formula (6.3a) follows from P(z)- iepiAi(z and (6.1-6.1a). It is ey to modify

formula (6.3a) into

( ) Z N + iz N- = 0{g()z ()()-

so that the function in the left-hand side of (6.30 is analytic in B(0,1)= {z e C" z II < 1} and

continuous on its boundary 0B(0,1). According to [2], for p < r, the function z zr- K(z) h

exactly r zeros in B(0,1) (counting with their multiplicities); all zeros located on the boundary OB

(including 1), are simple. Therefore, the denominator in the right-hand side of (6.3e) must have

exactly N roots in the region (0,1){1}. This fact along with (P,1)= 1 (which yields (6.3c)) leads

to equations (6.3b-6.3d).

The uniqueness of p = {P0,’",PN} follows from the same considerations in [7].
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7. OTHER. PARAMETEILS OF TIIE SYSTEM

7.1 Definitions.

(i) Let 3j "-EJ[T1] (the mean sojourn time of the process {(t)} in state (j}) and

fl = (flj;j E )T. Then we will call the value P/ the mean service cycle of the system, where P

denotes the stationary probability distribution vector of the embedded queueing process

(ii) Let a = (cx ;x E qt)T, , (Ax ;x )T and let p = a,/,A be the Hadamard (entry-

wise) product of vectors a, fl and ,L We call the scalar product Pp the stationary intensity of the

system.

Observe that the notion "intensity of the system" goes back to the classical M/G/1 system,

when Pp reduces to p Ab. It is noteworthy that in some systems both capacities coincide.

7.2 Proposition. Given the equilibrium condition p < r, the mean service cycle can be deter.

mined from the following expression:

Proof. Obviously,/3j = bj + /i)/Aj. The statement follows after elementary algebraic trans-

formations.

From (7.3a) we similarly derive the stationary intensity of the system.

= p + E o  s(Ps- p +

7.4 Lemma. The expected number of units i)_ that arrive during an idle period of the

server in equilibrium satisfies the following expression:

-(i),(7.4a) i)_ = a 7s s = 1,...,, .
Proof. Formula (7.4a) directly follows from (4.5a) and (4.6a). [Intuitively, i seems that the

same result could follow from the Wald’s formula applied directly to E i[Suo -i. However, this

would be unjustified, since the values of random variables contained in the sum SUo are not indepen-

dent of u0, as some counterexamples show it.]

7.5 Theorem. Given the equilibrium condition p < r, the intensity of the system. Pp and ser-

ver capacity coincide and equal r.

Proof. According to the description of our model the server capacity is r. Now, the state-

ment of the theorem follows from definition 7.1 (it), equation (6.3c) and lemma 7.4.

7.6 l’emark. The equation (6.3c) can now be substituted by a more elegant relation
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(7.6a) Pp = r.

8. EXAMPLES AND SPECIAL CASES

8.1 Theorem. Given the assumption (AS), the probability 9eneratin9 function of the stationa-

ry probability vector x of the process Q(t) can be determined from the followin9 formula:
Pflx(z) = A(z)P(z) + Z Y=oPj(hj(z) z’iA(z)), wih

1(z) = K() ()+(), 0 < ,
h() = z(z), j , d

1 Kj(z)

where P(z) is the generating function of P, Pfl is determined in proposition 7.2, Gjr(z is the

generator g the first excess level, and A(z) is defined as Aj(z) with all subscripts dropped.

8.2 Example.

(i) By dropping the condition of modulation of the input we have from theorem 7.5 that

(S.2a) Pfl = a
Observe that the same result holds true by retaining a "vague modulation", i.e. suming

that Ai = A and ai = a but having no further restriction to the generating functions ai(z).

(ii) Assuming that the input is an orderly modulated Poisson process, in other words if

aj(z) z, but retaining all other sumptions we arrive at the result

h() ( )z- (z),
where j(z) z(j- r) + Kj(z) (with f +-sup{f,O} for a function f); and then we obtain from

(8.2a) that
N "(1 ) (1 zrj(z)_zjK(z) )(8.2b) Pflr(z)(1- z)-[1-K(z)]P(z)+ j=opjz - =opj

i) +

r and fromBy dropping the modulation of the input process we obtain from (8.2a) that P=
(8.b) that

, -()

(iii) By dropping the modulation but retaining bulks of the input, service control and state

dependent service delay, we obtain from theorem 8.1 and (8.2a) by means of routine calculus more

general result than that in (8.2c):
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(8.2d) = r[l’a(zj]
(iv) By using obvious probability arguments we can derive the probability density function

of an idle period in the steady state:

")(i=0Pi7(’ 0,1)
r--1i=oPi

The mean idle period 1 in the steady state is then

2r- ’)
(8.2e) =

i=oPi

r-17rrium. Clearly ] 0

Thus we have
+3"

(v) Formula (8.2e) and theorem 8.1 allow to derive the mean busy period !8 in the equilib-

is the probability that the server idles. On the other hand, it also equals

n rTrn
r-17ro

(vi) If the input is a stationary compound Poisson process (i.e. nonmodulated) then its inten-

sity is cA, which is also the mean number of arriving units per unit time. In the case of a modulated

input process its intensity is no longer a trivial fact. We define the intensity of any random measure

Z by the formula n = lira t--oT#t(z) where #t(z) = E=[Z([O,t])]. We will apply the formula from

Dshalalow [9] for more general Poisson process modulated by a semi-Markov process:
Pp

x= p-,
where by theorem 7.5 P/3 = r and PC/satisfies (7.2a). Thus we have that:

(8.22f) x = p--.
A trivial special case appears when we assume the vague modulation of the input defined in (i) and

therefore use formula (8.2a) combining it with formula (8.20. Then x = ,c. Specifically x = Ac for

the input without modulation, as it should be.
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