NOTE ON THE INEQUALITIES OF J. KAZDAN¹

WILL Y. LEE

Rutgers University - Camden Department of Mathematics Camden, NJ 08102, USA

ABSTRACT

In this note, we prove the Kazdan's inequalities without using what is called the Heisenberg uncertainty principle. Instead we prove it using Garofalo-Lin inequality among other things.

Key words: Heisenberg uncertainty principle, unique continuation theorem, Garofalo-Lin inequality, Schwarz inequality, Poincare inequality.

AMS (MOS) subject classifications: Primary: 35, Secondary: 49.

1. INTRODUCTION

In [4], J. Kazdan has shown strong unique continuation theorem (Theorem 1.8 of [4]) whose proof is mainly based on his main lemma (Lemma 2.4 of [4]). Several analytic as well as geometric inequalities were used to prove the main lemma. Among them are the following inequalities:

There exist constants C_1, C_2, C_3, C_4, C_5 and r_0 such that for all $r \in (0, r_0)$

$$|I_{j}(r)| \leq C_{j}f(r)(H(r) + D(r)) \ (j = 1, 2) \tag{1}_{j}$$

$$\frac{1}{r^{n-2}} \int_{\partial B_r} |\nabla u|^2 dS \le rB(r) + C_3H(r) + D(r)$$
(2)

$$|I_{3}(r) \leq C_{4}f(r)(H(r) + D(r) + \sqrt{rH(r)B(r)})$$
(3)

$$|I_4(r)| \le C_5 f(r)(H(r) + D(r) + rB(r)).$$
(4)

Printed in the U.S.A. © 1992 The Society of Applied Mathematics, Modeling and Simulation

¹Received: February, 1992. Revised: July, 1992.

Here $f(r), I_1(r), I_2, I_3(r), H(r), D(r), B(r)$ are defined as follows: let f be a smooth increasing function with f(0) = 0 satisfying $\int_0^{r_0} \frac{f(r)}{r} dr < \infty$ and let u satisfy for $n \ge 3$ the differential inequality with a and b constants:

$$|\Delta u(x)| \leq \frac{af(r)}{r^2} |u(x)| + \frac{bf(r)}{r} |\nabla u(x)|$$
(5)

$$I_1(r) = \frac{1}{r^{n-2}} \int_{B_r} u\Delta u dV \tag{6}$$

$$I_2(r) = \frac{2}{r^{n-2}} \int_{B_r} \rho u_\rho \Delta u dV \tag{7}$$

$$I_{3}(r) = \frac{1}{r^{n-3}} \int_{\partial B_{r}} u \Delta u dS$$
(8)

$$H(r) = \frac{1}{r^{n-1}} \int_{\partial B_r} |u|^2 dS$$
(9)

$$D(r) = \frac{1}{r^{n-2}} \int_{B_r} |\nabla u|^2 dV$$
(10)

$$B(r) = \frac{2}{r^{n-2}} \int_{\partial B_r} u_{\rho}^2 dS.$$
⁽¹¹⁾

In his proof of inequalities $(1)_{j}(2)$, Kazdan relies on what is called the Heisenberg uncertainty principle (see [2], [3], & [4]):

$$\int_{B_{r}} \frac{w^{2}}{\rho^{2}} dV \leq \frac{c}{r} \int_{\partial B_{r}} w^{2} dS + \widetilde{C} \int_{B_{r}} |\nabla w|^{2} dV, n \geq 3$$
(12)

$$\int_{B_{r}} \frac{2 |w| |\nabla w|}{\rho} dV \leq \frac{C'}{r} \int_{\partial B_{r}} w^{2} dS + \widetilde{C}' \int_{B_{r}} |\nabla w|^{2} dV, n \geq 3$$
(13)

where C and \widetilde{C} are dimensional constants. Inequality (13) is an easy consequence of (12). Indeed a straightforward computation shows that $C' = \frac{C\lambda}{r}$, $\widetilde{C}' = \lambda(\frac{1}{\lambda^2} + \widetilde{C})$ for any $\lambda > 0$. Since there is nothing to comment on the proofs of inequalities (3) and (4), we prove inequalities $(1)_j$ and (2) without using the Heisenberg uncertainty principle (12)-(13). Instead we use the following lemma which is the Garofalo-Lin inequality (see 4.11 of [2]) applied to the operator L where

$$Lu = -\Delta u + b(x) \cdot \nabla u + V(x)u = 0.$$
⁽¹⁴⁾

Here b(x) and V are majorized by with constants a and b:

$$|b(x)| \leq \frac{bf(r)}{r}, |V(x)| \leq \frac{af(r)}{r^2}.$$
 (15)

Lemma: Let $u \in w_{loc}^{1,2}$ satisfy equation (14). Then there exists a small constant $r_0 \in (0,1)$ depending on n, b, V and u such that for all $r \in (0, r_0)$

$$r \int_{\partial B_r} u^2 dS \ge \int_{B_r} u^2 dV.$$
⁽¹⁶⁾

Proof: First observe that

$$\begin{split} & \int_{B_r} u(b(x).u)(r^2 - |x|^2) dV \\ & \leq \int_{B_r} |u| |b(x)| |\nabla u| (r^2 - |x|^2) dV \\ & \leq \|b\|_{L^{\infty}} (\int_{B_r} u^2 (r^2 - |x|^2) dV)^{1/2} (\int_{B_r} |\nabla u|^2 (r^2 - |x|^2) dV)^{1/2} \end{split}$$

(Schwarz inequality)

$$\leq \|b\|_{L^{\infty}} r_0^2 (\int_{B_r} u^2 dV)^{1/2} (\int_{B_r} |\nabla u|^2 dV)^{1/2}$$

$$\leq C \|b\|_{L^{\infty}} r_0^2 (\int_{B_r} |\nabla u|^2 dV) \qquad (\text{Poincare inequality})$$

where C is a dimensional constant. Consequently we obtain

$$\int_{B_{r}} u(b(x). \nabla u)(r^{2} - |x|^{2} dV \ge -C ||b||_{L^{\infty}} r_{0}^{2} \int_{B_{r}} |\nabla u|^{2} dV.$$
(17)

Choose r_0 so small that

$$r_{0}^{2} \leq 1/(C \|b\|_{L^{\infty}} \int_{B_{r}} |\nabla u|^{2} dV \int_{B_{r}} u^{2} dV).$$
(18)

Inequalities (17)-(18) then reveal that

$$\int_{B_{r}} u(b(x). \nabla u)(r^{2} - |x|^{2}) dV \ge - \int_{B_{r}} u^{2} dV.$$
(19)

Secondly we have

$$\int_{B_{r}} V u^{2} (r^{2} - |x|^{2}) dV \ge - ||V||_{L^{\infty}} r_{0}^{2} \int_{B_{r}} u^{2} dV.$$
(20)

Choose r_0 such that

$$r_0^2 \le (n-2)/ \|V\|_{L^{\infty}}.$$
(21)

Inequalities (20)-(21) then show that

$$\int_{B_{r}} V u^{2} (r^{2} - |x|^{2}) dV \ge -(n-2) \int_{B_{r}} u^{2} dV.$$
(22)

Finally integration by parts and equation (14) give us the following identity:

$$\int_{B_r} (|\nabla u|^2 + ub(x) \cdot \nabla u + Vu^2)(r^2 - |x|^2)dV = r \int_{\partial B_r} u^2 dS - n \int_{B_r} u^2 dV.$$
(23)

Equation (23) combined with inequalities (19) and (22) shows that

$$\begin{split} r \int\limits_{\partial B_r} u^2 dS &\geq \int\limits_{B_r} |\nabla u|^2 (r^2 - |x|^2) dV - \bigvee_{B_r} u^2 dV - (n-2) \int\limits_{B_r} u^2 dV \\ &\quad + n \int\limits_{B_r} u^2 dV \\ &\geq - \int\limits_{B_r} u^2 dV - (n-2) \int\limits_{B_r} u^2 dV + n \int\limits_{B_r} u^2 dV \\ &\quad = \int\limits_{B_r} u^2 dV \end{split}$$

for all $r \in (0, r_0)$ where r_0 is chosen to be the minimum of the right hand sides of inequalities (18) and (21). This completes the proof.

We give the proof of $(I)_1$ only as the proofs of $(I)_2$ and (2) are essentially the same.

Proof of
$$(I)_{1}$$
: $|I_{1}(r)| \leq \frac{1}{r^{n-2}} \int_{B_{r}} |u| |\Delta u| dV$
$$\leq \frac{1}{r^{n-2}} \int_{B_{r}} |u| (\frac{af(r)}{r^{2}} |u| + \frac{bf(r)}{r} |\nabla u|) dV \qquad (by (5))$$

$$\leq \frac{af(r)}{r^{n-1}} \int_{\partial B_{r}} u^{2} dS + \frac{bf(r)}{r^{n-1}} (\int_{B_{r}} u^{2} dV)^{1/2} (\int_{B_{r}} |\nabla u|^{2} dV)^{1/2} \qquad \text{(Lemma and Schwarz)}$$

$$\leq \frac{af(r)}{r^{n-1}} \int_{B_{r}} u^{2} dS + \frac{bf(r)}{r^{n-1}} (\frac{1}{2r} \int_{B_{r}} u^{2} dV + \frac{r}{2} \int_{B_{r}} |\nabla u|^{2} dV)$$

$$\leq af(r)H(r) + \frac{b}{2}f(r)H(r) + \frac{b}{2}f(r)D(r) \qquad \text{(Lemma, (9) \& (10))}$$

$$\leq C_{1}f(r)(H(r) + D(r))$$

where $C_1 = a + b/2$. This complete the proof of $(I)_1$.

A simple computation shows inequalities $(I)_2$, (2), (3) and (4) are satisfied with $C_2 = a + 2b$, $C_3 = (n-2) + (n+2)\gamma + C_2f(r)$, $C_4 = a + (3b/2)\sqrt{C_3}$, $C_5 = (3/2)C_4$, where γ satisfies $0(r) < (n+2)\gamma$.

REFERENCES

- M.S. Baouendi and E.C. Zachmanoglou, "Unique continuation of partial differential equations and inequalities from manifolds of any dimension", *Duke Math. J.* 45, (1978), pp. 1-13.
- [2] N. Garofalo and F.H. Lin, "Monotonicity properties of variational integrals A_p weights and unique continuations", *Indiana Univ. Math. J.* 35, (1986), pp. 245-268.
- [3] _____, "Unique continuation for elliptic operators: A geometric-variational approach", Comm. Pure & Applied Math XL, (1987), pp. 347-366.
- [4] J.L. Kazdan, "Unique continuation in geometry", Comm. Pure & Applied Math. XLI, (1988), pp. 667-681.
- [5] D. Gilbarg and N.S. Trudinger, "Elliptic Partial Differential Equations of Second Order", Springer-Verlag, 1983.