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ABSTRACT

In this paper we study a second order semil}near nit}a] value
problem (IVP), where the linear operator in the d}fferential equat}on is
the nfinitesimal generator of a strongly continuous cos}ne family in a
Banach space E. We shall first prove existence, un}queness and
estimation results for weak solutions of the IVP w}th Carath6odory type
of nonlinearity, by using a comparison method. The existence of the
extremal mild solutions of the IVP s then studied when E s an ordered
Banach space. We shall also discuss the dependence of these solutions on
the data. A characteristic feature of the results concerning extremal
solutions is that the nonlinearity s not assumed to be cont}nuous }n any
of its arguments. Moreover, no compactness cond}tions are assumed. The
obtMned results are then applied to a second order partial dfferential
equat}on of hyperbolic type.
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1. INTRODUCTION

In this paper we consider the second order semilinear initial value

problem

x" = Ax + g(t,x,x’), (o)- (1.1)
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where A is the infinitesimal generator of a strongly continuous cosine family

{C(t)[tER} in a Banach space E and g:JxE---,E, J=[O,T], T>0. The

existence of mild solutions of (1.1) is considered in [16] when g is continuous.

Our purpose is to study the case whea g is discontinuous.

We first prove existence, uniqueness and estimation results for weak

solutions of the initial value problem (IVP) (1.1), by using a comparison method

and assuming that g satisfies Carathodory conditions. The existence of the

extremal mild solutions of (1.1) is then studied when E is an ordered Banach

space, and when g does not depend on x’. We shall also discuss the dependence
of these solutions on the initial values and on g. A characteristic feature of the

results concerning extremal solutions is that g is no assumed to be continuous in

any of its arguments. Moreover, no compactness assumptions are imposed on g.

The obtained results are then applied to a second order partial differential

equation of hyperbolic type.

2. PRELIMINARIES

Given a Banach space E, we say that a family {C(t) lt e R} in the space

L(E) of bounded linear linear operators on E is a strongly continuous cosine

family if

(i) C(0) = I;
(ii) t-.C(t)x is strongly continuous for each fixed x e E;
(iii) C(t + s) + C(t s) = 2C(t)C(s) for all s, t e R.

The strongly continuous sine family {S(t) lt 6}, associated to the given

strongly continuous cosine family {C(t)]t 6 N}, is defined by

Denote

s(t)z e E,
0

e IR. (2.1)

E = {x e El C(. )x e el(R, E)} and E = {x e El C(. )x e C=(R, E)}. (2.2)

It can be shown that :.2- E. Obviously, E2 is a subspace of E. As for the

properties of strongly continuous cosine and sine families, see [3, 4, 5, 15, 16].

The infinitesimal generator A:E-E of a cosine family {C(t) lt E IR} is

defined by
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d2

Assume now that A is the infinitesimal generator of a given strongly
continuous cosine family {C(t) t }.

By a strong solution of the IVP (1.1) on the interval J = [0,T] we mean a

function x:J--E with absolutely continuous first derivative, whose second

derivative x"(t)exists and equals to Ax(t)+ g(t,z(t),z’(t))for almost all (a.a.)
t J, and which satisfies the initial conditions x(0)= z0, x’(0)= x1. Given

(x0,x) Ex E, we say that x C(J,E)is a weak solution of (1.1) if there is

y C(J, E) such that

0

y(t) S(t)Axo + C(t)xx + f c(t )(,o + f(-),, (,)).
0 0

(.4)

By the reasoning used in the proofs of proposition 1.2 and theorem 1.3 in [13]
(ee 1o []), oe ow that

(a) a strong solution x of (1.1)is also its weak solution if g(. ,x(. ),x’(. ))
is continuous;

(b) a weak solution x of (1.1)is also its strong solution if 9(.,x(. ),x’(. ))
is absolutely continuous and almost everywhere differentiable;

(c) if x C(J,E) is a weak solution of the IVP (1.1), then it satisfies the

integral equation

x(t) C(t)xo + S(t)x + f S(t- s)g(s,x(s),z’(s))ds, t e J. (2.5)
0

EXISTENCE, UNIQUENESS AND DEPENDENCE
ON INITIAL VALUES

When x e C(J, E) we denote x t II (t)II
ra{ II (t)I! It e J}. The considerations of this section

following fixed point result (cf. [6, 18]),

Given F" C(J, E)-oC(J, E), assume thatLemme 3.1"

are based on the
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Fy- Ft <- O( Y- 1 l) for all y, t e C(J, E), (3.1)

where Q: C(J, + )C(J,R+ ) is nondecreasing, the equation

+ = ( )

J. Then for each Yo C(J,E) the sequence (Fy,)=o converges uniforvnly o, J
to a unique fixed point x of F.

In the following we shall assume that

(CO) {C(t) lt fi } is a strongly continuous cosine family, that A is its

infinitesimal generator, and that {S(t) lt fi } is the associated sine

fmily.

Condition (ii), definition (2.1) and the uniform boundedness principle imply that

M = sup{ l] C(t)[I t e J} < oz, (3.3)

and that

(3.4)

Assume also that g" J x EE satisfies the following conditions.

(gO) g(.,x,y)is strongly measurable for all x,y e E, and g(.,0,0)
Bochner integrable

is

for all x,y,h,kE and for

Carathodory function, q(t,.
a.a. tJ, where q’JxN+[+ is a

) is nondecreasing for a.a. t J, the

IVP

u" Mq(t, u, u’), u(0) = Uo, u’(0) = u (3.5)

with M given by (3.3), has for each (u0,u)e ]9% an upper solution

on J, and the zero-function is the only solution of (3.5) when

It0 = tt =0.

Theorem 3.1- If the hypotheses (CO), (gO) and (91) hold, then for each

(if:0, Xl) 6 E X E the IVP (1.1) has a unique weak solution x on J. Moreover, x is
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of the form z(t) = Xo + f y(s)ds, t e J, where y
0

sequence (y,)= o of the successive approximations

is the uniform limit of the

y. + (t) = S(t)Azo + C(t)x + fc(t + f
0 0

t 6 J, n 6 N, and with arbitrarily chosen Yo 6 C(J, E).

Proof: Let (Xo, Xx)e E x E be given. The function s-,q(s, v(s), v’(s))is
for each v C(J,+) bounded above by - ", where u is an upper solution ofu
the IVP (3.5) with u(0)= il v II0 and u’(0)- II v’ II 0. The hypotheses given for q

in condition (gl) imply that the equation

Qw(t)- /Mq(s, fw(v)dr, w(s))ds, t J (a)
0 0

defines a nondecreasing mapping Q: C(J, + )C(J, + ). Since u(t) =_ 0 satisfies

u"(t) = q(t, u(t), u’(t)) for a.a.. t 6 J, hen q(t, 0, 0) 0 for a.a. 6_ J. From (91) i
hen follows gha also 9 is a Caraghodory function. Thus 9(’,z(’),y(’))is
srongly measurable in J for all z, y C(J, E). From (91) i also follows hag

II a(t, (t), y(t))!i _< Ii g(t, o, o)!1 / q(t, II II o, !1 y !1 o), t e J,

whence g(., x(. ), y(. ))is Bochner integrable. This implies that the equation

8

Fz(t) S(t)Azo + C(t)x q- / C(t- S)g(S X0 q- /
0 0

z(r)dr, z(s))ds (b)

defines a mapping F’C(J,E)C(J,E). By using (3.3), (gl), (a)and (b)it is easy

to show that

[Fy-FY <-Qly-Y I, y,Y 6C(J,E).

Condition (gl) ensures that the operator equation

u, + Qv(t)= v(t), t e J

has an upper solution for each u JR+. Moreover, for any such upper solution v

the sequence (Q"v)= 0 converges by proposition 3.1 of [10] uniformly on J to the

maximal solution of (3.5) with u0- u- 0, i.e. to the 0-function. Thus all the

hypotheses of lemma 3.1 are valid, whence the iteration sequence (F"yo)=o,
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which equals o he sequence of he successive approximations (3.6), converges
for each choice of Yo C(J,E) uniformly in J to a unique fixed poin y of F.
From he definition (b) of F i follows tha y is he uniquely deermined solution

of the second integral equation (2.4), and hence x(t)= xo
unique weak solution of the IVP (1.1) on J.

o

Remark 3.1: If the IVP (3.5) has for some positive value of M the zero

function as the only solution when uo = u = 0, the same does not necessarily

hold for all positive M, as we see from the following example.

Choose J = [0,1] and define q: J x 2+ ,+ )by

q(t,r,s) = 2s
-F’

for s >_ t, t J, r N,

for0<s<t 0<t<l

It is easy to show that u(t)-O is the only soluion of (3.5) when M-1/2 and

uo = u = 0, whereas u(t)- 7t3, t e Y is for each 7 e [0,1/2] a soluion of (3.5) when

M = 1 and uo = u = 0.

The dependence of the weak solution of the IVP (1.1) on the initial values

Zo and z can be estimated by the minimal solutions of the comparison problem

(a.5) in the following manner.

Theorem 3.2: Let the hypotheses (CO), (gO) and (gl) hold. Let

x = z(., Xo, x,) denote the weak solution of the IVP (1.1) on J, and u = u(., u0,

the minimal solution of the IVP (3.5) on J. Then for all x0,0 E and Xl,

II m (t)II and il t e J,

Proof: Let x0, ’0 E be given. The solutions x = x( -, xo, x) and

" x(-,.o, h) exisg by theorem 3.1, and

0 0

where , are the unique fixed points of the integral operators F, ’:C(J,E)--,
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C(J, E), defined by

0 0
and

0 0

Moreover,

u(t) = I! o- o II + f()d, t e or,
0

where v is the least fixed point of the operator G" C(J,+)---,C(J,+) given by

Gw(t) MT II A(zo- o)II + M II , 71 II

0 0

These definitions and condition (gl) imply that

Denoting yo(t)- x and 9 (t)- Y, then equality holds in

(a)

F’*yo "% <- GlYo o
when n = O. Since G is nondecreasing, i follows from (a) and (b)

F +o-"+o -< a Fo-"o -< a"+ Io- o I,

whence (b) holds for all n N.
imply hat

Theorem 3.1 above and proposition 3.1 of [10]

y lira F"yo, = lira fi’"f]o and v tim G’lYo-,o1.

From this and (b) it follows, when n---c, that

!1 (t)- ()II v(t) for each t e J.

This and the definitions of Y,9 and v imply that the estimates (3.7) hold.
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Remark 3.2" The hypotheses given for q in (91) ensure (cf. [81) ha the

minimal solution u of he IVP (3.5) and its derivative u’ are nondecreasing wila

respect go u0 and u, and hat boh of them tend to zero uniformly over t J as

Uo0 and u--,0. This implies by (a.7) ha under the hypotheses of heorem 3.2
he weak solution z of (1.1) and its derivative depend continuously on z. As a

consequence of heorem a.2 we glaen obtain.

Corollary 3.1: Let the hypotheses (CO) and (gO) hold:

that for all x, y, h, k E and for a.a. t J,
Assume moreover

II g(t, z + h, y + k)- g(t, z, y)II <- p(t) II h I! + q(t) II I!,

where p,q e L’(J,N+). Then the IVP (I.I) has for each (Et0, Xl)e E2 x E xactly

one weak solution x. Moreover, x and x’ depend continuously on x.
Proof: It is easy to see that condition (gl) holds when

q(t, u, v)= p(t)u + q(t)v. Thus the relations (3.7) hold. Moreover, the right hand

sides of the inequalities (3.7) tend to 0 uniformly on J as 0 = x0 dx
in E, which implies the last conclusion of corollary.

In particular, we have,

Coron 3.2: If the hypotheses (CO) and (gO) hold, and if
A, A:" JL(E) and Aa"JE are Bochner integrable, then the IVP

x" = Ax + A(t)x + A(t)z’ + An(t), (o) =

has for each (Xo, x) E2 x E a

depend continuously on x.
unique weak solution x, which together with x’,

4. ON EXTREMAL MILD SOLUTIONS

In this section we shall consider the existence of extremal mild solutions

of the IVP

x"= Az + g(t,z), x(O) Xo, x’(O) x,,

between assumed upper and lower mild solutions, when E is an ordered Banach

space with regular order cone and 9:J x E--,E.

Define a partial ordering in C(J, E) by
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z _< y if and only if z(t) <_ y(t) for each t e J.

if _.z, e C(J, E), denoge Ix_) = {z C(J, E) l_z < z}, (el= {z C(J, E)
el= e C(J, E) _< _< e }.

The following fixed poin resul is a basis go our consideragions.

Lemma 4.1" Let Y be a nonempty subset of C(J,E), and let G: Y--,Y
be a nondecreasing mapping such that G[Y] has a lower bound x_in Y. If
z. = supG[C] exists in Y, where C is the well-ordered chain in Y satisfying

(C) x_ minC and x_ < x C if and only if x = supG{y Clay < ),
then x. = maxC- min{y Y Gy <_ y}, and x. is the least fixed point of G.
This holds in particular if the sequence (Gy)= o converges uniformly on J to a

function of Y whenever (y,,)= 0 is a nondecreasing sequence in Y.

Proof: The first assertion is proved in [7, 81. Because G[C], with C

given by (C), is also a well-ordered chain in Y, and because C(J,E)is an oaea
normed space wih respect to pointwise ordering and the uniform norm, it is easy

to see (cf. [8, 9]) that supG[C] exist in Y if G(y)=o converges uniformly on J
to a function of Y whenever (Y,)=o is a nondecreasing sequence in C. This

implies the last assertion.

We shall assume that E is ordered by a regular order cone K, i.e. all

nondecreasing and order bounded sequences of K converge. This implies (cf. [12])
that K is also normal, i.e. there is 7 > 0 such that

II y II !1 z il whenever y, z e K and y <_ z. (4.2)

Assume now that condition (CO) holds, and that

(C1) C(t)is order-preserving for all t J.
From (CO) and (C1) it follows by (2.1) that S(t)is also order-preserving for each

tJ.

Given Xo, X E x E, we say that x C(J,E) is a lower mild solution of

the IVP (4.1) on J if

z(t) C(t)zo + S(t)z, + f S(t- s)g(s,z(s))ds, t e J. (4.3)
o

An upper mild solution of (4.1) is defined similarly, by reversing the inequality

sign in (4.3). If equality holds in (4.3), we say that x is a mild solution of (4.1).



312 S. HEIKKILA and S. LEELA

Compared with he notion of weak solution we now don’ require he

differenfiability of he solution. In the case when zo E= and is continuous

can be shown (cf. [13]) ha (4.1) has he same weak and mild solutions.

(92)

(93)
(41

Let us impose the following hypotheses on the mapping g:J x EE.
(1.1) has a lower mild solution _x and an upper mild solution y,
such that x_ _< y, and that the functions g(.,_x(-)) g(.,y(.)) are

Bochner integrable.

g(. ,x(. ))is strongly measurable whenever x e C(J, E).
g(t, ) is nondecreasing for a.a. t J.

Theorem 4.1" Let E be an ordered Banach space with regular order

o,,. +/-f th hoth (CO), (C) d ()-(4) hoU, th th VP (4.)
the extremal mild solutions between x and ..

Proofi By definitions _x, y: C(J, E). If x belongs to the order interval

[_x,y] of C(J,E), it follows from (93) and (2.1) that the mapping

s--S(t- s)g(s,z(s)) is strongly measurable on [0,t] for all t e J. Conditions (C1)
and (94) imply that that for all t e J and for a.a. s [0, t],

s(t )(,
_
()) _< s(t )(, ()) _< s(t )(, ()).

Applying this, the triangle inequality, (4.2) and (3.4), it follows that

[I s(t--- )g(, ())il MTN(s) for all t e J and for a.a. s e [0, t], (a)

where

N(t) = (1 + )( !1 g(,-())II + Ii g(, ())!1 ).

This and the hypotheses (g2) and (g3)imply that s-S(t- s)g(s,x(s))is Bochner

integrable on [0, t] for each t J. Thus the equation

Cx(t) C(t)xo + S(t)x, + /S(t- s)g(s, z(s))ds, t e J, (4.4)
0

defines a mapping Gx:JE for each x [_x,y]. Moreover, if 0 _< _< t _< T
x e [_x,.], it follows from (2.1), (3.4), (4.4) and (a) that

and

o T
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T

+ M it- f N(s)ds + MTf N(s)ds.
o

Thus the family of functions Gx, z [_x,y:], is equicontinuous. In view of
conditions (el) and (g4) it follows from (4.4) that Gx < Gy whenever z, y 6 [_x,’]
and z _< y. Moreover, it follows from (4.4) by the definition of mild upper and

lower solutions of (4.1) that z_ _< G_z and GY: <_ ’. Thus G is a nondecreasing

mapping from [z_,.l to [z_,. ].

Assume now that (z,,),7=, is a monotone sequence in [_x,y:,].
monotonicity of G it follows that the sequence (Gz,,)= is also

Since the order cone K of E is regular, it follows that

From the

monotone.

=

exists for all t J. Because the functions Gx,, are equicontinuous,

convergence in (c)is uniform on J. Obviously, y [_x,.].
the

The existence of the maximal mild solution of the IVP (1.1) is proved

similarly, by using the dual result to lemma 4.1. 13

Proposition 4.1" If g: J x E---,E in theorem 4.1 is a Carathodory function,

then the sequence (y,)= o of the successive approximations

Yn q-1 (t) = C(t)x0 -1- S(t)271 -- J S(t ,.q)g(q, y,,(s))ds, n 6 N, t 6 J (4.5)
0

converges uniformly on J= [to, T to the minimal (resp. the mazimal) mild

solution of the IVP (4.1) between x_ and yc, if Yo = x_ (resp. Yo = , ).

If x is any mild solution of (4.1) and x < z _< Z, then x [z_,Y:], whence x

is a fixed point of G. Since x. is the least one, it follows that; x. <_ x. Thus x. is

the minimal solution of the IVP (4.1) in [_z,y: ].

The above proof shows that the mapping G:[z_,][x_,] satisfies the

hypotheses of lemma 4.1, whence G has the least fixed point x.. This and the

definition (4.4) of G imply that z. is a solution of the integral equation (4.3).
Hence, z. is a mild solution of the IVP (4.1).



314 S. HEIKKE and S. LEELA

Proof: Since g is a Carathodory function, then g(., x(. )) is strongly
measurable on J for each x E [_z," ]. From the proof of theorem 4.1 it follows
that the equation (4.4) defines a nondecreasing mapping G: [x_, y: ][x_,. ].
Choosing Yo = _x and denoting y, = G"yo, we obtain a nonincreasing sequence

(Y,)= o in [x_,y: ], which equals to the sequence of the successive approximations

defined in (4.5). The proof of theorem 4.1 implies that the sequence (Gy,)=o
converges uniformly on J to a continuous function x. E [_z,.]. From the

definition of y,, it follows that

x.(t) linrnooCY(t) -= linLnooYn(t), t e J. (a)

By using (4.4), (a), and the dominated convergence theorem, and noticing that

g(t,. ) is continuous for a.a. t J, it is easy to show that

Gx.(t) = liooGy(t), t 6 J.

Thus x. is a fixed point of G. Since Y0 _z is a lower bound of G[_z, ], and since

G is nondecreasing, it is easy to see that x. is the least fixed point of G, and

hence, by the proof of theorem 4.1, the minimal mild solution of (1.1) in [_z,y:]. V1

Lamina 4.2 Let the hypotheses (CO) and (C1) hold, and assume that

g: J x E-+E satisfies condition (g4) and conditions

,z)  ach z E O)e
(g6) II g(.t, x)- g(t, y)I! <- q(t, II z y !1) for all x, y 6 E and for a.a. t 6 J,

where q: J x N + --- + is a Carathodory function, q(t, .) is

nondecreasing for a.a. t 6 J, the IVP

MTq(t,,),

with M given by (3.3), has for each Uo + an upper solution on J,
and the zero-function is the only solution of (4.6) when Uo = O.

Then the IVP (4.1) has for each (Xo, X) E x E a unique mild solution x on J
which depends continuously on (Xo, X). Moreover,

a) x <_ . for each upper mild solution of (4.1),
b) x_ <_ x for each lower mild solution x_ of (4.1).

Proofi Let Xo, Z E be given. The existence and uniqueness of the

mild solution x = x(. ,Xo, X,)of (4.1) can be proved as in theorem 3.1. Following

the proof of theorem 3.2 it is easy to show that
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where u = u(-,u0) denotes he minimal solution of the IVP (4.6). Moreover,
can be shown (cf. [8], proposition 2.1.9) that u is nondecreasing wih respect to

uo N+and tends o 0 uniformly over t J as Uo--,O. This and (a) imply that

(. ,zo, z) depends continuously on

Le _x be a lower mild solution of (4.1) on Y. The hypotheses given for q

in condition (96) imply (cf. the proof of theorem 3.1) that the relation

Qu(t) = ] MTq(s, u(s))ds,
0

t e J (a)

defines

equation

a nondecreasing operator Q: C(J, + )---C(J, + ), that the operator

Uo+qV-V
rl oohas for each u0 [R+ an upper solution v, and that the sequence (Q v),,= 0

converges uniformly on J to the fixed point of Q, i.e. to the 0-function. From

(4.4), (g6) and (a)it follows that

Gy- Gy <- Q ly- I, for y,y C(d, E).

The above proof implies by lemma 3.1 that the sequence (G_x)=0 converges

uniformly on J to a unique fixed point of G. By definition (4.4) of G this fixed

point is the mild solution x of the IVP (4.1). Since conditions (C1) and (g4)
imply that G is nondecreasing, and since x < G_x by (93) and (94), the sequence

(G_x)o= 0 is nondecreasing. Thus _x _< tim,G"x_ z. The proof of assertion b) is

similar. F1

Proposition 4.2" Let E be an ordered Banach space with regular
order cone. Assume that g: J x E--.E satisfies conditions (93) and (94), and that

g(t, x) G g(t, x) G g(t, x) for all x E and for a.a. t J, (4.7)

where gi’d x EE, i-1,2 satisfy conditions (g4), (95) and (96).
(4.1) has for each choice of xo E the eztremal mild solutions.

Then the IVP

Proof: Let Xo, X E be given. Lemma 4.2 implies that the integral

equation
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X(t) = C(t)X0 "1" S(t)= "!" f ,.,q’(’t--
0

has unique mild solution x_ when i= 1 and y when i= 2. From (a) and (4.7) it

follows that _z is a lower solution of (a) with i = 2. Tlaus _z _< by lemma 4.2.

Applying, (94), the griangle inequaligy, (4.7) and (4:.2), ig follows that if

z [_x, Y: ], then

II g(, =()II -< N(t) for a.a. e J, (a)

where

N(t) (1 + 7)( II gl(t, x_ (t))II + II g=(t, (t))II )"

This and (g3) imply that the functions g(., x_(. )) and g(., g’(. )) are Bochner

integrable. Moreover,

x_ (t) <_ C(t)xo + S(t)x, + f S(t- s)g(s, x_ (s))ds for a.a. t e J,
0

whence _x is a mild lower solution of (4.1). Similarly, it can be shown that is a

mild upper solution. Thus g satisfies condition (g2). By theorem 4.1 the IVP

(4.1) has the minimal mild solution x. and the maximal mild solution x* between

x and 5:.

If z is a mild solution of (4.1) on J, it follows from (4.3), (4.7) and (a)
that x is a mild upper solution of (a) for i-1 and a mild lower solution of (a)
for i=2, wheace the results a) and b) of lemma 4.2 imply that z <z_<g:.
Hence all the mild solutions of (4.1) on J lie between _z and g:, whence z, is the

least and x* the greatest of all the mild solutions of (4.1) on J. rl

5. ON THE EXISTENCE OF MINIMAL OR MAXIMAL MILD SOLUTION

In the case when the order of E is fully regular, condition (g2) can be

replaced by the existence of either upper or lower mild solution of the IVP (4.1),
and condition

(7) !1(,)il -<h(, II zli) fo" 11 E and for a.a. td, where

h:Jx[R+--+[R+ is a standard function (cf. [15]), h(t,.)is
nondecreasing for a.a. t J, and the IVP
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u’=MTh(t,u), u(to)=Uo,

with M given by (3.3), has for ech u0 +an upper solution.

Theorem 5.1" Given an ordered Banach space E with fully regular order

cone, assume that g:J x E---E satisfies conditions (93), (94) and (97) and that

(co) d (C) od.

a) /f (4.1) has a loer mild solution x_, then (4.1) has the minimal mild

solution in [x_ ).
b) If (4.1) has an upper mild solution , then (4.1) has the maximal mild

solution in ( ].

Proof: a) Assume that _x is a lower mild solution of the IVP (4.1).
Denote uo- M I[ Xo ][ + MT [[ x, ][ + [[ _x [1 o, and let be an upper solution of

the IVP (5.1). Since the zero function is a lower solution of (5.1), it follows that

(5.1) has the minimal solution u. on J begween 0 and , and that

u.(t) = Uo + /MTh(s, u.(s))ds,
0

t e J. (a)

Denote Y {y or. C(J, E) lx_ _< y. and yl -< u.}. Y is nonempty because _z Y.
If y Y, it is easy to see that the equation (4.4) defines a mapping Gy:J---E.
From (3.3), (3.4) and (g7)it follows that

!1 G:y(t)!1 <- I! C(t)o !1 + II s(t) !1 + I! s(t- )(, ())II d

_< M II o !1 + MT I1 , II + MT/
0

I! g(,y())II d

<_ uo + f MTh(s, II y()II )d _< ,o + f
0 0

MTh(s, u.(s))ds = u.(t)

for each t J. The definition of a mild lower solution of (4.1) implies that

_x _< G_x. These properties, together with conditions (94) and (C1) imply that

the equation (4.4) defines a nondecreasing mapping G: Y--.Y. Moreover, if y Y
and 0 _< _< t _< T, then
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II az (t) az a) II 11 c(t) o II + il sa) , II

+MIt-
T

f h(s, u,(s))ds + MTf h(s, u,(s))ds.
o

As in the proof of theorem 4.1 it can be shown that if (z,)=o is

nondecreasing sequence in Y, then (Gx,)= o converges uniformly on J to

function y Y. Since _x is the least element of Y, then G has by lemma 4.1 the

least fixed point z, in Y. By definition, x, is a mild solution of the IVP (1.1) in

Y.

Assume now that z:JE is a mild solution of (4.1). By choosing u0

M [[ x0 ][ + MT [[ x I[ + [[ _x [[0 + 11 x [[0 in the above proof we may assume that

x Y. By the definition (4.4) of G, x- Gx. To prove tha x,._< x, let C be the

well-ordered chain satisfying condition (C) of lamina 4.1. To show that y _< x for

each y C make a counter-hypothesis" there is the least element y C such that

y:x. Because _x_<x, then _x <y. If zC and z<y then z_<x. Since G is

nondecreasing, then Gz < Gx = x. Thus y = supG{z C z < y} < x,

contradicting with the choice of y. Consequently x, = maxC <_ x, which proves

that x, is the least of all the mild solutions of the IVP (4.1) in [_x).

The proof of the case b) is similar.

Corollary 5.1: Let the hypotheses of theorem 5.1 hold, and let g be a

Carath6odory function.
a) If the IVP (4.1) has a lower mild solution x_, then the sequence

(y)=o, defined by (4.5) with Yo-x_ is nondecreasing and converges

on J uniformly o the minimal mild solution of the IVP (4.1) in [z_).
b) If the IVP (4.1) has an upper mild solution yc, then the sequence

(Y,,)=o, defined by (4.5) with Yo- , is nonincreasing and converges

on J uniformly to the mazimal mild solution of the IVP (4.1) in (. ].

6. DEPENDENCE ON THE DATA

Next we shall consider the dependence of the extremal mild solutions of

the IVP (4.1) on the initial values zo and z and on the function g. Let
F = {(t, s)[0 _< s _< t _< T} and T(t, s): FL(E) satisfying

(To) T(t, t)= I (I is the identity operator in E);



On Second Order Discontinuous Differential Equations in Banach Spaces 319

(Tx) T(t, s)T(s, r) = T(t,r), for 0 _< r <_ s _< t _< T.

Proposition 6.1" Let E be an ordered Banach space with regular
order cone, let T:F---}L(E) satisfy conditions (TO) and (T1), and let g, ff:J E---E
satisfy the hypotheses given for g in proposition 4.2. If x,zl E, x <_ z,
j = O, 1, and if

g(t, z) <_ if(t, x) for all x (F.. E and for a.a. t e J,

then all the mild solutions of x the IVP (4.1) and the IVP

x’ = A(t)z + (t,x), x(O) = Zo, (6.1)

satisfy z. <_ z <_ z*, where x. is the minimal mild solution of (4.1) and z* is the
T(t + h,t)x- z

mazimal mild solution of (6.1), and A(t)z = lira
hO + h

Proof: By the proof of proposition 4.2 there exist _x, y: C(J,E) such

tha all the mild solutions of (4.1) and (6.1) belong to the order interval [_x,y].
Let x be any mild solution of (6.1). The hypotheses imply that x is mild upper

solution of (4.1). Because of this and (4.4) we have Gx<x, whence

=, -- mi,,{y E [_=, Cy _< y} _<

The above proof and theorem 4.1 imply that x. < z whenever x is a mild

solution of (4.1) or (6.1). The dual reasoning shows that x < z* for any solution x

of or

As special case of the above result we obtain

Corollary 6.1" If the hypotheses of proposition 4.2 hold, then the eztremal

mild solutions of the IVP (4.1) are nondecreasing ith respect to xo, z and g.

Similarly, it can be shown

Corollary 6.2: If the hypotheses of theorem 5.1 a) hold, then the minimal

mild solution of the IVP (4.1) in [z_) is nondecreasing with respect to Xo, x and

g.

Corollary 6.3: Let E be an ordered Banach space with regular order

cone. Assume that g’JE---,E satisfies conditions (g3) and (g4), that

T: J---+L(E) satisfies (TO) and (T1), and that for all x E and for a.a. t J

C,(t) <_ g(t,z) <_ Cz(t),
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where the functions C, C:JE are Bochner integrable. Then the IVP (4.1) has

for each choice of Xo E the eztremal mild solutions, both of which are

nondecreasing in Xo, x and g.

Proof: It is easy to see that the hypotheses of proposition 4.2 hold
when g(t,z)= C(t), i- 1,2, whence the assertions follow from proposition 4.2
and corollary 6.1.

7. APPLICATION TO A PARTIAL DIFFEINTIAL EQUATION

Consider the

equation

IVP of the second order hyperbolic partial differential

Or----T = -+ f(, t, u), u(, 0) x0() ttu(, 0) = x,(), (7.1 /
where k is a given positive constant. If J- [0,T], T > 0 and f: x J x is

continuously differentiable, it is easy to see that a twice continuously

differentiable function u: xJ is a solution of the IVP (7.11 if and only if it

satisfies the integral equation
+kt

t) + + + f
-kt

+kt

0 --kt

(7.2)

Choose E = L’([), and define for each x E

C(t)x() = 1/2(x( + kt)+ x(- kt)), t [, . (7.3)

To show tha (7.3) defines a strongly continuous cosine family {C(t) lt N} of

operators in L(LP(R)), note first that properties C(0) = I and

C(t + s) + C(t s) = 2C(t)C(s) are trivially verified. The equation

T(t)x() = x( + kt) defines a strongly continuous semigroup T:N---L(L(R)) (cf.

On the other hand, (7.2) may have solutions also when f is no even continuous.

Given p [1,c) we shall now study existence of solutions of (7.2) in the set

of those measurable functions u: x JN for which u(., t) L() for each t J
and lira f (u(,t)-u(,to I,d- 0 for each to J. We say that u q.L, is a

tt0 c

mild solution of the IVP (7.1) if (7.2) holds for all t J and for a.a. .
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[2, 11, 191) and C(t)= 1/2(T(t)+ T(- t)), which implies sgrong continuity of the

mapping tr---C(t)z. The corresponding sine family, defined in (2.1), can be given
by

= f 4z)ez.

Assume firs ghag f: N x J x NN has ghe following properties:

(fO) f(.,-,z)is measurable on x J for each z e and ty(.,t,O)is a

Bochner ingegrable mapping from J to L(N).
(fl) There is q e (N) such hat I(, ,)- I(, t, )1 N q(t) 9 for

all t J, , N and a.a. N.

If zo (N) and u , ig follows ha ghe righ hand side of (7.2) is

defined. In view of (7.a) and (7.4) the equagion (7.2) can be rewritten as (cf. [1])

t) = + fs(t- (7.s)
0

If is a mild solution of (7.1), i.e. a solugion of (7.5), ghen denoting

z()- (., t), and 9(t, 9)= f( , 9( )), t e J, e (N), (7.6)

hen z C(J, (N)), and z is a solution of the integral equagion

z() = C(t)za + S(t)z f S(t- s)e(s, z(s))ds, t e J. (7.7)
0

Conversely, if z C(J,(N))is a solution of (7.7), here is u such

z() = (., t) for all t J, and u is a solution of (7.5), and hus a mild solution

(7.1) (cf. [11]).

Conditions (f0) and (fl)imply that (7.6) defines a mapping

g:JxLr’(N)L’(N) which satisfies conditions (95) and (96). Thus the

hypotheses of lemma 4.2 hold, whence he integral equation (7.7) has for each

choice of x0, Xl Lo(R) a unique solution x in C(J,L’(R)), which depends

conginuously on Xo and on x. According to the above stated correspondence

between solutions of (7.7) in C(J,L(R)) and mild solutions of (7.1) and

identification of a.e. equal functions we then obtain

Proposition 7.1: If conditions (fO) and (fl) hold, then the IVP (7.1)
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depen continuously on Zo and on z in the sense that

Assume next that f has the following properties.

(f2) f is a sandard function from ( x J)x [ o in he sense defined in

(f3) f(, t,-)is nondecreasing for all (, t) J x .
(f4) There exis f, f: x J x which satisfy conditions (f0), (fl)

and (f3) such that f((, t, v) f((, t, v) f(, t, v) for all

(,t,v) RxJxR.
Assume that Lv(R)is partially ordered by the cone L(R) of a.e.. nonnegative-
valued elements of LP(R). This and (7.3)imply that C(t)is order-preserving for

each t E R. In view of conditions (f2)- (f4) and definition (7.6) of g it is easy

to see that conditions (g3) and (g4) hold, and that ga(t,y) a(t,y) a(t,y)for
all t E J and y E LP(R), where g, i-1,2, is defined by (7.6) with f-f.
Noticing also that the order cone L(R)of LP(R)is regular, then all the

hypotheses of proposition 4.2 hold, whence (7.7) has for each x0 E LP(R) extremal

solutions z. and x*, and they are nondecreasing in z0 and in z. According to the

above discussion there exist u.,u*E%p such that x.(t)=u.(.,t) and

x*(t)- u*(., t) for all t E J so that u. and u* are mild solutions of the IVP (7.1).
Moreover, defining a partial ordering in p by

u _< v if u((, t) _< v((, t) for all t J and for a.a. N,

it is easy to see that if x,y E C(J,L’(R)) and if u,v are their representatives in

dr, respectively, then x_< y if and only if u_<v. Thus u, and u* are the

extremal mild solutions of (7.1) and they are nondecreasing in z0 and in x. Thus

we have proved the following result.

Proposition 7.2: If conditions (f2)- (f4) hold, then the IVP (7.1) has

for each choice of xo, x e L(N) the eztremal mild solutions in dv, and they are

nondecreasing in xo and in x.
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