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ABSTRACT

In this paper we study a second order semilinear initial value
problem (IVP), where the linear operator in the differential equation is
the infinitesimal generator of a strongly continuous cosine family in a
Banach space E. We shall first prove existence, uniqueness and
estimation results for weak solutions of the IVP with Carathéodory type
of nonlinearity, by using a comparison method. The existence of the
extremal mild solutions of the IVP is then studied when E is an ordered
Banach space. We shall also discuss the dependence of these solutions on
the data. A characteristic feature of the results concerning extremal
solutions is that the nonlinearity is not assumed to be continuous in any
of its arguments. Moreover, no compactness conditions are assumed. The
obtained results are then applied to a second order partial differential
equation of hyperbolic type.
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1. INTRODUCTION

In this paper we consider the second order semilinear initial value

problem

' = Az + g(t,:l:,:l:'), 111(0) = Xy, 2?'(0) =TIy,
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where A is the infinitesimal generator of a strongly continuous cosine family
{C(t)|t€R} in a Banach space E and ¢:JxE*—E, J=[0,T], T>0. The
existence of mild solutions of (1.1) is considered in [16] when g is continuous.

Our purpose is to study the case when ¢ is discontinuous.

We first prove existence, uniqueness and estimation results for weak
solutions of the initial value problem (IVP) (1.1), by using a comparison method
and assuming that ¢ satisfies Carathéodory conditions. The existence of the
extremal mild solutions of (1.1) is then studied when F is an ordered Banach
space, and when g does not depend on z’. We shall also discuss the dependence
of these solutions on the initial values and on g. A characteristic feature of the
results concerning extremal solutions is that ¢ is not assumed to be continuous in
any of its arguments. Moreover, no compactness assumptions are imposed on g.
The obtained results are then applied to a second order partial differential

equation of hyperbolic type.

2. PRELIMINARIES
Given a Banach space E, we say that a family {C(¢)|t € R} in the space

L(E) of bounded linear linear operators on E is a strongly continuous cosine
famaly if

() CO)=1I

(21) t—C(t)z is strongly continuous for each fixed z € E;

(12) C(t+s)+C(t—s)=2C(t)C(s) for all 5,t €R.
The strongly continuous sine family {S(t)|t € R}, associated to the given
strongly continuous cosine family {C(t)|t € R}, is defined by

Stz = [ C(s)zds,z € E, teR. (2.1)

o~

Denote
E,={zcE|C(-)c€C'R,E)} and E,={z € E|C(-)z € C*(R,E)}. (2.2)
It can be shown that E, = E. Obviously, F, is a subspace of E;. As for the

properties of strongly continuous cosine and sine families, see [3, 4, 5, 15, 16].

The infinitesimal generator A:E,—E of a cosine family {C(t)|t € R} is
defined by
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Az = 3‘1:50(0):1:. (2.3)

Assume now that A is the infinitesimal generator of a given strongly
continuous cosine family {C(¢) |t € R}.

By a strong solution of the IVP (1.1) on the interval J = [0,T] we mean a
function z:J—FE with absolutely continuous first derivative, whose second
derivative z"(t) exists and equals to Az(t)+ g(t,z(t),z'(t)) for almost all (a.a.)
t€J, and which satisfies the initial conditions z(0) = zy, 2'(0)==z,. Given
(z0,2,) € E; x E, we say that z € C}(J,E) is a weak solution of (1.1) if there is
y € C(J, E) such that

t

2(t) = 5o + { y(s)ds,t € J, 0

y(t) = S(t)Azo + () + [C(t=9)g(sa0+ [y(r)dr,y(s))ds

By the reasoning used in the proofs of proposition 1.2 and theorem 1.3 in [13]
(see also [16]), one can show that
(a) a strong solution z of (1.1) is also its weak solution if g(-,z(-),z'(-))
is continuous;
(b) a weak solution z of (1.1) is also its strong solution if g(-,z(-),2'(-))
is absolutely continuous and almost everywhere differentiable;
(c) if z€ CY(J,E) is a weak solution of the IVP (1.1), then it satisfies the

integral equation

2(t) = C(t)zo + S(t)z, + / S(t — s)g(s,2(s),2'(s))ds, teJ. (2.5)

3. EXISTENCE, UNIQUENESS AND DEPENDENCE
ON INITIAL VALUES

When z€C(J,E) we denote |z|=t—]|z(t)] and |z]o=
maz{||z(t)|| |t€J}. The considerations of this section are based on the
following fixed point result (cf. [6, 18]),

Lemma 3.1: Given F:C(J,E)—C(J,E), assume that
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|Fy—F5 | <Q(ly—=7|) for ally,5 € C(J, E), (3.1)
where Q:C(J,R, )—C(J,R ) is nondecreasing, the equation
uo + Qu =u (3'2)

has for each ug € R, an upper solution v € C(J,R,), and Q"v—0 uniformly on
J. Then for each yy € C(J, E) the sequence (Fy,)P. o converges uniformly on J
to a unique fized point z of F.

In the following we shall assume that

(C0) {C(¢)|t€R} is a strongly continuous cosine family, that A is its
infinitesimal generator, and that {S(t) |t € R} is the associated sine
family.

Condition (), definition (2.1) and the uniform boundedness principle imply that

M =sup{||C®)| |t € J} < oo, (3.3)
and that
|Sz-SE)z|| <M|t-% || z]|, z€E, t,t eJ. (3.4)

Assume also that ¢g:J x E*—F satisfies the following conditions.
(g0) g(-,z,y) is strongly measurable for all z,y € E, and g¢(-,0,0) is

Bochner integrable
(g1)
| gtz +hy+k) —gt,zy) | <qlt, 2], 115D
for all z,y,h,k € E and for a.a. t€J, where ¢:JXR% -R, is a

Carathéodory function, ¢(t, -, -) is nondecreasing for a.a. t € J, the
IVP

u' = Mq(t,u,v), uw(0)=wu, w(0)=1y (35)

with M given by (3.3), has for each (ug,u;) € R%} an upper solution
on J, and the zero-function is the only solution of (3.5) when
uO - ul - 0.
Theorem 3.1:  If the hypotheses (C0), (g0) and (g1) hold, then for each
(zg,2,) € E; X E the IVP (1.1) has a unique weak solution x on J. Moreover,  is
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t
of the form z(t) =zq+ [y(s)ds, t€J, where y is the uniform limit of the
sequence (y¥,)X- o of the successive approzimations

tna(8) = S(0Azo + Otk + [ Clt= )20+ [ 1a(rr, vo(Mds, (35)

teJ, neN, and with arbitrarily chosen y, € C(J, E).

Proof: Let (zg,2,) € E, X E be given. The function s—q(s,v(s),v'(s)) is
for each v € C'(J,R, ) bounded above by 4;u”, where u is an upper solution of
the IVP (3.5) with u(0) = ||v]|, and w'(0) = || v'|| o- The hypotheses given for ¢
in condition (g1) imply that the equation

t

Qu(t) = / Mq(s, / w(r)dr,w(s))ds, teJ (a)

0

defines a nondecreasing mapping Q:C(J,R,)—C(J,R,). Since u(t) = 0 satisfies
u"(t) = q(t,u(t),uw'(t)) for a.a.. t € J, then ¢(¢,0,0) =0 for a.a. t € J. From (g1) it
then follows that also g is a Carathéodory function. Thus g(-,z(-),y(-)) is
strongly measurable in J for all z,y € C(J, E). From (g1) it also follows that

Il 9t 2(®),y@) | < N1 9(£,0,0)[| +a(t, |2 llo 1y [l0), tE€J,

whence g(-,z(-),y(-)) is Bochner integrable. This implies that the equation

Fa(t) = S(t)Azg + C(t)z, + / C(t = 8)g(s, 74+ / 2(7)dr, 2(s))ds (%)

defines a mapping F:C(J, E)—=C(J,E). By using (3.3), (g1), (a) and (b) it is easy
to show that

|Fy—F.7‘] l -<—Q|y-:‘7 Ia Y7 EC(']aE)
Condition (g1) ensures that the operator equation
u 4 Qult) = v(t), teJ (©)

has an upper solution for each u; € R,. Moreover, for any such upper solution v
the sequence (Q™v). o converges by proposition 3.1 of [10] uniformly on J to the
maximal solution of (3.5) with uy =u, =0, i.e. to the O-function. Thus all the

hypotheses of lemma 3.1 are valid, whence the iteration sequence (F"yo)n= o,
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which equals to the sequence of the successive approximations (3.6), converges
for each choice of y, € C(J, E) uniformly in J to a unique fixed point y of F.
From the definition (b) of F' it follows that y is the umquely determined solution
of the second integral equation (2.4), and hence z(t) = z, + f y(s)ds, teJ,is a
unique weak solution of the IVP (1.1) on J. 0

Remark 3.1:  If the IVP (3.5) has for some positive value of M the zero
function as the only solution when uy=wu, =0, the same does not necessarily

hold for all positive M, as we see from the following example.

Choose J = [0,1] and define ¢:J xR* ,R ) by

2t, fors>ttelJ,reR,

q(t,r,s) =
25 for0<s<t?, 0<t<1,rER

It is easy to show that w(t) =0 is the only solution of (3.5) when M =1 and
uy = u; = 0, whereas u(t) = vt3, t € J is for each v € [0,1] a solution of (3.5) when
M =1 and yy=u, =0.

The dependence of the weak solution of the IVP (1.1) on the initial values
7o and z, can be estimated by the minimal solutions of the comparison problem

(3.5) in the following manner.

Theorem 3.2: Let the hypotheses (CO0), (g0) and (g1) hold. Let
T = z(-,z4,2,) denote the weak solution of the IVP (1.1) on J, and u = u( -, ug,u;)
the minimal solution of the IVP (3.3) on J. Then for all zy,Zy € E, and z,,
z, € E,

[ z(t) =2 ()| Su(t), end [|2'(t) -Z (@) || <w(B), teJ, (3.7)
where T = z(+,70,2,), T = 2(+,%0, %) and u=u(+, || 2o —To ||, MT || A(zo— Zo) ||
+ M|z, -2 )

Proof: Let z,,%,€ E be given. The solutions z=z(-,2y,2;) and

T = z(-,%,Z,) exist by theorem 3.1, and
t
w()—x0+/y )ds, and T(t) = Z, / (s)ds,
0

where y, § are the unique fixed points of the integral operators F, F:C(J,E)—
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C(J,E), defined by

Fz(t) = S(t)Azy + C(t)z, + /C(t —8)g(s,zo + /z(r)dr, 2(s))ds,

and

F2(t) = §(t)AZy + C(t)Z, + /C’(t —38)g(s, T + 72(T)dr, z(s))ds.

Moreover,

t
u(t) = || 70— 3, || + / o(s)ds, teEJ,
0

where v is the least fixed point of the operator G:C(J,R,)—C(J,R ) given by
Gu(t) = MT || A(zo = Zo) || + M ||z, -2 ||

t

+ [ Mo, 70— + [ w(r)dr,w(e))ds.

0

These definitions and condition (g1) imply that

|Fy—Fy| <G|y-7| fory,5 € C(J,E). (a)

Denoting yo(t) = z; and F(t) = Z,, then equality holds in

| Fryo— F™Fo | < G™|yo—To| (6)
when n = 0. Since G is nondecreasing, it follows from (a) and (b) that
| Frtlyy— Fr*1g,| <G| Fryo— F ol <Gy —ol,

whence (b) holds for all n € N. Theorem 3.1 above and proposition 3.1 of [10]
imply that

y= lr’{:—moanyo’ y= lréLnoanyo and v = er'mooGn | Yo~ Yo l :
From this and (b) it follows, when n—oo, that

ly(@®) =g () || <v(t)for each t € J.

This and the definitions of y,7 and v imply that the estimates (3.7) hold. O
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Remark 3.2:  The hypotheses given for ¢ in (g1) ensure (cf. [8]) that the
minimal solution u of the IVP (3.5) and its derivative u’ are nondecreasing with
respect to uy and u,, and that both of them tend to zero uniformly over ¢t € J as
uo—0 and u,—0. This implies by (3.7) that under the hypotheses of theorem 3.2
the weak solution z of (1.1) and its derivative depend continuously on z;. As a

consequence of theorem 3.2 we then obtain.
Corollary 3.1: Let the hypotheses (C0) and (g0) hold. Assume moreover
that for all z,y,h,k € E and for a.a. t € J,
gtz +hy+k)—glt,z,y) || <p@) IRl +a@) K],
where p,q € L'(J,R,). Then the IVP (1.1) has for each (z(,2,) € By X E ezactly

one weak solution z. Moreover, z and z' depend continuously on z;.

Proof: It 1is easy to see that condition (g1) holds when
q(t,u,v) = p(t)u + q(t)v. Thus the relations (3.7) hold. Moreover, the right hand
sides of the inequalities (3.7) tend to 0 uniformly on J as T, =z, and Z;—x;

in E, which implies the last conclusion of corollary. O
In particular, we have,
Corollary 3.2: If the hypotheses (C0) and (g0) hold, and if
A, Ay J—L(E) and Ay J—E are Bochner integrable, then the IVP
z" = Az + Ay(t)z + Ay(t)z' + Ag(t),  2(0) =z, &(0) = =,

has for each (z4,z,) € E;X E a wunique weak solution x, which together with ',

depend continuously on z;. O

4. ON EXTREMAL MILD SOLUTIONS
In this section we shall consider the existence of extremal mild solutions
of the IVP
" = Az + g(t,z), z(0)= z¢, 2'(0) = =y, (4.1)

between assumed upper and lower mild solutions, when E is an ordered Banach

space with regular order cone and g:J x E—E.

Define a partial ordering in C(J, E) by
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z <y if and only if z(t) < y(t) for each t € J.

If 2,z € C(J,E), denote [z)={2€C(J,E)|z <z}, (Z]|={r€C(J,E)|z<%}
and [z,Z]|={z € C(J,E) |z Lz <Z}.

The following fixed point result is a basis to our considerations.

Lemma 4.1: Let Y be a nonempty subset of C(J,E), and let G:Y =Y
be a nondecreasing mapping such that G[Y] has a lower bound gin Y. If
z, = supG[C] ezists in Y, where C is the well-ordered chain in'Y satisfying

(C) z =minC and z <z €C if and only if r = supG{y € C | Gy < y},
then z, =mazC =min{y €Y |Gy <y}, and z, is the least fized point of G.
This holds in particular if the sequence (Gy,)X-, converges uniformly on J to a

function of Y whenever (y,)= 1S a nondecreasing sequence in Y .

Proof:  The first assertion is proved in [7, 8]. Because G[C], with C
given by (C), is also a well-ordered chain in Y, and because C(J, E) is an ordered
normed space with respect to pointwise ordering and the uniform norm, it is easy
to see (cf. [8, 9]) that supG[C] exist in Y if G(y,)% = converges uniformly on J
to a function of Y whenever (y,)%., is a nondecreasing sequence in C. This

implies the last assertion. O

We shall assume that F is ordered by a regular order cone K, i.e. all
nondecreasing and order bounded sequences of K converge. This implies (cf. [12])

that K is also normal, i.e. there is v > 0 such that

lyll £vIl2]|| whenever y,z€ K and y < z. (4.2)

Assume now that condition (C0) holds, and that

(C1) C(t) is order-preserving for all t € J.
From (C0) and (C1) it follows by (2.1) that S(¢) is also order-preserving for each
teld.

Given zy,z, € EXE, we say that z € C(J,F) is a lower mild solution of
the IVP (4.1) on J if

2(t) < C(t)z + S(t)z, + / S(t — s)g(s,z(s))ds, t € J. (4.3)

An upper mild solution of (4.1) is defined similarly, by reversing the inequality
sign in (4.3). If equality holds in (4.3), we say that z is a mild solution of (4.1).
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Compared with the notion of weak solution we now don’t require the
differentiability of the solution. In the case when z, € E, and g is continuous it
can be shown (cf. [13]) that (4.1) has the same weak and mild solutions.

Let us impose the following hypotheses on the mapping g:J x E—~E.

(92) (1.1) has a lower mild solution z and an upper mild solution Z,
such that z <%, and that the functions g(-,z(-)) g(-,Z()) are
Bochner integrable.

(93) g(-,z(-)) is strongly measurable whenever z € C(J, E).
(g4) g(t, -) is nondecreasing for a.a. t € J.

Theorem 4.1: Let E be an ordered Banach space with regular order
cone. If the hypotheses (C0), (C1) and (g2)— (94) hold, then the IVP (4.1) has

the extremal mild solutions between ¢ and T .
Proof: By definitions z, T € C(J,E). If z belongs to the order interval
[z,Z] of C(J,E), it follows from (¢3) and (2.1) that the mapping
s—S(t — s)g(s,z(s)) is strongly measurable on [0,t] for all t € J. Conditions (C1)
and (g4) imply that that for all ¢ € J and for a.a. s € [0,1],
S(t—3)g(s,z(s)) < S(t —s)g(s,z(s)) < S(t —s)g(s,Z(3)).
Applying this, the triangle inequality, (4.2) and (3.4), it follows that
| S(t—s)g(s,z(s)) || < MTN(s)for all t € J and for a.a. s € [0,t], (a)
where
N() =@+l gz + (s, Z() |-

This and the hypotheses (¢2) and (¢3) imply that s—S(t — s)g(s,z(s)) is Bochner
integrable on [0, ] for each ¢t € J. Thus the equation

Ga(t) = C(t)z + S(t)z, + / S(t = 8)g(s, z(s))ds, te€J, (4.4)

defines a mapping Gz:J—E for each z € [z,Z]. Moreover, if 0<t <t<T and
T € [z,Z], it follows from (2.1), (3.4), (4.4) and (a) that

I Ga(t) = Ga() || < [|C(t)wo—C(E)zoll + | S(t)2r = S(E )z ||

+ [ 11S( = )g(s,2(6) = SE = s)alora(s) 1 ds+ [ 11 5(¢ = ha(s, () | ds
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S 1 CH)zo—CE)ao |l + | S(t)zy = S(E )y |l
T ;
+M|t-T| / N(s)ds+ MT / N(s)ds.

Thus the family of functions Gz, z €[z,Z], is equicontinuous. In view of
conditions (C1) and (g4) it follows from (4.4) that Gz < Gy whenever z,y € [z,Z]
and z <y. Moreover, it follows from (4.4) by the definition of mild upper and
lower solutions of (4.1) that £ <Gz and G <Z. Thus G is a nondecreasing

mapping from [z,Z] to [z,Z].

Assume now that (z,)?., is a monotone sequence in [z,Z,]. From the
monotonicity of G it follows that the sequence (Gz,)¥~, is also monotone.

Since the order cone K of E is regular, it follows that

y(t) = lim, Gz, (t) (¢)
exists for all t€J. Because the functions Gz, are equicontinuous, the

convergence in (c) is uniform on J. Obviously, y € [z,Z].

The above proof shows that the mapping G:[z,Z]—[z,Z]| satisfies the
hypotheses of lemma 4.1, whence G has the least fixed point z,. This and the
definition (4.4) of G imply that z, is a solution of the integral equation (4.3).
Hence, z, is a mild solution of the IVP (4.1).

If z is any mild solution of (4.1) and z <z < Z, then z € [z,Z ], whence z
is a fixed point of G. Since z, is the least one, it follows that z, < z. Thus z, is
the minimal solution of the IVP (4.1) in [z,Z].

The existence of the maximal mild solution of the IVP (1.1) is proved

similarly, by using the dual result to lemma 4.1. O

Proposition 4.1: If g:J x E—E in theorem 4.1 is a Carathéodory function,

then the sequence (y,)%°= o of the successive approzimations

Yo 41(t) = C(t)zg + S(t)zy + / S(t—s)g(s,y(s)ds,neNteT  (45)
0

converges uniformly on J =[t,,T| to the minimal (resp. the mazimal) mild

solution of the IVP (4.1) between z and T, if yo =2 (resp. Yo =12 ).
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Proof:  Since g is a Carathéodory function, then g(-,z(-)) is strongly
measurable on J for each z € [z,Z]. From the proof of theorem 4.1 it follows
that the equation (4.4) defines a nondecreasing mapping G:(z,Z]|—[z,Z]
Choosing y, =z and denoting y, = G™y,, we obtain a nonincreasing sequence
(¥,)%-0 in [z,Z], which equals to the sequence of the successive approximations
defined in (4.5). The proof of theorem 4.1 implies that the sequence (Gy,) =,
converges uniformly on J to a continuous function z, €[z,Z]. From the

definition of y,, it follows that

z,(t) = lim Gy,(t) = lim y,(t), t € J. (a)

By using (4.4), (a), and the dominated convergence theorem, and noticing that

g(t, - ) is continuous for a.a. t € J, it is easy to show that

Gz, (t) = lim Gy,(t), t € J.

Thus z, is a fixed point of G. Since y, = z is a lower bound of G[z,Z ], and since
G is nondecreasing, it is easy to see that z, is the least fixed point of G, and

hence, by the proof of theorem 4.1, the minimal mild solution of (1.1) in [z,Z]. O

Lemma 4.2 Let the hypotheses (C0) and (C1) hold, and assume that
g:J X E—E satisfies condition (g4) and conditions
(g5) g(-,z) is strongly measurable for each z € E and g(-,0) € L'(J, E).
(96) Nl glt,z)—g(t,y) || <q(t, [lz—y|l) for all 2,y € E and for a.a. t€J,
where q¢JxR,—R, is a Carathéodory function, q(t,-) is
nondecreasing for a.a. t € J, the IVP

u = MTq(t,u), u(0)=u, (4.6)

with M given by (3.3), has for each uy € R an upper solution on J,
and the zero-function is the only solution of (4.6) when uy = 0.
Then the IVP (4.1) has for each (z4,z,) € EXE a unique mild solution x on J
which depends continuously on (zy,z,). Moreover,
a) <7 for each upper mild solution T of (4.1),

b) z <z for each lower mild solution z of (4.1).

Proof: Let z5,z, € E be given. The existence and uniqueness of the
mild solution z = z(-,z,,,;) of (4.1) can be proved as in theorem 3.1. Following

the proof of theorem 3.2 it is easy to show that
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" x(t’anxl) —x(t’imil) ” < u(taM “ 0 T, “ + MT ” 0 z, “ )’ te Ja (a)

where u = u( -,u,) denotes the minimal solution of the IVP (4.6). Moreover, it
can be shown (cf. [8], proposition 2.1.9) that u is nondecreasing with respect to
ug € R and tends to 0 uniformly over ¢t € J as uy—0. This and (a) imply that

z( -, g, z,) depends continuously on (z4,z,).

Let z be a lower mild solution of (4.1) on J. The hypotheses given for ¢
in condition (¢6) imply (cf. the proof of theorem 3.1) that the relation

Qu(t) = / MTq(s,u(s))ds, teJ (a)

defines a nondecreasing operator Q:C(J,R, )—C(J,R,), that the operator

equation

U+ Qu=uv

has for each uy € R, an upper solution v, and that the sequence (Q"v)y-o
converges uniformly on J to the fixed point of @, i.e. to the 0-function. From
(4.4), (¢6) and (a) it follows that

|Gy—Gy | <Qly-7 |, for y,7 € C(J, E).

The above proof implies by lemma 3.1 that the sequence (G"z)Y_, converges
uniformly on J to a unique fixed point of G. By definition (4.4) of G this fixed
point is the mild solution z of the IVP (4.1). Since conditions (C1) and (g4)
imply that G is nondecreasing, and since z < Gz by (¢3) and (g4), the sequence
(G™"z)%_ o is nondecreasing. Thus z < lim,G"z = z. The proof of assertion b) is

similar. O
Proposition 4.2: Let E be an ordered Banach space with regular

order cone. Assume that g:J X E—E satisfies conditions (¢g3) and (g4), and that
gi(t,z) < g(t,z) < go(t,z) for all z € E and for a.a. t€J, (4.7)
where g;:J x E—E, i = 1,2 satisfy conditions (g4), (95) and (¢6). Then the IVP

(4.1) has for each choice of zy € E the extremal mild solutions.

Proof: Let zy,z, € E be given. Lemma 4.2 implies that the integral

equation
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2(t) = C(t)z + S(t)y + [ S(t = 9)gi(t,a(s))ds (a)

has a unique mild solution £ when ¢ =1 and Z when 7 =2. From (a) and (4.7) it
follows that z is a lower solution of (a) with ¢ =2. Thus £ <Z by lemma 4.2.
Applying, (g4), the triangle inequality, (4.7) and (4.2), it follows that if
z € [z,T], then

I g(t,z(t) || < N(t) for a.a. tE€J, (a)

where

N@) =1+ otz + o620 )-
This and (¢3) imply that the functions g(-,z(-)) and g(-,Z(-)) are Bochner

integrable. Moreover,

2(t) < C(t)zo + S(t)z, + / S(t = 8)g(s,z(s))ds for a.a. te€J,

whence g is a mild lower solution of (4.1). Similarly, it can be shown that Z is a
mild upper solution. Thus ¢ satisfies condition (¢2). By theorem 4.1 the IVP
(4.1) has the minimal mild solution z, and the maximal mild solution z* between

z and T.

If z is a mild solution of (4.1) on J, it follows from (4.3), (4.7) and (a)
that z is a mild upper solution of (a) for i =1 and a mild lower solution of (a)
for 7 =2, whence the results a) and b) of lemma 4.2 imply that z <z <7Z.
Hence all the mild solutions of (4.1) on J lie between z and %, whence z, is the
least and z* the greatest of all the mild solutions of (4.1) on J. O

5. ON THE EXISTENCE OF MINIMAL OR MAXIMAL MILD SOLUTION

In the case when the order of E is fully regular, condition (¢2) can be
replaced by the existence of either upper or lower mild solution of the IVP (4.1),
and condition

(g7) |lg(t,z)|| <At ||z]]) for all z€E and for aa. t€J, where
h:JxR,—-R, is a standard function (cf. [15]), A(t,-) is
nondecreasing for a.a. t € J, and the IVP
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u' = MTh(t,u), u(ty) = ug, (5.1)
with M given by (3.3), has for each uy € R an upper solution.

Theorem 5.1:  Given an ordered Banach space E with fully regular order
cone, assume that g:J x E—E satisfies conditions (¢3), (g4) and (g7) and that
(C0) and (C1) hold.

a) If (4.1) has a lower mild solution g, then (4.1) has the minimal mild
solution in [z).

b)  If (4.1) has an upper mild solution T, then (4.1) has the mazimal mild
solution in (Z).

Proof: a) Assume that z is a lower mild solution of the IVP (4.1).
Denote uy =M || zo|| + MT ||z, || + ||z || o, and let @ be an upper solution of
the IVP (5.1). Since the zero function is a lower solution of (5.1), it follows that

(5.1) has the minimal solution u, on J between 0 and @, and that

u,(t) =ug+ /MTh(s,u*(s))ds, teld. (a)

Denote Y ={y € C(J,E)|z <yand |y| <wu,}. Y is nonempty because z €Y.
If yev, it is easy to see that the equation (4.4) defines a mapping Gy:J—E.
From (3.3), (3.4) and (g7) it follows that

1GYO 1 < HCE Il + S Il + [ 1St =9)gls,u(s) Il ds
<Mllz |l +MT||oy || +MT [ [l g(s,y() || ds

< up+ / MTh(s, || y(s) || )ds < ug + / MTh(s,u,(s))ds = u,(t)

for each t€J. The definition of a mild lower solution of (4.1) implies that
z < Gz. These properties, together with conditions (¢4) and (C1) imply that
the equation (4.4) defines a nondecreasing mapping G:Y—Y. Moreover, if y €Y
and 0 <t <t<T, then
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| Gy(t) = Gy(@) || < [|C(8)zo—C(E)ao || + I S(t)z1 = S(E )z, ||

_ 7 ' (%)
+M|t-7 | / h(s,u.(s))ds + MT / h(s, u,(s))ds.

As in the proof of theorem 4.1 it can be shown that if (z,)¥_, is a
nondecreasing sequence in Y, then (Gz,)?-, converges uniformly on J to a
function y € Y. Since g is the least element of Y, then G has by lemma 4.1 the
least fixed point z, in Y. By definition, z, is a mild solution of the IVP (1.1) in
Y.

Assume now that z:J—FE is a mild solution of (4.1). By choosing u, =
M| zo|| + MT ||z, || + llz llo+ ||z ]l o in the above proof we may assume that
z €Y. By the definition (4.4) of G, z = Gz. To prove that z, <z, let C be the
well-ordered chain satisfying condition (C) of lemma 4.1. To show that y < z for
each y € C make a counter-hypothesis: there is the least element y € C such that
y & z. Because £ <z, then z <y. If 2z€C and z<y then z<z. Since G is
nondecreasing, then Gz<Gzr=z. Thus y=supG{z€C|z<y} <,
contradicting with the choice of y. Consequently z, = mazC < z, which proves
that z, is the least of all the mild solutions of the IVP (4.1) in [z).

The proof of the case b) is similar. O

Corollary 5.1: Let the hypotheses of theorem 5.1 hold, and let g be a

Carathéodory function.
a) If the IVP (4.1) has a lower mild solution z, then the sequence
(Ya)= o, defined by (4.5) with yo, =z is nondecreasing and converges
on J uniformly to the minimal mild solution of the IVP (4.1) in [z).
b)  If the IVP (4.1) has an upper mild solution Z, then the sequence
(¥,)%= o, defined by (4.5) with yo =7 is nonincreasing and converges

on J uniformly to the mazimal mild solution of the IVP (4.1) in (Z].

6. DEPENDENCE ON THE DATA

Next we shall consider the dependence of the extremal mild solutions of
the IVP (4.1) on the initial values z, and z; and on the function g. Let
I'={(t,s)|0<s<t<T} and T(¢,s):T—L(E) satisfying

(To) T(t,t) =1 (I is the identity operator in E);



On Second Order Discontinuous Differential Equations in Banach Spaces 319

(Ty) T(t,s)T(s,r) = T(t,r),for0<r<s<t<T.

Proposition 6.1: Let E be an ordered Banach space with regular
order cone, let T:I'—=L(E) satisfy conditions (T0) and (T'1), and let g,§:J X E-E
satisfy the hypotheses given for g in proposition 4.2. If z;,z;€E, z;<z,,
j=0,1, and if

g(t,z) < g(¢,z) for all z € E and for a.a. t € J,
then all the mild solutions of = the IVP (4.1) and the IVP
2 = A(t)e + J(4,2), 2(0) = 20, (6.1)

satisfy z, <z < z*, where z, is the minimal mild solution of (4.1) and z* is the
T(t+ht)z—=

mazimal mild solution of (6.1), and A(t)z = lim "

—

Proof: By the proof of proposition 4.2 there exist z, Z € C(J, E) such
that all the mild solutions of (4.1) and (6.1) belong to the order interval [z,Z].
Let z be any mild solution of (6.1). The hypotheses imply that z is a mild upper
solution of (4.1). Because of this and (4.4) we have Gz <=z, whence

z, =min{y € [z,T]|Gy <y} <z

The above proof and theorem 4.1 imply that z, <z whenever z is a mild

solution of (4.1) or (6.1). The dual reasoning shows that z < z* for any solution

of (4.1) or (6.1). O
As special case of the above result we obtain

Corollary 6.1:  If the hypotheses of proposition 4.2 hold, then the extremal

mild solutions of the IVP (4.1) are nondecreasing with respect to z,, z, and g.
Similarly, it can be shown

Corollary 6.2: If the hypotheses of theorem 5.1 a) hold, then the minimal
mild solution of the IVP (4.1) in [z) is nondecreasing with respect to zy, z; and
g.

Corollary 6.3: Let E be an ordered Banach space with regular order

cone.  Assume that g:Jx E—E satisfies conditions (g3) and (g4), that
T:J—L(E) satisfies (T0) and (T'1), and that for all z € E and for a.a. t € J

Cl(t) S g(t, 1:) S CZ(t)’
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where the functions Cy, Cy: J—E are Bochner integrable. Then the IVP (4.1) has
for each choice of zy € E the extremal mild solutions, both of which are

nondecreasing in zy, T, and g.

Proof: It is easy to see that the hypotheses of proposition 4.2 hold
when g;(t,z) = Ci(t), ¢ =1,2, whence the assertions follow from proposition 4.2
and corollary 6.1. O

7. APPLICATION TO A PARTIAL DIFFERENTIAL EQUATION

Consider the IVP of the second order hyperbolic partial differential

equation

Ca=rlle fletu), w60 =m0 Fue0==n© (7]
where k is a given positive constant. If J=[0,T], T >0 and f:RxJXR—-R is
continuously differentiable, it is easy to see that a twice continuously
differentiable function w:R x J—R is a solution of the IVP (7.1) if and only if it

satisfies the integral equation

+
u(€, 1) = Lag( + kt) + ao(¢ — k) + & /
t £+ kt
+ il‘l’c‘ / / f(za S, u(27 8))d2d3- (72)
0 -kt

On the other hand, (7.2) may have solutions also when f is not even continuous.
Given p € [1,00) we shall now study existence of solutions of (7.2) in the set U,
of those measurable functions w:R x J—R for which u(-,t) € LP(R) for each t € J
and ltimo _of; | (u(é,t) —u(é,tg| Pd€ =0 for each t;, € J. We say that ue€ U, is a

mild solution of the IVP (7.1) if (7.2) holds for all ¢t € J and for a.a. £ €R.
Choose FE = LP(R), and define for each z € F

C(t)o(€) = 3(a(€ + kt) + 2(6 — kt)) R, L €R (7.3)

To show that (7.3) defines a strongly continuous cosine family {C(t)|t¢ € R} of
operators in  L(LP(R)), note first that properties C(0)=1 and
C(t+s)+C(t—s)=2C(t)C(s) are trivially verified. The equation
T(t)z(€) = z(£ + kt) defines a strongly continuous semigroup T:R—L(LP(R)) (cf.
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(2, 11, 19]) and C(t) =}T(¢) + T(—t)), which implies strong continuity of the
mapping t—C(t)z. The corresponding sine family, defined in (2.1), can be given
by
&+ kt
S()a(€) = & / 2(z)dz. (7.4)
€=kt
Assume first that f:Rx J x R—R has the following properties:
(f0) f(-,-,2) is measurable on Rx J for each z €R and t—f(-,?,0) is a
Bochner integrable mapping from J to LP(R).
(f1) There is g € L? (R) such that | f(¢,t,y) — f(&,t,2)| <q(t)|y—2z]| for
allteJ,y, 2z €R and a.a. £ €R.

If zo€ LP(R) and u € U, it follows that the right hand side of (7.2) is
defined. In view of (7.3) and (7.4) the equation (7.2) can be rewritten as (cf. [1])

u(E,t) = C(B)aol€) + 5tz (€) + [ St -)f(Es,u(6Nds.  (75)

If u € U, is a mild solution of (7.1), i.e. a solution of (7.5), then denoting

z(t) = u(-,t), and g(t,y) = f(-,4,y(+)), t€J,y€ L7(R), (7.6)
then z € C(J, LP(R)), and z is a solution of the integral equation

z(t) = C(t)zq + S(2) xl]St—-s )9(s,z(s))ds, te€J. (7.7

Conversely, if z € C(J,LP(R)) is a solution of (7.7), there is u € U, such that
z(t) = u( -,t) for all t € J, and u is a solution of (7.5), and thus a mild solution of
(7.1) (cf. [11]).

Conditions (f0) and (fl) imply that (7.6) defines a mapping
g:J x LP(R)—LP(R) which satisfies conditions (¢5) and (g6). Thus the
hypotheses of lemma 4.2 hold, whence the integral equation (7.7) has for each
choice of z,, z, € LP(R) a unique solution z in C(J,LP(R)), which depends
continuously on z, and on z;. According to the above stated correspondence
between solutions of (7.7) in C(J,LP(R)) and mild solutions of (7.1) and

identification of a.e. equal functions we then obtain

Proposition 7.1: If conditions (f0) and (f1) hold, then the IVP (7.1)
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has for each zy € LP(R) a unique mild solution u=wu(-, -;2q,%;) in U,, which
depends continuously on z, and on z;, in the sense that | u(-,t;%y,%,)—

u( -, t;70,2,) || ,—0, uniformly over t € J as Ty—z, and Z,—z, in LP(R).

Assume next that f has the following properties.
(f2) fis a standard function from (RxJ)xR to R in the sense defined in
[15].
(f3) f(¢&,t, -) is nondecreasing for all (£,t) € J xR.
(f4) There exist f,f:RxJxR—R which satisfy conditions (f0), (f1)
and (f3) such that fi(§tv) < f(&tv) < fo(6,t,v) for all
(&,t,v) ERxJ XR.
Assume that LP(R) is partially ordered by the cone L7 (R) of a.e.. nonnegative-
valued elements of LP(R). This and (7.3) imply that C(t) is order-preserving for
each t €R. In view of conditions (f2) —(f4) and definition (7.6) of g it is easy
to see that conditions (¢3) and (g4) hold, and that ¢,(¢,y) < g(¢,y) < g4(t,y) for
all teJ and y€ LP(R), where g;, i =1,2, is defined by (7.6) with f=f,.
Noticing also that the order cone L? (R) of LP(R) is regular, then all the
hypotheses of proposition 4.2 hold, whence (7.7) has for each z, € L?(R) extremal
solutions z, and z*, and they are nondecreasing in z; and in z;. According to the
above discussion there exist wu,,u*€U, such that z,(t)=u.-,t) and
z*(t) = u*(-,t) for all ¢t € J so that u, and u* are mild solutions of the IVP (7.1).
Moreover, defining a partial ordering in U, by

u < wvif u(ét) <v(¢,t) for all t € J and for a.a. € €R, (7.8)

it is easy to see that if z,y € C(J,LP(R)) and if u,v are their representatives in
U,, respectively, then z <y if and only if v <v. Thus u, and u* are the
extremal mild solutions of (7.1) and they are nondecreasing in z; and in z;. Thus

we have proved the following result.

Proposition 7.2: If conditions (f2) — (f4) hold, then the IVP (7.1) has
for each choice of z,, =, € LP(R) the extremal mild solutions in U, and they are
nondecreasing in T, and in .
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