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ABSTPCT

The renewal process generated by the uniform distribution, when
interpreted as a transformation of the uniform distribution into a discrete
distribution, gives rise to the question of uniqueness of the inverse image.
The paper deals with a particular problem from the described domain,
that arose in the construction of a complex stochastic test intended to
evaluate pseudo-random number generators. The connection of the
treated problem with the question of a unique integral representation of
Gamma-function is also mentioned.
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1. INTRODUCTION

New powerful methods for evaluation of pseudo-random number generators were

developed in papers [7] and [8]. Here will be sketched the main ideas. If a generator is

represented by a sequence of independent random variables U1, U2,... with the continuous

uniform distribution U(0,1), whose probability density function is denoted by , then one can

consider how many summands n will be needed to achieve Ul+...+Un<_g and

U1 + / Un + 1 > g, for a fixed positive real g. Of course, n is a value of a random variable,

which is denoted here by Y. Also, it will be said that Y has e(g)-distribution. Thus one

arrives at a model of the renewal process generated by the uniform distribution. Repeating the

described algorithm, one obtains the output sequence YI, Y2,’", of independent random

variables with identical e(g)-distribution. However, this renewal process serves here as a

transformation of the distribution defined by into the e(g)-distribution. Such a kind of
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transformation, based on the renewal process, with a fixed positive real parameter g, is named

sequential g-lransformation. Extensive investigations of the e(g)-distribution are presented in

[7], and applications to evaluation of numerous pseudo-random number generators are

contained in [8].

Experience shows that small abandoning of the examined input sequence from the

assumptions made is strongly emphasized in the output sequence. However, if a distribution

different from U(0,1) can produce e(g)-distribution by means of the sequential g-

transformation, then the probability of accepting a wrong hypothesis could be increased. This

opens the question of uniqueness of the inverse image of e(g)-distribution under the sequential

g-transformation. A more general and more precise statement of the described problem will be

given in the next section. It seems that the renewal process, if interpreted as a sequential g-

transformation, has a deep property that implies injective mapping of certain class of

distributions. Returning to the particular problem treated in the present paper, let us quote

the main result: an input sequence of random variables whose density is different from and

is constructed from any finite number of pieces, each one defined by any entire function of the

exponential type, if subjected to the sequential g-transformation, cannot produce e(g)-

distribution. The main difficulty in obtaining the complete solution of the problem originates

from the nonlinear character of condition (4). In the present paper, this problem is partially

solved by use of the ring structure of the set of Borel functions associated with all entire

functions of the exponential type, cf. Lemma 5. We also wish to emphasize the connection of

our problem with a unique integral representation of the Gamma function, expressed by

Proposition 8. It seems that the theory of functions of a complex variable presently suffers

from the lack of a theorem which would yield asymptotic behavior of the integral involved in

Proposition 8, in the case when

2. RENEWAL PROCESS AS A TRANSFORMATION OF ONE SEQUENCE OF

RANDOM VARIABLES INTO ANOTHER

Consider a sequence (V i) of independent and identically distributed continuous

random variables, having values in the unit interval [0, 1) and the probability density function

f. The following inductive definition of the new sequence (Yi)i can be interpreted as an

algorithmic presentation of a renewal process generated by the density f. Let the real number

g > 0 be fixed,

Zm, n: : Vm + l +..."b Vm + n Xo : O
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Yi: = maz(l ZXi_ l,n <- g), Xi: = Xi- + Yi + l,

9i= 1,.,

The described process can be seen as a transformation of the sequence (Vi) into the sequence

(Yi)i of independent and identically distributed discrete random variables with the probability

function
g g

0 0

Here f(n). denotes the n-fold convolution, and Y stands for any Yi" The proof, that is very

simple, may be found for instance in [1, page 36], or [7] and [8]. From the last two papers, we

shall quote here only the results relevant to the present discussion.

In the case of the above general algorithm, it will be said that the distribution law of

Y is obtained by the sequential g-transformation of the probability density function f,

representing the distribution law of Vi.

In order to prepare a theory for treating pseudo-random number generators, we shall

assume that the general sequence (Vi) is now substituted by the particular case (Ui)i, where

U has the continuous uniform distribution U(0, 1) in the interval [0, 1).

As already said, denotes the probability density function of Ui, i = 1,2,..., and the

corresponding Laplace transform is (s)= L[] = (1-e-S)/s. The resulting Yi, i= 1,2,...,

have a probability function that is obtained from (1) by the substitution f = and the use of

Laplace transformation"

+ (- > 0.

If we intend to use at let two consecutive members of.(Ui) to produce one member of (Yi)i,
we ought to take g : I. It is claimed in [8] that the best tests are obtained with g = 1, and

this condition will be preferred in our paper.

Now bearing in mind the applications in statistics, it is quite obvious that the

following question of uniqueness is of great importance.

Let CD(O, 1) be the set of all continuous distributions in the unit interval [0, 1). In our

context it is natural to represent a distribution by the corresponding density function. On the

other hand, we have the set DD(N) of all discrete distributions containing random variables

that takes on values in the set N of all natural numbers. Then the described sequential g-
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transformation can be interpreted as a particular case of the mapping

Sg:CD(O, 1)---.DD(N),

namely S.q() = e(g).

In reference [7], the following hypothesis has been posed:

s-((a)) = . (9.)

Since we have not seen such questions discussed in renewal theory (cf. for instance [2, pp. 63-

108]), we offer here the following alternative formulation: hypothesis (2) is equivalent to the

uniqueness of the iaverse image of e(g)-distribution under the sequential g-transformation.

From [71 one learns that S7 (e(1)) does not contain: Simpson distribution, any square

parabola-law and any exponential-law distribution.

In the present paper we shall greatly enlarge the class of distribution laws that do not

belong to ..q" l(e(g)), but the complete solution to the problem seems to be very far.

From reference [9] we quote one form of the necessary and sufficient condition for

f E CD(0, to satisfy So(f) = e(g):
g [g]

/ ’70fim).(t)dt = 1 (g r)m, m = 1, 2, (3)
0

3. SOME EQUIVALENT CONDITIONS

Let f E CD(O, 1) and let the corresponding Laplace transform be [f] F. We are

reminded that all density functions that differ on a set of Lebesgue measure zero define the

same distribution, and the analogous identification guarantees bijection in L-transformation,

By theorems from L-transformation we obtain another condition equivalent tocf. [3, p. 72].

(3):

/-’F’(’>d’--1
[’1

2r--7 egSs Z (- 1 g_ ,)m, (4)

La
,,,h ,,, = , ,..., ,, > 0, zo = {,, + i I a}. B,id th not,tion of th ir, Z,,, w u
,o thougho. th p,r,, D = { C (.)_> ,,}. Though th ef-h,,nd id i. (4) m,y b

interpreted as a nonlinear integral transformation of F, we shall greatly facilitate notations if

we look at this as a linear transformation of Fm. So we denote the left-hand side in (4) by

g[Fm]. We are reminded also that F is an entire function on C, cf. [3, p. 145].
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Definition 1: Let F be regular in a right half plane. We say that F has the

property P1 if there exists a > 0 and M > 0 such that F(s) < M/Isl for all s e D, and

Da is contained in the domain of regularity of F.

Let f E CD(0, 1) and F = [f]. We quote the theorem from L-transformation: if f is

of bounded variation, then F has the property P1.

Lemma 2: Suppose that f CD(0, 1), F = [f] and there exist functions F and F2

such that F(s)= Fl(s)+ F2(s)e-3S where fl> g, F and F2 have the property P1 and

consequently there ts Da where both functions are regular. Then

g[Fm(s)]- ra[Fn(s)] m q N.

Proof: By the binomial formula, the left-hand side in (4) becomes the sum of

m + terms, the integrand of the r-th term being

$ IF? r(s)F(s)e(g r/)s, r --0, 1,.. ., m.

To those terms with r > for 3 >_ and r > for 3 > , we can apply Jordan’s lemma and

Cauchy’s theorem, to modify the path of integration into the curve which starts at.

encircles the point a once in the clockwise direction, and returns to + oo. In this manner, and

for r- 1 and /3- directly, it, is immediately seen that the line integrals of these terms are

zero. This proves the lemma.

Note: We are using Jordan’s lemma not in the original form, of. [10, p. 115], but

in a modified form suitable for Laplace transformation, cf. [5, p. 436]. For easier reference we

are quoting this statement:

Given a family of circle arcs CR = {s C[ Is = R, ,,(s) > a), R---.oo, on which the

function G(s) tends to zero uniformly with respect to arg s, as R---,c, when --ff < args <
then for each < 0

t"
lim ] G(s)eStds = O.

J

Hence, when considering condition (4), at least for distributions satisfying the

assumptions posed in Lemma 2, we may discard all terms of the form F2(s)e-#s for >_ g.

For instance, if g and (s) = s 1(1 e s), the term s- le s can be discarded. We call

this process reduction modulo e-S, > g. It, is important to point out that after each

reduction, we are no longer dealing with the L-transform of the density f.
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In the sequel, we discuss two possible modifications of condition (4).

Residue method: Assume that the density functions f (5 CD(0,1) are of bounded

variation, so that, F = L[f] has the property P1, namely F()I < M/Is for D.
Suppose that the complex z lies in the disk Izl < k/M, where 0 < k < 1. It follows that

izF(s) l< k/ls with s on the line La. Multiplying (4) by (-z)m and summing over

m E N, we get, the integral of a uniformly convergent series with respect to z in that disk,

hence a condition equivalent to (4) is as follows:

r=O

hr I1 < /M. m lyti t.sio. o c .lrt te omi of ker ()

Noe an unusual appearance of the function on the right-hand side of (5) in the ce g = 1.

Hence our problem of uniqueness is now modified into the question of unique representation of

the function by the integral in (5) with g = 1, at let for densities which are of bounded

variation. Jordan’s lemma may be applied to (5), this time the family of circle arcs res:
CR = {s e Vii s = R,(s)< a}, R, yielding an expression of finite or infinite

sum of residues. Here, with fixed F, dependence on z of the right-hand side in (5) is realized

through varying positions of poles in the left-hand side, that introduces great diculties.

Mellin trormation: The discrete functions of m in condition (4) admit

interpolation, that is achieved by use of Mellin transformation. We shall describe the results

very concisely, since that method reveals the connection of our main problem with the gamma

function.

Assume that f CO(0, 1),L[f] = F and that f is of bounded variation. Then F h

the property P1.

Definition : Let F be regular in a right half plane. We y that F h the

propey P2 if there exists a > 0 such hat F h no zero in Da.

A consequence of P2 is that G = I/F is regular in Da, particularly on La. Let G(La)
be the image of the line La under the (conformal) mapping G.

tion 4: Let F have the properti P1 and P2 in the half plane Da, a > O.

We shall say that F h the property P3 if on eh finite segment of the negative real s, the

curve G(La) h at most a finite number of intersections with this is.

Starting from expression (5) it is now poible to prove, by means of Mellin

transformation, that (4), where F h the property P3, admits interpolation that consists of
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the substitution of rn E N by t-I E C and m! by F(t), %(t)> 0. The proof comprises a

tricky procedure through which possibly infinite number of singularities are excluded form the

line La. The proof of this theorem and its use in solving the main treated problem would

double the length of the article. However, the statement of the important Proposition 8,

quoted at the end of the next section, would not be understandable without the above

considerations.

The existing methods of complex analysis seem to be insufficient in treating our

problem. Therefore it is reasonable to develop the theory based on conditions in the form (4).
That is done in the next section.

4. ON A CLASS OF FUNCTIONS SATISFYING THE HYPOTHFIS

Let E denote the set of all entire functions of the ezponential type, i.e. of order at most

one and if just of order one then of finite type r. As usual, any function f E E equals its

Taylor series

"] (t) = E aJtj/j!"

In that context the corresponding L-transform is called the Borel function associated with

andjt reads

? (,,) = + 1.
1----0

The definition of exponential type, el. [4, pp. 122-123] implies that there exist constants p > o"

aad K > 0 such that ajl < Kpj, j = O, 1,2, Without proof we shall state the following

simple fact.

Lemma 5: The set LE = {? = L[f ],f E} of Borel functions associated with

all entire functions of the exponential type, supplied with ordinary addition and multiplication,

has the structure of commutative ring without unity.

The above lemma represents the fundamental tool to overcome difficulties introduced

by the nonlinear character of condition (4).

The order of zero of F at infinity is called the degree of F and is denoted by

degF- n. Besides the fact that any entire function restricted to the interval [0,1] is of

bounded variation, it is possible to see directly that there is a > 0, e.g. a = 2p, such that

f (s) < M/Isl for s Oa, where M depends on p and n only. Hence F has the property
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Let r/ denote the unity step function" r/(t)=0 for t<0 and rl(t)=l for t>0. Let

f E E be non-negative on [0, 1]. We construct the density f E CD(0, 1) in the usual way"

f(t) = kf (t)(rl(t) o(t 1)). The normalizing factor k shall be absorbed by the coefficients aj.

Note that non-negativeness of the density function implies an_ 1 > 0 where n = degF (non-
trivial proofi). The corresponding L-transform is F(s)- F(s)- F2(s)e-s, where F = F and

F() = [ (tl],

and consequently

Y ()= 7 ( + t)= ss/j!, s = s+/!
3=0 =0

F2(s) = E b.i/sJ +I

where Ib.il < Kepj, j- O, 1, Of course, E. Thus we are led to the general form of

functions that are naturally treated in this paper, namely

where r > 0,

r

F() = r()-’, (6)

F() = b,s/S, b,sl < Kkp,
j--1

j=l,2,..., k=O, 1,..., r, 0--0 <1 <’’" <r =1" Though we are not dealing with the

original Ik(t)= -[Fk(s)], we assume that f = L-[F] is normalized to the unit area and

is non-negative on [0, 1]. If no = degFo, then analogously to the earlier conclusion, b0, n0 > 0.

This way introduced f is called a piecewise entire density of the ezponential type and

the set of all such densities is denoted by PECD(O, 1). It can be easily proved that L-images

of functions from PECD(O, 1) have the property P1. Then also have the properties P2 and

P3, but proofs are omitted, being too long and immaterial for our main theorem. However, we

may state without proof the implication: If condition (4) is satisfied for some F,

L- 1[F] G PECD(O, 1), then it is satisfied when m is substituted by complex t, 9,,(t) > 1.

Our main result is contained in the following statement.

Theorem 6: lf f PECD(O, 1)nS’a(e(1)) then f =.
Proof: Let f be with assumed properties and F =/,If]. Then the equivalent

condition is expressed by (4) with g = 1"

aJ’l[Fm(s)]- 1/r(m + 1), m N.
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We shall show that the L-transform F q is excluded by asymptotical behavior of (7) when

Now, by Lemma 2, we immediately exclude the last term of the sum (6), so that all

/3k.< l, for k = 0, 1,..., r- 1. Next we modify that sum into the form

f() = f0() + ’f().
Let integer v be chosen such that fll v < and l(V+ 1)> 1. Then by use of Lemma 2, we

have for all rn > v:

Fro(s) = r’(s) + r-(s)e-Bl"’rcU(s (mod e-"). (8)
l\r-/

Substituting here the expression denoted by Fc and completing needed arithmetics, further

reduction modulo e-s is possible. After that, two kinds of terms are obtained: The first term

is F(s) and the remaining terms with

Ga =(:)Fr-"(s)e-’FR(s), (9)

where 0 < fl < 1, Fa LE and Fr- E LE. It turns out that out of all terms (9), the most

important is that with the lowest . It is easily seen that the sought term is

(m) m-i(s)e ), (10)G1 = F flSFl(s
and it is named the principal term. Condition (7) now reads

Y[F’(s)] + + Y[Ga] +... + V[G1] = i/r(m + 1), m E N. (11)

The logical structure of the proving process just follows the order of terms on the left-hand side

of (11). To the notation of the coefficients in the Laurent expansion of Fk, we sometimes use

simplifications.

(i) Let degFo -n, then we express Fo in the form

F0(s) = -"( + ), = /,

where, as we already mentioned, c > 0 and aji < Lpj, j = 1,2,..., L = Kopn/c. Hence

where

j--k
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From the theory of gamma function, cf. for instance [10, pp. 245-246, Example 1], or [6, p. 17,

formula (5)], one easily derives the following formula

where v >_ 0, fl >_ 0. By the use of this formula one obtains

rl[fn(s)] c’(I’(nm + 1))-)
t

(12)

I+ ak,,j/(nm + 1)j (13)
k=l j=k

To enable limiting process m--.oo under the outer sum in (13), we consider the series

as infinite even if rn is finite, adding the zero terms. Then we apply Weierstrass criterion as

above. Here are some details. The general term of the series is brought to the form

[m]/ Ak(m

where [m]k m(m- 1)...(m- k + 1) and

Al,(m) E "V., jl(nm + k + 1) . (15)
j=k

First of all, one shows in the trivial way that 0 < [m]kl(nm + 1)k < 1 for m _> 1, n >_ 1, and

then by estimate (14) that IAk(m) < (Lp)kep. Hence we have the estimate

Balm) < ea(Lp)k/k!, k = 1,2,...,

and this proves the needed uniform convergence of the considered series with respect to

m ( [1,oo). We shall use also a particular consequence of the above consideration, namely

from

Lemma 7: Let F E LE be represented by its Laurent series at infinity and fl > O,

q > O. Then the product e-Ss-qF(s) may be subjected to the transformation l term by

term, if a in Li is sufficiently large.

where, as usual, (x)p = z(x + l)...(z + p-1). To justify integration of the involved infinite

series term by term, one ought to show that for fixed k these series are uniformly convergent

with respect to s La. This can be proved if one previously specifies the estimate

la,jl < LkpJ( j- )k-1 (14)

Now, by Weierstrass’ criterion (also called M-test, cf. [10, p. 49]), the uniform convergence is

obtained if a is chosen so that a > p. Therefore we proved the following statement, that is

repeatedly used in the sequel.
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l<(...) = <.. < +,./(..... + : + 1),. = <.. + <.<. < + .l(nm + t: + 1).

it follows that Ak(m)--.a as m--.oo. Now (13) implies that

r(,,m + i)c m’ff’l[F’(s)l---.exp(alln (16)

(ii) We now investigate the behavior of the general term GR given by (9), when m---cx.

Since FR E LE, we have

FR(s) = ,_., b/s, p _> 1, b:, < x apa- (17)

According to Lemma 5, the following product

where w = m- p, and

j=k u=p =k+p

belongs to the ring LE. However, since the exponent w = m- will tend to infinity, we must

develop more precise estimates. Let us jump over details and state the final result:

assumptions (14) and (17) imply that

b.xl < LkKRp k (18)

where Par = max{p, PR}"

It is clear that dividing the right-hand side of (18) by p, Pe > Px, the new function of

A will have the maximum Ke, which yields the estimate bk,.[ < KeP. In the same time we

demonstrated the main technique used in proving Lemma 5.

Hence we apply Lemma 7 and formula (12) to obtain

(:)c to [wit: At:(nw, P)
ffl[GR] = t(1 )nt(F(nw + 1))- 1 Z k!- (nW +k=O

wherew=m-,

Ak(nw, P) k,k / ,/(nw + k + 1).,’t, = bk,.i(1 17)j.

(19)

The following estimate is done in two steps. The first one consists of a long calculus

and yielding, using (18), that

At:(nw, P) < Lt:KRe’Y ,,.fit: + Pl(nw + k + 1)p _< Du,( L)t:,

= i%(1- ), D, = Cpl(nw+ 1)p, Cp-’- KReP
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The second step shows how the general term of the outer sum of (19) may be estimated.

absolute value is less than

Its

D’(nw 3- 1)’k( L)k/k!"

Similarly as in section (i), we have [w]k/(nw + 1)k _< 1, so that the outer sum is majorized by

Dwezp( L) = C/(nw + l)v, where C, = C,ezp( L). Now we can prove that

o <_:i.,m_ooV(nm + 1)c-ml[GR][ (20)

since 0<1-/3< 1.

the first one.

<_ C*pc Ulim (ml
m--.oo\//. -/3)"’[nm]nu/(nw + 1)v -- 0,

This result is true for every term on the left-hand side of (11) except for

As an obvious and important corollary to the result above, we state that

l,imooP(m)F(nm + 1)c mx[GR] = 0 (21)

for any polynomial P(m), where n >_ 1, c > 0.

(iii) Multiply equation (11) by r(nm+ 1)c -", earl it (ll.A) and introduce the notation

X(m) for its right-hand side. The logarithm of X is brought into the form

log X(m)= (n- 1)re(log(m+ 1)- 1)+ m(n log n-log c) + O(1),

by use of the known asymptotic behavior of gamma function. According to (16) and (20), the

logarithm of the left-hand side of the equation (11.A) has the limit value al]n as m--..oc. If we

assume n > 1, then log X(m)---.oo, which is impossible. Hence n = 1. Again, if c 7 1, then log

X(m)--, oo, which also is impossible. Hence c = 1, and consequently X(m)- 1 for m E N,

which implies that a = 1.

(iv) Our initial equation (11) is now slightly simplified:

Z (m+ l)kAk(m)/k!+ Z r(m + 1)ffl[Ga] 0 (22)
k=l

where Ak(m is given by (15), with n- 1. Let us emphasize that the second sum in (22) is

also finite and comprises the principal term. Multiplying (22) by a polynomial P(m) that will

be specified later, we conclude that

owing to (21).

m

lira P(m)Z,--.oo (’’+’ i"),A,(m)/k! = 0, (23/
k=l

Let deg 7 = q > 1, so that
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7- aj/sj and 7k= ak.j/sj,
.j=q j=kq

kwhere ak, kq aq, and one can prove that here

Therefore this time A(m) h the form

ak(m = B(m)/(m + k + l)(q_ l)k, Bk(m) = ak, j/(m + kq + 1)j_kq.
j=kq

As before, we sume the sum in (23) to be infinite. Now we shall majorize this series by a

convergent series of constants. In the first ple

( )B(m) < (Lpq)=opJ J + le- 1
j /(m + kq + 1)j < (Lpq)ke.

Let us take P(m) = (re)q_ 1, what suffices to derive the obvious fazt that

[m]k(m)q_

for m and k 1, q 2. The general term of the majorante is e(Lpq)/k, hence the series

in (2a) is uniformly convergent with respect to m [1,). We can accomplish the limiting

process term by term. For k = we have

[m]l(m)q-1
Bl(m)=al,q=aq,

however limiting values of all terms with k > are zero. From (23) we obtain aq = 0, which is

a contradiction. Hence aj 0 for j 1,2,..., i.e. Fo(s = 1Is and (22) is reduced to

r(m + 1)afl[GR] = 0. (24)

(v) In our final step we shall prove that F = 0, next F2 = 0, etc. The order of conclusions

is dictated by the order of increasing/3/ in (6). The general term of the remainder denoted in

(22) by F(m + )[Ga] i majorized in relation (20).

r(m + 1) ,[GR] Cog(w + i)o(1 Z)w,

where w : m- p, C = h’RP ezp( (1 + L)), deg FR = p 1. If the discued general term

differs from the principal term, then (1 -)/(1 -fl) < 1 that implies that multiplying (24) by

P(m)/(l- fli)m, where P(m) is any polynomial in m, and taking m, there remains

something of the principal term only The principal term, given by (10), now reds

mr(m + 1)fills me BlSF (s)] = m(1 -/l)m 1 bl j/(m + 1)j 1’

J=Pl
where b,.i bl, j(1 l )J, Pl deg F and therefore b,, O. Now the arbitrary
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polynomial may be specified" P(m) = (m + 1)p 2- As we explained, (24) implies

lim Z lj(m)p 1/(m +l)j =0"
Iqt--’*O0

3rap

The general term of the sum is majorized by Kl((1-)p)#/j! with m [I,), so the

Weierstrs’ criterion of uniform convergence enables us to put m under the sum. Thus

b,pl = 0, a contradiction. Hence F = 0. Now the term with 2 becomes principal, causing

F2 = 0. The method works up to the conclusion Fr_ 2 = 0. Now the lt term becomes

principal, and we need to examine Fr_ I" If the principal term constitutes the whole of the

remainder, the method is slightly mified. Then

(7)r,(m _1. l)]*,[sl-me Jr-,aFt 1($)]-

)"-’ "g. s/(m + = 0,m(l /,_
J=Pr-1

for mN, deg Fr_--pr_. Hence the sum is zero for every mN. The equation may be

multiplied by (m + l)pr_ _2/(1 -r_)m- and the limit process rn---,oo accomplished

under the summation sign, the series being uniformly convergent with respect to m [1,oo).

= 0 a contradiction. We obtained Fr 1 -- 0 and thereforeThe result is br_,pr_
F(s) = Fo(s = 1Is.

This completes the proof of Theorem 6.

In the complex analysis approach to our main problem, a unique integral

representation of reciprocal gamma function would follow from Theorem 6. We are quoting

that corollary to illustrate the connection of our problem with the theory of gamma functions.

Proposition 8:

Then the statement

Let f e PECD(O, I), L[f]- F and let F be reduced modulo e -.

1 f -1Ft(s)ds tEC, 9,,(t)>O, a>O/r(t + 1) = eSs

implies that F(s)= I/s. La

Remark: As already mentioned, f PECD(O, 1) implies that F has the properties

P1 and P2 for sufficiently large a > 0. Then F denotes the branch which has real values on

the part of the real axis contained in Da.

The method developed in the proof of Theorem 6 may be easily extended to the case

g > 1. The structure of the general expression on the right-hand side of (4) demands a bit

more of skillfulness. The integral in (4) ought to be transformed by the change of integration
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variable: gs = u, and then the same steps (i) (v) should be generalized. The term of the

greatest order 9m/F(m + 1) cancels and the right-hand side in (22) is no longer zero but, a

function of m and g which permits the same conclusions as in the case # = 1. In such a way

one can prove the following generalization.

Theorem 9: Let g be fied and g > 1. If f . PECD(O, 1)NSI(e(g)), then

fe:.

The usefulness of Theorem 9 becomes more evident, if we are reminded that any

continuous fuaction on a finite segment [a,b] permits arbitrary close approximation by

Bernstein polynomials, cf. [4, pp. 63-97]. Hence if f E CO(0,1) has a finite number of

continuous segments, then one can find f’E PECD(O, 1) arbitrary close to f such that f*
satisfies hypothesis (2).
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