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1. INTRODUCTION AND SUMMARY OF PREVIOUS WORK

A multilevel control strategy in a bulk queueing system is based on the utilization of cer-

tain feedback relationships between parameters of both bulk arrival and bulk service processes and

a current number of units in the system (or in the queue). Using this control strategy it is

possible, for example, to respond to an excessively long (or, conversely, too short) queue by

changing the rates of the arrival and service processes, or by changing the sizes of arriving groups

of units or groups taken for service.

Another possibility to control the queueing process in bulk queueing systems is an assump-

tion that the server of capacity R can delay a new service act until the number of units in the

queue reaches a certain control level r (where r <_ R). A "service delay discipline" of this type

may be useful in reducing start-up costs and, in combination with a multilevel control strategy,

offers a considerable scope for improvements and optimization of the queueing process.

Special cases of e queueing system with service delay discipline appeared in Chaudhry and

Templeton [7] and Chaudhry, Madill and Brire [8] without bulk input. The authors called them

queueing systems with a quorum and denoted M/Ga’b/1. A more general system was introduced

and studied even earlier by Neuts [23], where, in the version of M/Ga’b/1 treated in IS], the

author of [23] additionally assumed that service times may depend on groups sizes (between a and

b) taken for service.

A queueing system M/Ga’b/1 becomes more attractive (both theoretically and

practically) if, in addition to the assumptions about quorum systems accepted in [7,8,23], the

input stream is allowed to be bulk. In contrast with models of type M/Ga’b/1, in which the

queue length, being less than a, will always (with probability 1) reach a, in systems MX/Ga’b/1
(with general bulk input) the probability of reaching exactly level a in similar situations is less

than 1 (in most cases even very small). Or more precisely, the queue length can exceed this level

with a positive probability by any conceivable integer value. Behaviors of such processes about

some critical level generally differs from those of processes with continuous state space which is

treated by various methods called "level crossing analysis" [see 5,10,24]. Consequently, this fact

makes a preliminary analysis of a corresponding first passage problem (of the queueing process

over some fixed level) a necessary and essential part of the treatment of the system. As a separate

kind of the first passage problem, this was recently studied in Abolnikov and Dshalalow [3].

Another considerable generalization of the M/Ga’b/1 system, employed in this article, is

the assumption that interarrival times of the input stream, the sizes of arriving batches of

customers, and service time distributions of groups of customers taken for service, all depend upon
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the queue length (multilevel control policy). This essentially enlarges a class of real-world systems

to which the results obtained are applicable.

It is necessary to mention that unlike a model studied in [8] the authors of this paper do

not assume the dependence of service on group sizes. [The latter option, however, was included

and extensively studied in Dshalalow [14] and [15], and Dshalalow and Tadj [17-19], and it may

be combined with all options set in the present paper.] Other special cases of this model were

considered in the literature on queueing theory. An idea to employ a multilevel control policy in

bulk queueing systems, presumably, belongs to Bachary and Kolesar [6]. However, methods used

there suffer from insufficient analytical justification. Some special cases of a multilevel control

strategy with respect to more general queueing systems and inventory and dam models were

considered in [1]. An example of an application of a multilevel control strategy to a general bulk

queueing system (but with no service delay discipline) is contained in [12].

The main purpose of this article is to develop a general mathematical model which would

take into account mentioned above features of a queueing system with a bulk input, batch service,

multilevel control strategy and a queue length dependent service delay discipline.

In the present article a general bulk queueing system with a multilevel control and a

queue length dependent service delay discipline is studied. The results obtained in the paper

generalize, compliment or refine similar results existing in the literature [2,6-8,11,12,21,23].

In the first section the authors give a formal definition of a multilevel control bulk

queueing system MX/G"’R/1 (with a queue length dependent service delay discipline). In order

to describe rigorously the input to the system, the authors use the general notion of a modulated

random measure recently introduced and studied in Dshalalow [13]. The authors establish

necessary and sufficient conditions for the ergodicity of the queueing process with discrete and

continuous time parameters and study its steady state distributions in both cases. A recently

developed new analysis of a class of general Markov chains in Abolnikov and Dukhovny [4] is

used. Due to the queue length dependent service delay discipline assumed in the article, an

auxiliary random process describing the value of the first excess of the queue length above a

certain control level appears to be one of the kernel components in the analysis of the queueing

process (section 3). Using this random process, the authors derive the invariant probability

measure of an embedded process in terms of generating functions and the roots of a certain

associated function in the unit disc of the complex plane (section 4). The stationary distribution

of the queueing process with continuous time parameter is obtained by using semi-regenerative

techniques (section 6). The results of this section together with [13] enable the authors to intro-
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duce and study some functionals of the input and output processes via ergodic theorems. A

number of different examples (including an optimization problem) illustrate the general methods

developed in the article.

2. FOIMAL DESCttIPTION OF THE SYSTEM

We begin this section with the definition of the modulated random measure introduced

and studied in Dshalalow [11] (formulated there for a more general case). All stochastic processes

below will be considered on a common probability space {Q, , (Px)xe }, with @ = {0,1,...}.

2.1 Detion. Let E = R + with its natural topology and let be the space of all Radon

measures on the Borel (r-algebra (E). Denote CK the space of all continuous functions on E

with compact support and denote the Baire (r-algebra in 1 generated by all maps p- fdp,

feeK.

(i) Let {12,aY, P,(t), e E} @ be a stochastic process on Z and let denote the w-sec-

tion of . Then for T’ C_ @ and B (E) we define Yr = B gl , l(r) and call it the holding time

of in F on set B. For each f’Lxed w, YF is a measurable subset of E which can be measured by

any Radon measure on (E). In general, Yr is a mapping from f into (E) which can be made

a random set after we define the (r-algebra {A C’_ 2(E):

(ii) Consider for each j a marked random measure Zj = .Sijerij
(where ex denotes

the Dirac point mass) with mark space {0,1,...} and introduce

Z = Z(’,) = E Zj(r ).j =o {j

The random measure Z: (f,) (.AI,E) is called a marked random measure modulated by the

process . The marked random measure Z can be more vividly represented in the form

Z=

Let {Q(t); t _> 0} ---. @ = {0,1,...} be a stochastic process describing the number of units

at time t in a single-server queueing system with an infinite waiting room. Following the

introduction, {Tn;n N0,T0 = 0} is the sequence of successive completions of service and

Qn = Q(Tn + 0).

Input Process. Let C = a 0 eT Define (t) Q(Te([o,t]) + 0), t > 0. Then the input

is a compound Poisson process modulated by according to definition 2.1, from which it follows

that customers arrive at random instants of time rn, n-- 1,2, ..., that form a point process mo-

dulated by with Si(t -Si_l,(t} = Xi(t as the ith batch size of the input flow. Thus, in our
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case {X} = {Xi(t)} is an integer-valued doubly stochastic sequence describing the sizes of groups

of entering units. We assume that given (t) all terms of {X} are independent and identically dist-

ributed. Denote a(t)(z) = E[’i(t)], the generating function of ith component of the process

{X}, with a(t) = E[Xi(t)] < c, = 1,2,

Service Time and Service Discipline. If at time Tn + 0 the queue length, Qn, is at least r

(a positive integer number less than or equal to R), the server takes a batch of units of size R (a

positive integer denoting the capacity of the server) from the queue and then serves it during a

random length of time an + 1" [We assume that rn + has a probability distribution function

BQn E {B0, B1 ,...}, where the latter is a given sequence of arbitrary distribution functions with

finite means {b0,b1,...}.] Otherwise, the server idles until the queue length for the first time

reaches or exceeds the level r. Let 7n = inf{k N: rk >_ Tn} n NO Then the size of the first

group after Tn (which arrives at instant of time r.rn) is XTn,n.
For more convenience in notation, we reset the first index-counter of the process {X} on

1 after time hits Tn. Therefore, in the light of the new notation, X1Qn, X2Qn,... are the sizes of

successive groups of units arriving at the system after Tn. Let St:n = Xon
+ Xln+ + XkQn,

where XOQ
n
= Qn. Then, given Qn, {Skn k NO} is an integer-valued delayed renewal process.

Denote vn = inf{k >_ O" Skn >_ r} the random index when the process {Skn} first reaches or

exceeds level r given that the queue length is Qn. Thus, r,n is the instant of the first excess of
level r by the queueing process after time Tn (more accurate but less friendly notation for this

instant would be r.rn + n_l,).
For the next constructions we need a more universal notation for the instant of the first

excess of level r, appropriate for the situations when this instant occurs after Tn or at Tn. in

other words we define

(2.2) o,,(Q,,) = o. = { XoQ. = Q. <

Tn, XoQ
n
= Q, = S, >_ r.

At that instant of time the server is supposed to take a batch of the size min{Q(On),R} for

service. In other words, if Qn >- r, Tn + 1 Tn coincides with length of service time an + of the

n+lst batch. If Qn < r the interval (Tn,Tn+l] contains the waiting time for

X1Q
n
+ + X,nQn units to arrive and the actual service time an + 1"

Finally, denoting Vn = Z(crn) we can abbreviate the definition of the servicing process

through the following relation for {Qn}"
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(2.3) n + =

3. FIRST PASSAGE PROBLEM

In the following sections we will be using some basic results on the first passage problem

stated and developed in Abolnikov and nshalalow [3]. Some of the results of [3] (which the

authors will highlight in this section) were obtained by Dynkin [20] and Takcs [25] more general

processes. However, for convenience in notation and with the purpose of a more specific

terminology only results of [3] will be mentioned.

First we treat the process {SVn} without any connection to the queueing system. For this

reason we will temporarily simplify the notation introduced in section 2 by suspending the second

subscript in the sequence {X} and the corresponding index in the probability measure pi and ex-

pectation Ei.

Therefore, in this section we will discuss the critical behavior" of a compound Poisson

process Z determined by a Poisson process 7"={rn=t0+tl+...+tn;n>_O, o=O) on R+
marked by a discrete-valued delayed renewal process S = {Sn = XO + X + + Xn n >_ 0} on @.

As mentioned above, we assume that the processes 7" and S are independent. We also assume

that inter-renewal times tn = rn-rn-1, are described in terms of its common Laplace-Stieltjes

e(O) = E[e-ot,] = ,X::O’ n = 1,2,transform

For a fixed integer r >_ 1 we will be interested in the behavior of the process S and some

related processes about level r.

The following terminology is introduced and will be used throughout the paper.

3.1 Deflations.

(i) For each n the random variable Vn= inf{k >_ 0:Sk >_ r} (defined in the previous

section) is called the index of the the first excess (above level r- 1).

(ii) The random variable Svn is called the level of the first excess (above r- 1).

(iii) The random variable rvn is known as the first passage time of S of level r.

(iv) The random variable 1n = SVn-S0 is called the increment of the input process over

the time interval [Tn, gn] or shortly, the total increment.

Let
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0r r,
0z 0],(3.1a) 7(’)(0,z) = E i[e oz 0], j(i)(0 z) = E i[e- or, s

Gi(O,z = EjoEi[e-rJz8j Iur_i(Sj)],
where Up = {0,1,...,p} and IA is the indicator function of a set A. We call Gi(O,z the generator

of the first excess level. We will also use the following functionals of marginal process:

(3.b) r()() = r()C0,z),
(3.) C)(z) = C)(0,),
(3.d) () = V(0,).
It is readily seen that Gi(z is a polynomial of (r- 1)th degree.

We formulate the main theorems from Abolnikov and Dshalalow [3] and give formul

for the joint distributions of the first psage time and the random variables listed in 3.1 (i-iii).

.2 Whrem. The functional 7(i}(0, z) (of the first passage time and of the index of the

first excess leve0 satisfies the following foula:

(3.2a)
7()(0, z) =

where

(3.25)

follows:

(3.2c)

(1 z)(l "ze(o)a(Z)ij’
1,

i<r

i>r,

1 0 >_ 0.

Specifically, the Laplace-Stieltjes transform of the first passage time, 7(i)(0,1), is as

1 a(x) }(i)(0, 1)
e(0):-i- (’1" X)(I: e(o)aixi" < r

1, i>_r.

From formula (3.2a) we immediately obtain that the mean value of the index of the first

excess equals

(3.3) ()= (I -z)[i (z)]
i < r

0, i>_r.

(3.4)

From (3.2a) we also obtain the mean value of the first passage time:

E [r0 = (i).
3.5 Theorem. The generator Gi(O,z) of the first excess level can be determined from the

following formula:



244 LEV ABOLNIKOV and JEWGENI H. DSHALALOW

(3.5a)

Gi(O,z)=
z = (i--X)[’I’ e(O)a(Z)] i<r

0, i>r.

The rationale behind the use of the term "generator of the first excess level" comes from

the following main result.

3.6 Theorem. The functional (i)(O,z) (of the first passage time and of the first excess

level) can be determined from the formula
z) = -[1

3.7 Remark. To obtain the functionals of the marginal processes defined in (3.1b-3.1d) we

set e(9)= 1 in formulas (3.2a), (3.5a) and (3.6a).

3.8 Corollary. The generating function (i)(z) of the first excess level is determined by the

following formula:

(3.Sb)

By using change of variables in (3.8a) we can transform it into an equivalent expression

zr_ { a( z) a( :) }O(i)(z) = (Z" x)[l"-- a(.)] < r

z i>_ r.

3.9 Corollary.

(3.9a) (i) = E i[SVo = +c(i),
where a = E[X1].

Specifically, the mean value ](i)= E [1o] of the total increment is then

(3.9b) 3(i) ((i).

3.10 Remark. Now we notice that the above results can be applied to our queueing

system, where in formulas (3.2a)-(3.9a) we supply a(z) with subscript i.

4. EMBEDDED PROCESS

4.1 Definition. Let T be a stopping time for a stochastic process {fL*5, (PX)=eo, Q(t);

t> 0} (, !8()). {Q(t)} is said to have the locally strong Markov property at T if for each
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bounded random variable (: ---, @r and for each Baire function f: r---,R, r = 1,2,..., it holds

true that

EZ[f o o 0T Ir] = EZT[f o ] PX-a.s. on {T <
where Ou is the shift operator.

From relation (2.3) and the nature of the input it follows that the process {f2,,
Q(t); t>_ 0} = {0,1,...} possesses a locally strong Markov property at Tn, where Tn is a

stopping time relative to the canonic filtering a(Q(y);y <_ t), n = 1,2, Thus the embedded

process {f,,(px)=eq, Qn;nENo} is a homogeneous Markov chain with transition

probability matrix denoted by A = (aij).

4.2 Lemma. The generating function Ai(z of ith row of matrix A can be determined from
the following formulas:

(4.2b)

(4.2c) Ki(z = ti()i- iai(z))

/3i(0), Re(O) >_ 0, is the Laplace-gtieltjes transform of the probability distribution function Bi, and

(i) satisfies one of the formulas (3.8a) or (3.8b), taking into account remark 3.10.

Proo1’. Since Ai(z)= E i[zQ1], formulas (4.2a) and (4.2b) follow from (2.3) and

probability arguments similar to those in the proofs of section 3. Observe that since (i)(z) = zi,
> r, in (3.8a), formula (4.2b) reduces to

(4.2d) /r, R) = z(i- R) + i> r,

which also agrees with the result that could have been obtain directly from (2.3) for _> r. El

For analytical convenience and without considerable loss of generality we can drop the

modulation of the input process and service control when the queue length exceeds a fixed

(perhaps very large) level N. In other words, we assume that

(AS) Bi(z)= B(z),3i(O) = 13(O),Ki(z = K(z),b = b,A(i)= A = A, ai(z = a(z),c = , i> N, N

>_ wh, = ),

Given assumption (AS), it can be shown that the transition probability matrix A is re-

duced to a form of the AR, N-matrix introduced and studied in [4]. There the stochastic matrix

A = (aij; i,j E qt = {0,1,...}) is called a AR, N-matrix if it is of the form

A= (aij" i,j t" aij = kj_i + r > N, j >_ i- R aij = O > N, j < i- R),
where

o
ki is an atomic probability measure. The following two theorems are necessary to

j=0

obtain all main results in this section.
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4.3 Theorem (Abolnikov and Dukhovny [4]). Let {Qn} be an irreducible aperiodic Markov

chain with the transition probability matrix. A in the form of a At, N-matrix. Qn is recurrent-

positive if and only if
(4.3a)
and

(4.3b)

dz z=l
< x), = 0,1,...,N,

<R.dz z=l

4.4 Theorem (Abolnikov and Dukhovny [41). Under the condition of (4.3b) the function
zr- K(z) has exactly r roots that belong to the closed unit ball [(0, 1). Those of the roots lying on

the boundary OB(O, 1) are simple.

(4.5)

Condition (4.3a) is obviously met and condition (4.3b) is equivalent to

p = Aab < R.

Therefore, given that p < R, the Markov chain {Qn} is ergodic. Let P = (Pz;Z ) be

the invariant probability measure of operator A and let P(z) be the generating function of the

components of vector P. Now we formulate the main result of this section.

4.6 Theorem. The embedded queueing process Qn is ergodic if and only if p < R. Under

this condition, P(z) is determined by the following formula:

(4.6a) P(z) =
z K(z)

where I1 r’R) satisfies (3.8a) and (4.2b) taking into account remark 3.10. Probabilities Po, "",PN

form the unique solution of the following system of linear equations:

(4.6b) , iN= oPi’_k {Ki(z)I,r’R)(z)- zi} = 0, k= 0,..., ks 1, s = 1,...,S,

S-1 and =s ks = R- 1, zS 0 is of multiplicity kS = N- R, and

(4.6c) E iN= oP, Pi- P + (i) + (1[’= g)2j
where -j(i) is determined in (3.9b) and (3.3),

(4.6d) Pi = Aiibi

Proof. Formula (4.6a) follows from P(z)= E,,piA(z) and (4.2-4.2a). It is easy to

modify formula (4.6a) into

(4.6e) E N + 1PiZ’- N- 1 E N._ oPi{Ki(z)I"’R)(z)
= +I_+I_RK(z)

so that the function on the left-hand side of (4.6e) is analytic in B(0,1) continuous on OB(0,1).
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According to theorem 4.4, for p < R, the function z-. zR- K(z) has exactly R zeros in /(0,1)
(counting with their multiplicities); all zeros located on the boundary 0B(0,1) (including 1), are

simple. Therefore, the denominator in the right-hand side of (4.6e) must have exactly N roots in

the region (0,1)\{1}. This fact along with (P,1)= 1 (which yields (4.6c)) leads to equations

(4.6b-4.6d).

The uniqueness of {Po,’",PN} follows from the following considerations. Suppose that the

system of equations (4.6b-4.6d) has another solution p* = {p’; = 0,...,N} which we substitute

into (4.6a) to obtain the generating function P*(z). Then, P*(z) is analytic in B(0,1) and

continuous on

0B(0,1). Therefore, P* = {p;i } (11, 1[ 1[ ). Obviously, equations P*(z) i pAi(z)

and P*(z)=
.,.,iN:prc[Ki(z)Hr’R}(z)-ziK(z)-

are equivalent. The last equation is also

equivalent to P* = P*A. Since p" satisfies (4.6c) it follows that (P*,I) = 1. Thus, the system of

equations : = a:A, (x,1)= 1 has two different solutions in (l1, If" II) which is impossible (cf.
Gihman and Skorohod [22], theorem 15, p. 108). 12

Below we give another version of theorem 4.6, where the corresponding formulas will be

analytically less elegant but numerically are of greater advantage, especially for large N.

1.7 Theorem. Given the condition p < R, P(z) is determined by the following formula:
=o Pi[zR{Ai(z) + Hi(z)} ziK(z)]

(4.7a) P( z) = ’ "K(’z)
where Ai( saisfie one of Che epreion (4.2a-4.2e), i()= =nd hJ) re coefficients in he rereenaion j

R-1= i=o ihJ) J =R,’’’,N" The

system of R linear equations:

(4.7b) Z- dk
"= Pi{Ai(z) + Hi(z) zi} = O, k = 0,..., k, 1, s = 1,...,S,

(4.7c) : Pi(Ai(z) + Hi(z)]- K(z)zi)
z=

where zs are the roots 4 -K(z) in the region B(0,1)X{1} with their multiplicities ks such that

Proof. The statement of the theorem follows from theorem 4.6 if we take advantage of

structural properties of the transition probability matrix A. It can be noticed that the matrix A a

positive essential N-homogeneous AR-matrix (in terms of [4]). Due to the specific features of this

matrix we can uniquely express each of the probabilities PR,’", PNn the right-hand side of



248 LEV ABOLNIKOV and JEWGENI H. DSHALALOW

(4.8a) as a linear combination of the first probabilities P0,’", PR-
(4.7d) pj = , a h!J)pi j = R, ,N.

i=O

Taking into account these relations and proceeding as in the proof of formula (4.6d), we obtain

(4.8a). The rest of the statement can be proved similar to theorem 4.6.

Observe that, unlike formula (4.6b), that gives equations for finding N unknown

probabilities, the right-hand side of (4.7a) contains only R unknown probabilities. This may be

advantageous in computations, especially when N >> R.

5. APPLICATIONS

5.1 Definitions.

(i) Let j = EJ[T] and fl = (flj;j )T. Then we will call the value Pfl the mean

service cycle of the system, where P denotes the stationary probability distribution vector of the

embedded queueing process

(it) Let a- (a ;z e @)T, , = (Ax ;z )T and let p a,fl.A be the Hadamard (entry-

wise) product of vectors a, fl and A. We call the scalar product Pp the intensity of the system.

Observe that the notion of the "intensity of the system" (frequently called the offered
load in queueing theory) goes back to the classical M/G/1 system, when Pp reduces to p = Ab.

(iii) Define l= limn_.oo E[inf{Qr,n’ R}] and call it the mean (stationary) server load.

5.2 Proposition. Given the equilibrium condition p < R, the mean service cycle can be

determined from the following expression:

))(5.2a) Pfl b + E 2= o Pj( bj b +

Proof. Obviously, flj = bj+ /(J)/Aj. The statement follows after elementary algebraic

transformations.

Using (5.2a) we similarly get
r--I i).(5.3) PP = P + E iN= 0 Pi(Pi P) + E 0 Pi’J(

5.4 Theorem. Given the equilibrium condition p < R, the intensity of the system Pp and

the mean server load coincide.

Proof. Because of (2.2) we have

(5.4a) = E oo
_

oiui=oPiEi[inf{Q(Oo), R}I= Ei=oPiEi[Su So]
S 0] +q- ’i=oP i=RPi"
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Formula (4.6a) can be rewritten in the form

Then (P, 1) = 1 yields

P(z) - E "N’=oP{zaE[zQ]-- ziEN + l[zvl]}
zR ZN + I[zV1

EiN=oPi{Ei[Q]-p+ R-i) = R-p
or because of (2.3)

r-.-1E=oPE[(S,o
The last expression allows modification of (5.3) into

,- x o:U ]+ Z: n- x oo a Rp {So-0 pi

which, because of (5.4a), obviously equals I.

NR)Zu, o S.0 + E = a(- R) + E= o P(.- + R- 0 = R .

Therefore, for the mean server load we can use formula (5.3) which requires the know-

ledge of PO,"’,PN" The following formula for is less friendly but it requires just Po,’",PR-I"

5.5 Proposition. The mean server load can alternatively be obtained from the following

formula:
(5.5a) I=R- n-1 R-l{ o(i)(y) }

Proof. The statement directly follows from (5.3) and (4.6c). I:l

6. GENEILL QUEUEING PROCESS

In this section our main objective is the stationary distribution of the queueing process

with continuous time parameter. Although this section is developed in a similar way as section 5

in Dshalalow [16] for the sake of consistency and better readability we include all necessary

details. We need the following

6.1 Definitions.

(i) A stochastic process {f,Sr, (P), Q(t); t_> 0} --, (, ()) with

_
N is called

semi-regenerative if

a) there is a point process C = oo
n = o eTn on R + such that Tn---*cx (n---,cx) and that each

Tn is a stopping time relative to the canonic filtering a(Q;y < t),

b) the process Q has the locally strong Markov property at Tn, n = 1,2,... (see definition

4.2),

c) {Q(Tn + 0), Tn n = 0,1,...} is a Markov renewal process.

(ii) Let (Qn, Tn) be an irreducible aperiodic Markov renewal process with a discrete state

space @. Denote / = E[T1] as the mean sojourn time of the Markov renewal process in state
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{x} and let/ = (/3r ;; @)x. Suppose that the embedded Markov chain (Qn) is ergodic and that

P is its stationary distribution. We call Pfl the mean inter.renewal time. Then we call the

Markov renewal process recurrent.positive if its mean inter-renewal time is finite. An irreducible

aperiodic and recurrent-positive Markov renewal process is called ergodic.

(iii) Let {Qn, Tn} be an ergodic Markov renewal process. For each z and j the following

function t-. RX(j, t)= E E oOn=o l{/}x [0, t] o (Qn Tn)], related to the Markov renewal process,

is called a Markov renewal function. This function gives the expected number of entrances of the

embedded Markov chain Qn in state {j} during time interval [0,t], given that the process started

from state {z}. Obviously, the process {ft,,(PX)x,q, (1); >_ 0} (R +
,

+ (R + )) is the

minimal semi-Markov process associated with the Markov renewal process. The process is right

continuous with almost every path as a simple function on any compact interval.

(iv) Let {ft,Y, (px)x, Q(t); > O} (, (@)) be a semi-regenerative process relative

to the sequence {T,} of stopping times. Introduce the probability

Kjk(t = PJ{Q(t) = k, Tx > t}, j,k .
We will call the functional matrix K(t) = (Kjk(t); j,ke) the semi.regenerative keel.

From the discussion in section 4 and from definition 6.1 (i), it follows that

{,, (P)ze, Q(t); t 0} (, ()) is a semi-regenerative process with conditional regenera-

tions t ints Tn, n = 0,1,..., T0 = 0. By definition 6.1 (ii), {,, (PZ)z,, Qn, Tn; n = 0,1,...}

(@xR+, (xR+)) is the sociated Markov renewal process. Let (t) denote the

corresponding semi-Markov kernel. Under a very mild rtriction to the probability distribution

functions Bi, we can ume that the elements of (t) are not step functions which would imply

that {Qn, Tn} is aperiic. By prosition 5.2, the mean service cycle P, which is also the mean

inter-renewal time of the Markov renewal press, is obviously finite. Therefore, following defini-

tion 6.1 (iii), the Markov renewal pr is ergic given the condition p < R.

It also follows that the jump process {ft,,(PX),, (t); t > 0} @, defined in section

2, is the minimal semi-Markov process associated with Markov renewal process {Qn, Zn} and

therefore, following definition 2.1, the input process Z is a compound Poisson process modulated

by the semi-Markov process .
6.2 Notation. Let

(6.2a) 6=,(t) = P{g([0, t])= s ITx > t}
Then, given that (0) = z and because Z is not modulated by a new value of , the input process

takes on value Z (introduced in definition 2.1 (ii)). Therefore, we have

(6.2b) 6zs(t) = P{Zx([0, t]) = s}. I::l
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Let, K(t)- (Kjk(t) ;j, kE P) be the semi-regenerative kernel (see definition 6.1 (iv)). The

following statement holds true.

6.3 Lemma. The semi-regenerative kernel satisfies the following equations:

where 6jk is as defined in (6.2a) or (6.2b) and j denotes the density of the joint probability dist-

ribution function of the random variable SUo and the instant 0o of the first passage time of level r

by the queueing process { Q(/)} (defined by (2.2)).

Proof. The above assertion follows from direct probability arguments.

Now we are ready to apply the Main Convergence Theorem to the semi-regenerative

kernel in the form of corollary 6.5.

6.4 Theorem (The Main Convergence Theorem, cf. C.inlar [O]). Let {f,51:,(PZ)z,, Q(t);

t>_ O} (@, (@)) be a semi.regenerative stochastic process relative to the sequence {tn} of
stopping times and let K(t) be the corresponding semi-regenerative kernel. Suppose that the

associated Markov renewal process is ergodic and that the semi.regenerative kernel is Riemann

integrable over R +. Then the stationa distribution x = (rx x ) of the process {Q(t)} exists

and it is determined from the formula:
(6.4a) k = Zj pl f o KJk(l)dt’ k e .

6.5 roH. Denote g= (h;j,k e )= f o K(t)dt as the integrated semi-regene-

rative keel, hi(z) the generaling funclion of jlh row of malx H, z)= (hi" j @)T and

as lhe generating function of vector . Then the following foula holds

= z)

PH Finally,Proof. From (6.4a) we get an equivalent formula in matrix form, =.
formula (6.5a) is the result of elementary algebraic transformations.

6.6 Theorem. Given the equilibrium condition p < R for the embedded process {Qn}, the

stationary distribution x = (rx;z t) of the queueing process {Q(t)} exists; it is independent of
any initial distribution and is expressed in terms of the generating function r(z) of x by the

following formulas:
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= + E o

1 Kj(z)
(6.6b) dj(z) = AX--i
where P(z) is the generating function of P, Pfl is determined in proposition 5.2, Gi(z is deter.

mined in (3.5a) (taking into account Remark 3.7), and d(z) is defined as dj(z) with all subscripts

dropped.

Proo[. Recall that the Markov renewal process {Qn, Tn} is ergodic if p < R. By corollary

6.5 the semi-regenerative process {Q(t)} has a unique stationary distribution r provided that

p < R. From (6.3a) we can see that the semi-regenerative kernel is Riemann integrable over R +..
Thus, following corollary 6.5 we need to find the integrated semi-regenerative kernel H (which is

done with routine calculus) and then generating functions hi(z) of all rows of H. First we find

that

(6.6c) E oop zp fOOo 6i, p i(u)[1 Bi(u)] du = .,idi(z
Then it follows that

(6.6d) hi(z)=zil r-i-l{ 1 } di(z)!r)(z)O<i<r//x (I x)(l’-- ai(z)) "[-

where !r)(z) denotes the tail of the generating function (i)(z) summing its terms from r to

However, it is easy to show that (]!r)(z) and (i)(z) coincide. Then it appears that

(6.6e) hi(z = zidi(z), >_ r,

where the index can be dropped for all exceeding N, in accordance with assumption (AS) made

in section 4. Formula (6.6a) now follows from corollary 6.5, equations (6.6c-6.6e), (3.5a), (3.6a)
and some algebraic transformations. [21

7. EXAMPLES AND SPECIAL CASES

In one of the first examples we drop the modulation of the input preserving all other

special features of the system.

7.1 Proposition. In the bulk queueing system with no modulation of the input the

generating

function r(z) of x can be derived from the following formula:

(7.1a) l[l --a(z)]r(z) = P(z)(l zR) + _,R- l piKi(z)Ru l{Z’R(i)(Yl) -(i)(Yz)i.=O

Proof. Formula (7.1a) follows from (6.6a) and (4.6a) after noticing that

(7.1b) y (yif(y)) = 0 for all i> R,

where f is any function analytic at the origin.
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Formula (7.1a) may look unfriendly but in the way it is presented it yields a number of

elegant special cases.

7.2 Examples.

(i) Let r = R. Then the sum in the right-hand side of (7.1a) vanishes by the reason

observed in (7.1b). Obviously, in this case reduces to r finally yielding an elegant relation

between 7r(z) and P(z):
c(1 z) P( z)(7.2a) r(z) = r[i" a(Z)]

(it) Suppose that arriving groups are distributed geometrically. In other words, let

ai(z = a(z)= pz(1- qz)-1. Then from (3.2a) we have

(7.2b) j(i)(z) = zrp(1- qz)- for < r

(7.2c) (i)(z) = z for >_. r
zSVl r

and thus E i[ ]= p(1- qz)-, yielding that the random variable SVn- r is "memoryless"

in this special case.

Now substitute (7.2b) and (7.2c)into (7.1a) and get

(7.2d) 7r(z) 1, -L = PiKi(z)Wi(z), where

(7.2e)

w(.-) =
zR(1 qR- r- 1) zr[1 (qz)R- r- 1]

1-:q l:-qZ

( ’),

0<i<r

r<i<R.

The mean server load can be evaluated from formula (5.5a) that leads to

(7.2f) = R E ( i) (R + ,). +. +
i=r p2 i=oPi

(iii) in the condition of (it) assume additionally that r= R-1. Then the upper

expression in (7.2e) vanishes reducing (7.2d) to

7r(z) i-P!qz = P(z) 1 "
+a
z PrKr(z)zr" [:1

In the next situation we suppress bulk arrivals however preserving the modulation.

7.3 Theorem. In the multilevel controlled queueing system with (r,R).queue length

dependent service delay discipline with an orderly modulated Poisson stream the generating

function r(z) satisfies the following relation:
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(7.3a) Am(1- z)Tr(z) = [1- K(z)]P(z) + iN=op[ziK(z) zr +(-’) +
Ki(z)], where

(7.3b) P(z) = iN= ,0,, P,,/,,,{ zR + (i- R) + Ki(z)-
go-

Probabilities Po,’",PN form lhe unique solution of the system (4.6b1 and (4.61, where

= z(i-R) + Equation (4.6d) is reduced to

(7.3c) E = 0 Pi[Pi- P + (R- i) + = R- p.

Proof.
transformations.

Formula (7.35) follows from (3.Sb), (4.25), (4.2d) and (4.6a) and because (j()(z) reduces to

= i <(7.3d) z’, > r.

Equation (7.3c) is due to 3(i) (r- i) + valid for this special case.

Formula (7.3a) follows from (6.6a) and (6.6b) after some algebraic

7.4 Examples.

(i) In the condition of theorem 7.3 the mean server load is defined by

l-- Eie* Pi min{ R, max{ r, i}} = RE ooi I:t, pi + "E 10 Pi + Z rF1-1 ip
that also agrees with formula (5.5a) to which this special case is applied.

(ii) In the condition of theorem 7.3 by dropping the modulation of the input we have

from (7.1a)and (7.3d) that

/(1 z)r(z) P(z)(1 zR) + E R-i=O1Pigi(z)( zR zri), where

ri=r, i<rand ri-i, i>_r.

(iii) If the input is a stationary compound Poisson process (i.e. nonmodulated) then its in-

tensity is c, which is also the mean number of arriving units per unit time. In the case of a

modulated input process its intensity is no longer a trivial fact. We define the intensity of any

random measure Z by the formula x = lira t_oo{Ez[Z([O,t])]. We will apply the formula from

theorem 7.5 (Dshalalow [9]) for more general Poisson process modulated by a semi-Markov pro-

tess:

Pp
P#’

where by theorem 5.4 Pp = and PB satisfies (5.2a). Thus we have that:

(7.4a) : = e--.
(iv) By virtue of obvious probability arguments we can derive the probability density

function of an idle period in the steady state:

v-., r-li=oPi
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The mean value of the idle period in the steady state is then

r- 1 ’)
=0

pi(’E A.

i=oPi
(v) Formula (7.4b) and theorem 6.6 allow to derive the mean busy period in the equi-

librium. Clearly ’- 1 r
i=0

equals --+.. Thus we have

is the probability that the server idles. On the other hand, it also

: n= r?rn
Er-- 71-i0

7.5 Theorem (Dshalalow [13]). The stationary rate of the input flow averaged over the

infinite horizon is determined from the following formula:

(7.5a) R = lira
E[Z([0’ t])] Pp

Ergodic Theorems for Some Functionals of Input and Output Processes.

One of the goals of this section is to find lim Ez[O(l’--’:t" By a direct computation, it can
t--,

be shown that for p < R the value of lira E=[Q(t)] is a function of the second moment of a

service time that need not be finite. In the latter case, it is not obvious with what speed

lira E=[Q(t)] gets to infinity. We will show that, even if it diverges, it gets slower to infinity

than with the speed.

Let B be a Borel set on R+. Denote S(B) the total number of customers completely

processed on the time-set B.

7.6 Theorem. For p < R the output rate defined 0 = lim

(7.6a)
Proof. Obviously

S([0,t]) = E je@ E n=0 inf{ Q(On o Qn), R}I{j} x t0,t] o {Qn, Tn}

je inf{Q(Oc(to, t]) o(t)),R}I{j} o(t).
The sum in the second line of equation (7.6a) gives the total number of units being in service but

not completely proceed by time t. Clearly, this sum is majorated by R for every w f2. To find

the output rate first observe that (7.6a) is reduced to

(7.6b) S([0,t]) = E, ET=0 inf{Q(Oo(J)),R}I{j}x[o,t]{Qn, T,}
E je inf{O(tgc([o,t]) o(t)),R}I{j}

since obviously the random variables On OQn n=0,1,..., are independent and identically
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distributed if given on the trace w-algebra t gl I,.J Qff {j}) (where t is the canonic filtering

induced by the process {Q(t))). The latter enables one to evaluate the functional E:[S([O,t])] by

using the independence of Q(Oo(j) and I{j}x[o,t]o{Qn, Tn}. Applying the monotone

convergence theorem and in the light of definition 6.1 (iii) we have

E:[S([O,t])] = E j,, E J[inf{Q o Oo}]RX(j,t) E:[ E j, inf{ Q(Oc([o,,l) o (0), R}I(} o (t)].
Since E:[,,,inf{Q(ac([o,t])o(t)),R}I{j} oh(t)] < R for all t>0 which simplifies the output

rate to

(7 = lira E j,, E J[inf{Q o 0o} ,t)

finally yielding from theorem A.1 (ii) (see Appendix) that

o =
Finally, by theorem 5.4 the mean server load and the intensity of the system coincide and this

proves the theorem. I-1

Since Z is the input process modulated by the semi-Markov process we can use

formula (7.5a) in theorem 7.5 which gives the mean input rate of the modulated semi-Markov

process Z. From (7.6a) and (7.6c) it therefore follows that - . This is to be expected in most

of the systems thereby proving valid one of the conservation laws: "In an ergodic stochastic

system ihe inpu and output raes are equal".

7.7 Coroflary. For p < R the ezpected number of units in the system in equilibrium is

either finite or diverges slower than with the unit speed.

Proof. Since the number of units in the system at

Q(t) = Q(0)+ Z([0,t])- S([0,t]) the statement follows by theorems 7.5 and 7.6.

time is

7.8 Example. As an application of the ergodic theorems 7.6 and A.1 (see appendix), we

consider the following optimization problem. Let cl, c2, c3, c4, w be real-valued Borel-measur-

able functions that represent the following cost rates and functionals:

c(k) denotes the total expenses due to the presence of k customers in the system per unit

time. Then rl[Cl,Q](z,t)= EX[ o Cl(Q(u))du] gives the expected expenses due to the presence of

all customers in the system in time interval [0,t] given that initially z units were present. By

Fubini’s theorem and theorem A.1 (ii) we have lira ri[ci Q](r,t) = j > 0cI(j)rrj = xe1 as
t---*oo

the expected cost rate due to the presence of all units in the system, where c1 = (ct(0), c1(1),...)r.

c2(j) denotes the expenses for the service act of type j per unit time [observe that the

decision to "apply a certain distribution function Bj" when the system accumulated j units, will

be affected by the cost function c2 that is usually inverse proportionally to the service rates].
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c((u))du] is the expected cost of all service acts in time intervalThus, F2[c2, ](X, t) EX[ j’o
[0,] given that initially z units were present in the system. By Fubini’s Theorem and theorem

P,O, (where /, denotes the Hadamard productA.1 (iii) we have limt_.,oo F2[c’l(x’t) = c2

of fl and c- (c2(0), c2(1),...)T) as the expected cost rate for all service acts over infinite horizon.

c3 is a real-valued scalar denoting the penalty for each interruption of continuously

operating service per unit time [by an interruption of continuously operating server we understand

each "entrance" of the server in idle period when it has to wait for the queue level to reach or
r- RX(i, t) number ofr- 1 RX(i, t) gives the expected expenses for

0
exceed r]. Then, c3 0

idlenesses of the server in time interval [0,t]. By theorem A.1 (i) the penalty rate for each
r-1 c3Pi Observe that a necessityentrance in an idle period equals lira r c3 RX(i t)- i=o-P-ffflt---*oo 0

to penalize the system for service interruptions has a good reason to reduce warm-up expenses.

Since our service time distribution functions are arbitrary and all of them may be different it

includes, as an option, a warm-up time prior to the service, so that B may be given in the form

of a convolution of two probability distribution functions.

c4 denotes the penalty for a unit time to spend idle by the server. Since the expected time

the server idles "on" a set B E + is

EZ,..,i[S" r
o 1 13 I{i} o Q(u) du] = -r-i o I B PZ{Q(u) = i} du,

we have by theorem A.1 (ii) that

lira E’[E- I I{,} oQ(uldu] E "- rrt---,oo 0 0 =0

giving c4
r-1

7ri as the penalty rate for the server to idle per unit time averaged over infinite
i=0

horizon.

w denotes the reward for each completely processed unit per unit time. By theorem 5.1,
PO w!the expected gain of the system per unit time is limt_o w E[S([0, t])] -w-fl = p--.

Finally, the objective function 4i is then

o Pi c4 07ri-Trcl"

APPENDIX

A.1 Theorem. The below formulas hold true for the functionals of the stochastic processes

defined in 5.(i) and 6.1(iii):

(0
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Proof.

px{(u) = j} du = :pjb-----A
PI3"

(i) Let 50 = inf{n > O" Qn = J, Qo = z}, 8k = inf{n > 6k-l" Qn = J, Qo = z}. Then {Tk;
k > 0} is a delayed renewal process (embedded in the point process {Tn} ). Clearly, {T6k; k >_ 0}
is recurrent if and only if p < R. Then it follows from Cinlar [9] and due to lira P{80 < t} = 1

for p < R that

tim
Rx(J’ t)

t
= J’

where j is the recipral of the mean time tween two subsequent returns of . to state {j}.

On the other hand, from Markov renewal theory it is known that
Pj

i = p-
and the statement (i) then follows.

(ii) By C.inlar [9] we have

yielding that

PX{Q(u) = k} E j > o o Rz(J’ ds) Kjk t)

where g(t)= 0
convolution operator. Then, it follows that

Rx(j, ")*9(t) Pjlim =
t-oo n(/,t) fo

Now applying (i) and formula (6.4a) we finally obtain

E >_o
tim -} ’

px{Q(u k} du = _,j >_o RX(J’’)*g(t)’I0
Kjk(v)dv is a non-decreasing continuous function and symbol "," denotes the

Kjk u) du

R:(j, ).g(t) RZ(k, t) =

(iii) The statement follows directly from C.inlar [9].
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