Journal of Applied Mathematics and Stochastic Analysis
6, Number 3, Fall 1993, 217-236

PROPERTIES OF SOLUTION SET OF STOCHASTIC
INCLUSIONS!

MICHAL KISIELEWICZ

Institute of Mathematics
Higher College of Engineering
Podgérna 50, 65-246 Zielona Géra, POLAND

ABSTRACT

The properties of the solution set of stochastic inclusions
t t t
7= 2, €cl ([ F (247 + [G (e )dwy + [ [ Ho (o, (dride)) are

investigated. They are equivalent to properties of fixed points sets of
appropriately defined set-valued mappings.
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1. INTRODUCTION

There is a large number of papers (see for example [1], [4] and [5]) dealing
with the existence of optimal controls of stochastic dynamical systems described
by integral stochastic equations. Such problems can be described (see [10]) by
stochastic inclusions (SI(F,G, H)) of the form

t t 4
—z,€cl / F,(z,)dr + / G, (z,)dw, + / / H, (z,)9(dr,dz) |
§ S S Rn

where the stochastic integrals are defined by Aumann’s procedure (see [7], [9]).

The results of the paper are concerned with properties of the set of all
solutions to SI(F,G,H). To begin with, we recall the basic definitions dealing
with set-valued stochastic integrals and stochastic inclusions presented in [10].
We assume, as given, a complete filtered probability space (,%,(%,);>0 P),
where a family (%,);5q, of o-algebras ¥, CF is assumed to be increasing:
F,CF, if s<t. Weset R, =[0,00), and B, will denote the Borel o-algebra on
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R,. We consider set-valued stochastic processes (F,);»0,(G:)e>0 and
(%t,z):zo,zeR"’ taking on values from the space Comp(R") of all nonempty
compact subsets of n-dimensional Euclidean space R". They are assumed to be
predictable and such that on: | F. || Pdt < o0, p>1, Ecz |G || 2dt < oo and

Eofo J | R, . || °dtg(d2) < oo, where ¢ is a measure on the Borel o-algebra B" of
oRn
R* and ||A|l: =sup{|a|:a€ A}, A€ Comp(R"). The space Comp(R") is

considered with the Hausdorff metric h defined in the wusual way, i.e.,
h(A, B) = maz{k(A,B),h(B,A)}, for A,Be€Comp(R"), where h(4,B)
= {dist(a,B):a € A} and h(B,A)= {dist(b,A):be€ B}. Although the classical
theory of stochastic integrals (see [3], [8], [12]) usually deals with measurable and
F,-adapted processes, it can be finally reduced (see [4], pp. 60-62) to predictable

ones.

2. BASIC DEFINITIONS AND NOTATIONS

Throughout the paper we shall assume that a filtered complete
probability space (Q,F,(F,), » o, P) satisfies the following usual hypotheses: (z) %o
contains all the P-null sets of ¥, (i) F = V,5F, and (7)) F, =uﬂ “E.Fu, for all
t,0 <t <oo. As usual, we consider a set R, x {2 as a measurable space with the
product o-algebra B, ® F. Moreover, we introduce on R, X the predictable
o-algebra %P generated by a semiring % of all predictable rectangles in R, x {2 of
the form {0} x Ay and (s,t]x A,, where A€ F, and A, €F, for s<t in R,.
Similarly, besides the usual product o-algebra on R, X xR", we also introduce
the predictable o-algebra 9" generated by a semiring 36" of all sets of the form
{0} x Agx D and (s,t]xA,xD, with A, €F, A,€%F, for s<t in R, and
D € B, where B} consists of all Borel sets D C R" such that their closure does
not contain the point 0.

An n-dimensional stochastic process z, understood as a function
z:R, x Q—R" with F-measurable sections z,, each t >0, is denoted by (z,); > o
It is measurable (predictable) if z is B, ® F (P, resp.)-measurable. The process
(1) >0 is F-adapted if z, is F,-measurable for ¢ > 0. It is clear (see (3], [8], [11])
that every predictable process is measurable and %¥,-adapted. In what follows the
Banach space LP(R, xQ,%P,dtx P,R"), p > 1, with the norm || - || 13 defined in
the usual way, will be denoted by 4£2.  Similarly, the Banach spaces
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L, %, P,R") and L?(Q,%,P,R") with the usual norm || - || ;p are denoted by
LA(%F,) and LE(F), respectively.

Throughout the paper, by (w.);»0, We mean a one-dimensional %,
Brownian motion starting at 0, i.e., such that P(wy,=0)=1. By y(t,A) we
denote a ¥F,-Poisson measure on R, X B", and then define a ¥F,-centered Poisson
measure ¥ (t,A), t >0, A € B", by taking ¥ (¢,A4) = v(t,A) —tq(A), t >0, A € B",
where ¢ is a measure on B" such that Ev(t, B) = tq(B) and ¢(B) < oo for B € B3.

For a given %F,-centered Poisson measure ¥(t,4), t>0, A€ B", W2
denotes the space L*[R, xQxR", P"dtxPxgq), with the norm || - || w2
defined in the usual way. We shall also consider the Banach spaces
LP(R,,B,,dt,R,), p>1 and L*R, xR*, B, ® B", dt x¢,R, ), with the usual
norms by | - |, and || - ||, respectively. They will be denoted by LP(® . ) and
L¥(B , x B"), respectively. Finally, by MA(P), p>1 and M}(P",q) we shall
denote the families of all %P-measurable and %P"-measurable functions
iR, xQ—-R" and h:R xQxR"—R", respectively, such that zo | fo | Pdt < oo

and O(jj jn | by, .| 2dtg(dz) < 0o, a.s. Elements of M2A(P), p>1 and M23(P",q) will
be denu;ted by f=(f)e>02and h=(h,,), >0,z € R™ respectively. We have

L= {f e MHP:ET | fu|Pdt <o}, p 21,
and W2 = {h € M2(P", q): EZO I | by, , | 2dtq(dz) < oo}

Given g€ M*(P) and he M} (Pq), by (j‘g,dw,)»o and
0 >
(j [k, .V (d7,dz2)), >0, Wwe denote their stochastic integrals with respect to a F-
oR" =

Brownian motion (w,);>o and a F,-centered Poisson measure ¥(¢,4), t20,
A € D", respectively. These integrals, understood as n-dimensional stochastic

processes, have quite similar properties (see [6]).

Let us denote by D the family of all n-dimensional ¥,-adapted cadlag pro-
cesses (z,), > o such that
Bsupyzola.|? <oo
and lims_oSup; > 08uP; < 5 <t 4+ 6 BT — 2, = 0.
Recall that an n-dimensional stochastic process is said to be a cadlag process if it
has almost all sample paths right continuous with finite left limits. The space D

is considered as a mnormed space with the norm || .|, defined by
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"€"8= I sup,20|5,| I 2 for £=({)i>0€ D. It can be verified that
(D, || - Il p) is a Banach space.

Given 0 L a < <00 and (2y); 50 € D let P = (zP), >o be defined by
zP =z, and 7P = g5 for 0 <t < and t > B, respectively, and z{? = z, for
a<t<pB. Itis clear that D*?#: = {z*P:z € D} is a linear subspace of D, closed
in the || - || jnorm topology. Then (D™ Al ¢) is also a Banach space.
Finally, as usual, by o(D, D*) we shall denote a weak topology on D.

In what follows we shall deal with upper and lower semicontinuous set-
valued mappings. Recall that a set-valued mapping R with nonempty values in
a topological space (Y,Jy) is said to be upper (lower) semicontinuous [u.s.c.
(Ls.c.)] on a topological space (X,Tx) if B~ (C) ={z€ X:R(z)NC # 0}
(R_(C): ={r e X:R(z) CC}) is a closed subset of X for every closed set
C CY. In particular, for ® defined on a metric space (%,d) with values in
Comp(R"), it is equivalent (see [9]) to lim h(R(z,),R(z)) =0
(lf?mooﬁ (Ro(z), B(z,)) =0) for every z€% and every sequence (z,) of %
converging to z. If, moreover, % takes convex values then it is equivalent to
upper (lower) semicontinuity of a real-valued function s(p, ®(-)) on R" for every
p € R", where s(-,A) denotes a support function of a set A € Comp(R"). In what
follows, we shall need the follow well-known (see [9]) fixed point and continuous

selection theorems.

Theorem (Schauder, Tikhonov): Let (X,9x) be a locally convez
topological Hausdorff space, % a nonempty compact convez subset of X and f o

continuous mapping of % into itself. Then f has a fized point in %.

Theorem (Covitz, Nadler): Let (%,d) be a complete metric
space and R:B6—-CIU%B) a set-valued contraction mapping, i.e., such that
H(R(z), Ro(y)) < Md(z,y) for z,y € B with A€[0,1), where H is the Hausdorff
metric induced by the metric d on the space CI(%) of all nonempty closed
bounded subsets of 6. Then there exists z € 6 such that z € R(z).

Theorem (Kakutani, Fan): Let (X,9x) be a locally convez
topological Hausdorff space, 3% a nonempty compact convez subset of X and
CClU(%) a family of all nonempty closed convez subsets of %. If R:%—CCI(%) is
u.s.c. on % then there ezists € % such that z € R(z).
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Theorem (Michael): Let (X,T%x) be a paracompact
space and let R be a set-valued mapping from X to a Banach space (Y, | - ||)
whose values are closed and convez. Suppose, further R is l.s.c. on X. Then
there is a continuous function f: X—Y such that f(z) € R(z), for each z € X.

3. SET-VALUED STOCHASTIC INTEGRALS

Let §=(G;):>0 be a set-valued stochastic process with values in
Comp(R"), i.e. a family of F-measurable set-valued mappings G,: Q—Comp(R"),
t > 0. We call § measurable (predictable) if it is B, @ F (P, resp.)-measurable.
Similarly, § is said to be F,-adapted if §, is F,-measurable for each ¢t > 0. It is
clear that every predictable set-valued stochastic process is measurable and ¥,
adapted. It follows from the Kuratowski and Ryll-Nardzewski measurable
selection theorem (see [9]) that every measurable (predictable) set-valued process
with nonempty compact values possesses a measurable (predictable) selector.
We shall also consider B, @ FQ® B" and P"-measurable set-valued mappings
PR, x A xR"—CI(R™). They will be denoted as families (%t,z)»o,z <R and
called measurable and predictable, respectively set-valued stochastic processes
depending on a parameter z € R". The process o = (R,,), 5 o€
F,-adapted if B, , is F,-measurable for each t >0 and z € R".

R™ 1s said to be

Denote by MP_ (P), p > 1, and MZ_ (P, q) the families of all set-valued

predictable processes F = (F,),»o and B =(Ry ;) respectively, such

t>20,z€ R™
that Eof || F, || Pdt < oo and Eofof | R, . || 2dtq(z) < co. Immediately from the
0 oR"

Kuratowski and Ryll-Nardzewski measurable selection theorem it follows that for
every F € MP_ (P), p>1, and R € MZ_ (P, q) the sets
PP(F): = {f € L8: f(w) € Fy(w), dt X P - a.e.}
and
4 R): = {h € Wik, ,(w) € Ry J(w),dtx PX q - ae}

are nonempty.

Given  set-valued processes F = (Fy),50€ ME_(P), G=(G)>0
€ M2 _(P) and R =(Ry,,), 0.:¢R"E MZ_ (P, q) by their stochastic integrals
JF, 3§ and 9% we mean families IF =(3,F),50, 46=(3:8):>0 and
TR = (T,R); 50 subsets of LE(F,), p>1 and L(F,), respectively, defined by
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SF={%f:f € " (F)}, 48={3,9:9 €¥*(Q)} and T, R = {T,h:h € ¥}(R)}, where
f = ff,ds, 9= fg,dw and T,h = ff h,, .V (ds,dz). Given 0 < a < f< oo,

8
we also define fF ds = {ff,d.s f € $P(F)}, f@,dw {f 9,dw,: g € $*(§)} and
f f R, 7 (ds,dz) = { f f h, .V (ds,dz):h € $*(R)}. The following properties of
set valued stochastic mtegrals are given in [10].
Proposition 1: Let FeMP_(P), p>1l, GeM2_(P) and

R € M2_ (P q). Then

(?)  3,G and T, R are closed subsets of L3(F,) for each t > 0.

(2¢)  If, moreover, F,G and % take on convez values then 3,F, $,G and T,

are convez and weakly compact in LE(F,) and Li(F,), respectively, for
eacht>0.

Proposition 2:  Let FeM_[(P), G e M2_(P) and
R € Mo _ (P",q). Assume (z,), 50 € D is such that

t t t
z,—z,Ecly (/F,.d‘r-i— /g,.dw,.+ //“.R:T,z?'/ (dT,dz))
§ s S R"

for every 0 <s<t<oco. Then for every € >0 there are f€€ $P(F), ¢ € $*(G)
and h¢ € $%(R) such that

sup | | (zy — zo) — (/f‘d‘r—}-/g,,dw +//h ﬁ(dT,dz))l ||L2§e.

0 R"

Proposition  3: Assume FeMi_(P), GeM:_(P) and
R € M _ (P",q) take on convez values and let (z,), 50 € D. Then

—-z,€ [ Fdr+ |G dw, +/ R, U (dT,d2)
Jrars fases | |
for 0 < s <t < oo if and only if there are f € $%(F), g € $%(G) and h € $4(R) such
that

wt—xo-{-/ffdr—i-/g,dw +//h,z (dr,dz), a.s. for each t > 0.
0 R"
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4. STOCHASTIC INCLUSIONS
Let F={(Fy(z):>0z€R"}, G={(Gyz)):>0:z€R"} and H=
{(H:,:(2)), 50,, R™ T € R"}. Assume F,G and H are such that (Fy(z)),»,
€MD), Gz € M_u(P) and (H, @)y, cgr € M- P70) for
each z € R".

By a stochastic inclusion, denoted by SI(F,G, H), corresponding to F,G
and H given above, we mean the relation

t t t
z,—z, € cng(/F,(m,)dT+ /G,(x,)dw,.+ //H,'z(m,)'i/’ (dT, dz))
S S S Rn

that is to be satisfied for every 0<s<t<oo by a stochastic process
= (2);>0€D such that Fomze MP_(P), GomzeM]_,(P) and
Homz e M}_ (P"q), where Fomz= (Fz,))50 Gomz=(Gyx,));>0 and

Homz = (Ht,z(xt))t >0,z€ R™-
conditions mentioned above, is said to be global solution to SI(F,G, H).

Every stochastic process (z,), » o € D, satistying the

Corollary 1: If F,G and H take on convez values then SI(F,G,H) has

a form
t 4 4
z—2,€ [Fa)dr+ [G(e)dw,+ [ [H, ()5 (dr,dz)
s o |

and (2,);50€ D is a global solution to SI(F,G,H) if and only if there are
f € $*(F omz), g € $(G omz) and h € $%(H omz) such that

t t t

T, = To+ /f,.dr + /g,dw,. + / /h,,ﬁ (d7,dz),a.s. for each t > 0.
0 0 0R"

Given 0 < a < 8 < 00, a stochastic process (;), > o € D is said to be a local

solution to SI(F,G,H) on [a,f] if
t t t
g,—z,€cl o | F(z,)dr+ [ G.(z,)dw, + H, (z,)V(dr,dz)
ey}

fora<s<t<p.

Corollary 2: A stochastic process (z,);50€ D is a local solution to
SI(F,G,H) on [a,B] if and only if £? is a global solution to SI(F°P G, HF),
where Faﬁ = I[a,ﬂ]F’ Ga’B = '[a, ﬂ]G and Haﬁ = l[a,ﬁ]H'
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A stochastic process (z,);»0 € D is called a global (local on [e, ], resp.)
solution to an initial value problem for stochastic inclusion SI(F,G,H) with an
initial condition y € L*(Q,F,R") (y € L}(Q, F,,R™), resp.) if (Z)e >0 is a global
(local on [a,p], resp.) solution to SI(F,G,H) and zy=y (z, =y, resp.). An
initial-value problem for SI(F,G,H) mentioned above will be denoted by
SI1,(F,G,H) (SI®#(F,G,H), resp.). In what follows, we denote a set of all
global (local on [e,f], resp.) solutions to SI(F,G,H) by A/(F,G,H)
(A2A(F,G,H), resp.).

Suppose F,G and H satisfy the following conditions (A, ):

() F={(Fy2)0z€R"Y}, G={(G2)) 0z €ER"} and H =
{(Ht12(m))t_>_0,z€R": z € R"} are such that mappings R* x 2 xR" >
(t,w,z)—=Fy(z)(w) € CI(R™), R,xOAXR"3 (t,w,z)—G(z)(w) € CI(R")
and R, x @ xR"xR" 3 (t,w, 2,z)—=H, ,(z)(w) € CI(R") are P ® B" and
P" ® B"-measurable, respectively.

(@)  (Fd2)iz0 (G20 (Ho .(2)), >0,z¢R" 3¢ uniformly p- and
square-integrable bounded, respectively, i.e.,

(sup, cge |l Fe(@) | )e 50 € £8, (sup, (grll Gi(2) || )i 50 € £3 and
(sup, e | B s(@) )y, c o € W

Corollary 3: For every (z,); >0 € D and F,G, H satisfying (A,) one has

Fomz e ME_ (P), Gomz € M?_ (P) and H omz € M2 _ (P, q).

Now define a linear continuous mapping ® on L2 x L2 x W2 by taking
O(f,9,h) = (3 + $:9+ T;h), 50 to each (f,g,h) € L2 x L2 x W2, Tt is clear that ®
maps £7x 22 x W2 into D. Given above F,G and H satisfying (A,), define a
set-valued mapping 3 on D by setting

¥(z) = cle(‘I’(l‘fp(F omz) X 3’2(G omx) X ffg(H omz))) (1)

for z=(z,);50€ D, where the closure is taken in the norm topology in
(Dy |l - |l ). Similarly, for given 0 < & < 8 < 0o, we define a set-valued mapping
%># on D by taking

K> P(z) = cle(q)(.‘f”(F“ﬁ omz) X 3G o mz) x $%(H*? o mz)) (2)
where F*# G*# and H*? are as above.

Corollary 4: For every F,G and H taking on conver values and
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satisfying (A;), one has ¥(z)= B($P(F omz)X %G omz) X $3(H omz)) and
3 A(y) = B($P(FP omz) x $%(G o mz) x $2(H*® 0 mz)) for z € D.

Let S(F,G,H) and S*#(F,G,H) denote the set of all fixed points of 6
and J*P8, respectively. It will be shown below that S*A(F,G,H)C D*%.
Immediately from Proposition 2 (see [10]) the following result follows.

Proposition 4: Assume F,G and H satisfy (A,) and take on convez
values. Then Ay(F,G,H)=S(F,G,H) and A$A(F,G,H)=S*P(F,G,H) for
every 0 < a < B < oo, respectively.

Proposition 5: Assume F,G and H satisfy (A;) and let
0<a<fB<oo. Thenze S*YF,G,H) if and only if
(?) =z,=0a.s. fortel0,al,
(%) =z, =4 a.s. fort>p,
(222)  for every e>0 there is
(f<, 95 %) € $P(FP o mz) x $(G*P o mz) X §3(H*® omz))  such  that
| supa<i<p |z, — @,(f, 950 |l L? <e€.
Proof: (=) Let z € S*A(F,G,H). By the definition of %#, for every
e >0, there is (f€, g% h%) € $P(F*P o mz) x $%(G** o mz) x $2(H*? o mz)) such that
| z—®(f,9%R) || g <e We have of course @,(f%¢%h)=0 and
®,(f, 95 h%) = 4(f¢, g%, h%), a.s. for 0 <t < o and t > B, respectively. Then

Hosg{)_g . |z, | || 2= ”032{75 . | 2, — ®,(f, 95| | ?

< |l =3(f6%h) || p<e

and
I St‘gﬂlmt"a’ﬁl | 2= | S?§B|m,-—<1>t(f‘,g°,h‘)| | L?
—®4(fc, g% Re < 2e.
+”S:"’£ﬂ|xﬁ ﬂ(fag, HHL% €
Therefore, supy < <ol ;| =0 and sup, 55|z, — 25| =0 a.s.

By the properties of ®(f¢, g% h¢), (i) and (i), (¢%) easily follow.
(«) Conditions (z) — (412) imply

lz—&(f 950 g =l sup_ |z —8(f95h) | || 2 <e.
altLp 1
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Therefore, z € cly®($7(F*? o mz) x $%(G** o mz) x $%(H* o mz)). a

Proposition 6: Assume F,G and H satisfy (A,) and let (7,)7-, be
a sequence of positive numbers increasing to +oco. If z! ESO'fl(F, G,H) and
z"tle :c:.'n + ST"'T"““(F,G, H) for n=1,2,..., then z= ill[,n_l’rn)(m"
- x,’fn‘_ll) belongs to S(F,G, H), where 2y = 0. "

Proof: For every n=1,2,... one has z" — :z::.‘n‘_l1 €S™n-1"n(F G, H).
Then, by Proposition 5, for every n=12,... and €>0 there is
(f*,g",h") € $P(F - 1Tn, mz")x  $YG "-1"nomz™) x .‘fg(Hf" -1"nomz™) such
that

[| sup |(zF =221 ) =@ f™ g™ ™) | || 2 <€/

r
n-1
Th-13t3T,

Put f* =n§1I[Tﬂ— 1’Tn)fn’ g =n§1llfn— 1"’n)gn and A° =nz=:1l["n - l'fn)hn’ By the

decomposability (see [9], [10]) of $*(Fomz), $*(Gomz) and $i(homz), we get
f€ € $¥(F omz), ¢¢ € $%(G omz) and h* € $2(H omz). Moreover

|z —2(f 9%kl

00
< n__n-1 _ i) noan pn
= |!n§1 Tn_s':tgtsfn | (mt xrn-l t(f /A ) | ” L%
<$ L (f" g h
n__n-1 _ n g™ k" <e.
_nz_:: | rn_s?gtsr,,l(zt el ALl “Lf €
Therefore, z € cly®(*(F o mz) x $*(G o mz) X $3(H o mz). ]

In what follows we shall deal with F ={(F,(z)),>¢z€R"},
G={(Gz))>s z€R"} and H={H,,(2)),5,, gt ER"} satisfying
conditions (A,) and any one of the following conditions.

(A;) F,G and H are such that set-valued functions D 3 z—(F omz),(w) CR",
D 3 z—(G omz),(w) CR™ and D> z—(H omz), (w) CR" are w.-w.s.u.s.c.
on D, ie., for every z€D and every sequence (z.) of (D, | - |,
converging weakly to =z, one has h(f £ (Fomz,), dtdP,

J {(Foma:)tdth)—-)O, R(S {(Gom:z:,,),dth, J ;{(Gomx)tdth)—) 0 and
R(S S £(Homxn)m dtq(dz)dP, [ [ £(Homw)t'zdtq(dz) dP)— 0.
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(A3) F,G and H are such that set-valued functions D 3 z—(F omz),(w) C R",
D 3 z— (Gomz),(w) CR" and D 3 z—(H omz), ,(w) CR™ are s. —w.sl.s.c.
on D, i.e., for every x€D and every sequence (z,) of (D, - || M)
converging weakly to z, one has h((Fomz),(w),(F omz"),(w))—0,
k(G o mz),(w),(G oma™)(w))—0 and h((Homz), (w), (Homz"), (w))—0
a.e.

(A,): There are k,8 € £2 and m € W? such that || ofoh[(Fo mz),, (F o my),)dt || 2 S
0 1
E(j)’k, |z, —y, | dt, || H(G o mz,G omy) || 1% < E{et|wt-yt | dt and
| R(H o mz, Homy)|| W2 < E‘({m{nm"z |z, — y. | dtq(dz) for z,y € D.

(Ay) There are k,8€ L} (B,) and me L} (B, xB") such that h(F(z,)(w),
Fa)@) < HO)lor—2a], MGi(en)w)Gelen)w)) < &t) |73 — 23| and
h(H, (z5)(w), Hy(z)(w) <mtz)|zy—2,| ae, each t>0 and
z,, T, € R™.

It is clear that the upper (lower) semicontinuity of F,G and H does not
imply their weak (strong) - weak sequential upper (lower) semicontinuity
presented above. We shall show that in some special cases, i.e., for concave
(convex, resp.), set-valued mappings such implication holds true. Recall a set-
valued mapping %R, defined on a locally convex topological space (X,J x) with
values in a normed space is said to be concave (convex) if R(az; + Bz,) C
a®(zy) + BR(z,) (aR(z,) + BR(zy) C R(azy + P,)), for every z;,z,€ X and
a, B € [0,1] satisfying a + 8 = 1.

Lemma 1: Suppose F,G and H satisfy (A,) with p=1, take on
convez values and are concave (convezr) with respect to z € R*. If moreover F,G
and H are u.s.c. (l.s.c.) with respect to © € R" then they are w.-w.s.u.s.c. (s.-
w.sl.s.c.).

Proof: Let z € D be fixed and let (z") be a sequence of D weakly
converging to z. Denote K (t,w,y): = —s(p, Fy(y,)(w)) for peR", y€ D, t>0
and w € 2. We shall show that for every A € P and every p € R” one has

/ / K ,(t,w,2)dtdP < liminf / / K ,(t,w,z")dtdP,
A A

which is equivalent to the weak-weak sequential upper semicontinuity of F' at

z € D in the sense defined in (A,). Similarly, the weak-weak sequential upper
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semicontinuity of G and H can be verified.
Let A€®, peR" be given. Denote j,= [ [K,(t,w,z")dtdP for
A
n=1,2,... and put @ =liminf,_ [ [K,(t,w,z")dtdP. By taking a suitable
A

subsequence, say (n;) of (n) we may well assume that j, —i as k—oco. By the

Banach and Mazur theorem (see [2]) for every s=1,2,... there are numbers
N

ol >0 with k=1,2,..,N and N =1,2,... satisfying ¥ af =1 and such that
k=1

| 2x — 2| ;=0 as N—0, where zj(t,w) =k]Z::1aix:’°+’(w). By the definition of
the norm || - ||, there is a subsequence, say again (z}), of (zy) such that
supy > 0| 2n(t,w) — z,(w) | =0 a.s. for s =1,2,.... Put

mhi = £ ol (-, 0™ ),

jt=JJE w,z k+9)dtdP

and let 6, =mazy >, 1maz; <k <n|Jk—2| for s=1,2,.... We have §,—0 as
s—00. By the uniform square boundedness of F there is mp € £2 such that
NNy = —mp ae. for N, s=1,2,.... Therefore, liminfy_. 0y = —mpg ae. for
s=1,2,.... Then by Fatou’s lemma one obtains

[ [tminguidtdP <timin [ [mydtdP <i+s,
A A

for s =1,2,..., because for every s =1,2,..., we have i — §, < [ [nNdtdP <i+6,.
A

Taking n=liminf,_  [liminfy_.n¥] ae, we get n> —mp ae and

J [ndtdP <i. We shall verify that we also have K(t,w,z)<n(t,w) for ae.

(t,ﬁ)) €R, x. Indeed, by upper semicontinuity of F' with respect to z € R", a

real valued function z— — s(p, F(z)) is lower semicontinuous on R", a.s. for every
t >0 and p € R". Therefore for every m,s =1,2,... there is M > 1 such that

N n
= s(p i) = < = s(p, FA3 afa* +))
=1
a.s. for every t >0 and N > M. Hence, by the properties of F', it follows
- S(p, (mt ) m < Z ak[ —$ P, (‘t:‘k + ‘))] = 3777v(t, ’ )

as. for t>0, ssm=1,2... and NZM. Therefore, for m =1,2,... almost

everywhere, one gets
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K-, -,2) = i < Giminflliminfuy] = .

Finally, we get

/ / K (t,w,z)dtdP < / / n(t, w)dtdP <. O
A A

5. PROPERTIES OF SOLUTION SET

We shall prove here the existence theorems for SI(F,G,H). We show
first that conditions (A,) and anyone of conditions (A,;)-(A4,) or (A}) imply the
existence of fixed points for the set-valued mappings 6 and 3> defined above.
Hence, by Propositions 4 and 5, the existence theorems for SI(F,G,H) will
follow. We begin with the following lemmas.

Lemma 2: Assume F,G and H take on convez values, satisfy (A,)
with p =2 and (A,). Then a set-valued mapping ¥ is u.s.c. as a multifunction
defined on a locally convex topological Hausdorff space (D,o(D,D*)) with
nonempty values in (D,o(D, D*)).

Proof: Let C be a nonempty weakly closed subset of D and select a
sequence (z") of 3 ~(C) weakly converging to z € D. There is a sequence (y") of
C such that y"€36(z") for n=1,2,.... By the uniform square-integrable
boundedness of F,G and H, there is a convex weakly compact subset
BCL22x22xW? such that J6(z") C B(B). Therefore, y" € B(B), for n = 1,2,...
which, by the weak compactness of ®(B), implies the existence of a subsequence,
say for simplicity (y¥), of (y") weakly converging to y € ®(B). We have
y* € J(a*) for k=1,2,.... Let (f*,g* h*) € (F o ma¥) x $%(G o ma*) x $%(H o ma*)
be such that ®(f* g* h¥)=4yF, for each k=1,2,... We have of course
(f*,g*,h¥) € B. Therefore, there is a subsequence, say again {(f¥,g*,h¥)} of
{(f*, g*,k*)} weakly converging in £2 x L2 xW?2 to (f,g,h) € B. Now, for every

A € P one obtains
dist( / / F,dtdP, / / F,(x)dth) <
A A

/ / [f, - ff]dth|+dist( / / fFrdtdP, ] / F,(xk)dtdp)
A A A

<
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+7z( / / F(z*)dtdP, / / Ft(:c)dth).
A A

Therefore (see (8], Lemma 4.4) f € $*(Fomz). Quite similarly, we also get
tc ¥ (Gomz) and he€¥ (Homz). Thus, ¥(f,g,h)€ ¥(z), which implies
y € ¥6(z). On the other hand we also have y € C, because C is weakly closed.
Therefore, € %~ (C). Now the result follows immediately from Eberlein and

Smulian’s theorem. O

Lemma 3: Assume F,G and H take on convez values, satisfy (A,)
with p=2 and (A3). Then a set-valued mapping ¥ is l.s.c. as a multifunction
defined on a locally convez topological Hausdorff space (D,o(D,D*)) with
nonempty values in (D,o(D, D*)).

Proof: Let C be a nonempty weakly closed subset of D and (z") a
sequence of J6_(C) weakly converging to « € D. Select arbitrarily y € 3(z) and
suppose (f,g,h) € $2(F omz) x $%(G o mz) X $3(H omz) is such that y = &(f,g,h).
Let (f",g" h") € $*(F omz™) x $%(G o mz™) x $2(H o mz™) be such that

| ) = F3(w) | = dist(f() (F oma™)(w),

| 94(w) — gf(w) | = dist(g,(w), (G o mz™),(w)) and
| By, (w) — g% J(w) | = dist(h, (w), (Homz"), (w)) on R, xQ and R, xQxR",
respectively, for each n =1,2,.... By virtue of (A43) one gets | f,(w) — fi(w) | —0,
| 9:(w) — g¥(w) | =0 and |k, (w)—hf (w)]|—0 ae., as n—oo. Hence, by (A,) we
can easily see that a sequence (y,), defined by y"=®(f" ¢" k"), weakly
converges to y. But y" € 36(z") C C for n =1,2,... and C is weakly closed. Then

y € C which implies 36(z) CC. Thus z € % _(C). a

Lemma 4. Suppose F,G and H satisfy (A,) and (A,) or (A}). Then
H(¥(z),%(y)) < L||z—yll 5 or H(H(z),3(y) <L'||x—yll, respectively, for
every z,y € D, where H is the Hausdorff metric induced by the norm || - || 0

L= Jhdtlyy 20Tt g 420 [medrads)l y and L= I,
+2[¢]2+2]ml,.
Proof:  Let z,y € D be given and let u € ¥(z). For every € > 0, there is

(f6,951%) € (F omz) x $%(G omz) x $3(H omz) such that |lu—B(f¢%h)],
< e. Select now (F¢,3¢,h¢) € $%(F o my) x $%(G o my) x $3(H omy) such that
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| fi(w) = Filw) | = dist(fi(w), (F omy)(w)),
| gi(w) = Gi(w) | = dist(gi(w), (G o my)y(w)) and

| Bf, (w) — Z:, Aw)| = dist(hi (w),(H omy), (w)) on R, xQ and R, x Q2 xR",
respectively. Now, by (A,) it follows

<E /Ifi-—?ildTI
L 0
t [t 2
<E | [R(Foma),(Fomy),)r| <|E [k |2, —y,|dr
0 \ 0

) 12 00 2
mson Jfeo( e

Similarly, by Doob’s inequality, we obtain

2
t 0
E[sup [ (g: = 5)dw, } <4E [ | g:—5: |%r
t20 |4 A
o0 2
/ (G omz),,(G omy), )]2d7'<4( /2 | z, y,]dr)
0

(o] 00 2
<4E —y, |- [edr)] < ¢.d _—
__4[ (sgzzvolwt Ye | {r'r) ..4E({f‘r) le—yllj

Quite similarly, we also get
}2

E [sup
t>0

2
(o]
<4 / /mr,szq(dz)) ) ” Tr—Yr ” 2

0 R"

n

t
[ [he—Fe g (dr,d2)
0R

Therefore

llu—2(F 3Rl
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< llu=0(f5 055 | g+ 12079509 —2(FST7) | g S e+ Lzl
where L is such as above. This implies H(3(z),%(y))<L|lz—y|l, Quite
similarly we also get H(J(y),3%(z)) < L||z—yl, Therefore H(3(z),%(y))
<L|z—y|, Using conditions (Aj) instead of (A,) we also get H(3(y),%(z))
SLz—yll, O

Lemma 5: Suppose F,G and H satisfy (A,) and (4,) or (A}). Then

for every 0<a<fB<oo one has H(¥%*P(z),3%62P(y)) < Lgllz—yll ¢ o

H(%*(z), %*Py)) < Liyglz—y]| o respectively, for every z,y € D*B where H

is a Hausdorff metric induced by the norm || - ||, Lo = || ofol[a gkt || L2

o 1

+2] .!)'l[a,ﬂ](t)etdt | 12 +2| {an la,g (1) ™ .dtq(dz) || % and Ly 5= |lq gk |1
+ 2|0y, 5812+ 2 || kg, gy |l 2-

Proof: The proof follows immediately from Lemma 4 applied to
FGB = |[a,ﬂ]F’ Gaﬁ = l[a,,B[G and I:[C'[3 = l[a,,@]H' 0

Immediately from Lemma 2 and the Kakutani and Fan fixed point

theorem the following result follows.

Lemma 6: If F,G and H take on convez values and satisfy (A,) and
(Ay), then S(F,G,H) # 0.
Proof:  Let B = ((f,0.h) € X L2x W | Fiw)] < | F@)l,

10(@)] € NG s he )] < [ Ho )] and put % =8(®B). Tt is clear
that % is a nonempty convex weakly compact subset of D such that 3(z) C % for
z € D. By (ut) of Proposition 1, J6(z) is a convex and weakly compact subset of
D, for each € D. By Lemma 2, 76 is u.s.c. on a locally convex topological
Hausdorff space (D,o(D, D*)). Therefore, by the Kakutani and Fan fixed point
theorem, we get S(F,G,H) # 0. O

Lemma 7. If F,G and H take on convez values and satisfy (A,) and
(A3), then S(F,G,H) # 0.

Proof. Let 3 be as in Lemma 6. By virtue of Lemma 3, 36 is l.s.c. as a
set-valued mapping from a paracompact space 3 considered with its relative
topology induced by a weak topology o(D,D*) on D into a Banach space
(D, |l - I p)- By (i) of Proposition 1, 3(z) is a closed and convex subset of D, for
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each z € %. Therefore, by Michael’s theorem, there is a continuous selection
f:%—D for 3. But 3(3%) C %. Then f maps % into itself and is continuous
with respect to the relative topology on %, defined above. Therefore, by the
Schauder and Tikhonov fixed point theorem, there is z €% such that

T = f(z) € 3(z). 0

Lemma 8. If F,G and H satisfy (A,) and (Ay) or (A,) then
S(F,G,H)#0.

Proof. Let (7,)%-, be a sequence of positive numbers increasing to
+00. Select a positive number ¢ such that Ly, 11)0 <1 or Li, 41y, <1,
respectively, for k =0,1,..., where L,w,(k_‘_l)a and L, (41), are as in Lemma 5.
Suppose a positive integer n, is such that n,0 <7, <(n;+1)o. By virtue of
Lemma 5, %657 (¥ +1)7 i5 5 set-valued contraction for every k =0,1,.... Therefore,
by the Covitz and Nadler fixed point theorem, there is 2! € S*?(F,G, H). By
the same argument, there is z? € 2} + §7'27(F, G, H), because z} + %27 is again
a set-valued contraction mapping. Continuing the above procedure we can
finally find a 2" " € 231, + ™7 (F, G, H). Put

ny -1
z! =kZ l[ka,(k +1)a)(zk+ 1 Zfa)

=0

n1+1_ ny n1+1_ ny
+ l[nla', ,1-1](2 znla) + I(rl,oo)(zrl znlo)’

where z3 =0. Similarly, as in the proof of Proposition 6, we can easily verify
that z' € S”™(F,G, H). Repeating the above procedure to the interval [ry,,),
we can find 22 € zll +S™"%(F,G,H). Continuing this process we can define a

sequence (z") of D satisfying the conditions of Proposition 6. Therefore

5(f,G,H) #0. o

Now as a corollary of Proposition 4 and Lemmas 6-8, the following results
follow.

Theorem 1. Suppose F,G and H take on convez values, satisfy (A,)
and (A,) or (A3). Then A(F,G,H) # 0.

Theorem 2. Suppose F,G and H satisfy (A,) and (A,) or (A}) and
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take on convez values. Then Ay(F,G,H) # 0.

From the stochastic optimal control theory point of view (see [6]), it is
important to know whether the set Ay(F,G,H) is at least weakly compact in
(D, || - Il ). We have the following result dealing with this topic.

Theorem 3. Suppose F,G and H take on conver values and satisfy
(Ay) and (A;). Then Ay(F,G,H) is a nonempty weakly compact subset of

(D, I+ 1l g)-

Proof. Nonemptiness of Ay(F,G,H) follows immediately from
Theorem 1. By virtue of Proposition 4 and the Eberein and Smulian theorem for
the weak compactness of Ao(F,G, H), it suffices only to verify that S(F,G, H) is
sequentially weakly compact. But S(F,G,H)C ®(®B), where B is a weakly
compact subset of £2 x £2 x W2 defined in Lemma 6. Hence, by the properties of
the linear mapping ®, the relative sequential weak compactness of S(F,G,H)
follows. Suppose (z") is a sequence of S(F,G, H) weakly converging to z € ®(B),
and let (f" g" k") € ¥ (F omz™) x $%(G omz") x ¥%(H omz™) be such that
z" = ®(f", g™ k"), for n=1,2,.... By the weak compactness of B, there is a
subsequence, denoted again by {(f",g¢" h")}, of {(f" ¢",h")} weakly converging
to (f,g,h) € B. Similarly, as in the proof of Lemma 2, we can verify that
(f,9,h) € $*(F omz) X $*(G omz) x $2(H omz). This and the weak convergence of
{®(f", g™, h™)} to ®(f, g,h) imply that z = ®(f, g,h) € 36(z). Thus z € S(F,G,H)O
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