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ABSTRACT

We consider a nonlinear (in the sense of McKean) Markov
process described by a stochastic differential equations in R%. We prove
the existence and uniqueness of invariant measures of such process.
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1. INTRODUCTION

In this paper we study the asymptotic property of a nonlinear Markov
process described by the following stochastic differential equation in d-
dimensional Euclidean space R?:

{ dX(t) =[— AX(t) + F(X(t), p(t)}dt + dW(t), >0

1
4(t) = probability law of X(t) 1)

where W is a standard d-dimensional Wiener process; A is a d x d-dimensional
matrix; f is an appropriate R%valued function defined on R? x M,(R?). Here
M,(R?) denotes the space of all probability measures on R? which have finite
second moments. Under mild conditions, the above equation has a unique
solution X = {X(¢),t >0}. We are interested in the stationary behavior of its
probability distribution p(t), as a measure-valued function. In particular, we
want to find the conditions that ensure the existence and uniqueness of invariant

measures for the stochastic differential equation (1).
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By far, there are many papers in the literature which were devoted to the
studies of invariant measures of Markov processes, both in finite and infinite
dimensional spaces. Some of them are listed in the references ([3], [10], [15], [17],
[19], [20], [21], [24], [26]). There are also several research papers and one
monograph which were devoted to the study of long time behavior of nonlinear
stochastic differential equations of McKean type ([7], [22], [23]). But the drift
terms in these models are usually assumed to be of gradient type, so the
associated invariant measures can be written down explicitly. To the knowledge
of the authors, for nongradient type drift such as the one in (1), the problems

related to the invariant measures have not been studied in the literature.

It is important to point out at the outset that may of the standard
techniques and results on invariant measures for Markov processes cannot be
applied to model (1) directly without appropriate modifications because (1) is
not a Markov process in the usual sense. We also want to point out that this
model provides a first step towards a better understanding of the behavior of
similar stochastic evolution equation in a Hilbert space where — A is the
infinitesimal generator of Cy-semigroup. This infinite dimensional model is

currently under investigation.

Our main results (see theorem 3 in section 4) give sufficient condition for

existence and uniqueness of invariant measures of the system (1).

The proof of the existence theorem is based on a general criterion (see
theorem 2 of section 3) on the existence of invariant measures for McKean type
of nonlinear Markov processes, which is of independent interest. An example is
given in section 4 to indicate that the conditions obtained in this paper are only

sufficient conditions.

The rest of this paper is organized as follows. In section 2 we prove the
existence and uniqueness of solutions of the stochastic differential equation (1).
In section 3 we prove a general theorem which ensures the existence and
uniqueness of invariant measures for McKean-Vlasov nonlinear stochastic
differential equations. In section 4 we apply this theorem to the nonlinear

Markov process determined by equation (1) and give a simple example.
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2. STOCHASTIC DIFFERENTIAL EQUATION

We first introduce some notations. Throughout this paper R? always
denotes d-dimensional real Euclidean space with scalar product (-, -) and norm
| -|. B(R?) denotes the Borel sigma-algebra of subsets of R%. R4®4 denotes
the space of d xd real matrices. We denote by C®(RY), Cy(RY), CR(R?) the
space of real valued functions on R? which are smooth, bounded continuous, and

smooth functions with compact supports, respectively.

Let (©,F, P) be a complete probability space equipped with the filtration
{F,;:t >0} of nondecreasing sub-sigma algebras of ¥. The expectation with
respect to P will be denoted by E. Let W = {W(t):t >0} be a standard d-
dimensional Wiener process defined on this probability space such that W is
adapted to {F,:t > 0}.

Let M(R?) denote the space of all probability measures on R furnished
with the usual topology of weak convergence. Let M,(R?) be the collection of all
p € M(R?) satistying

1
lulls =1 [ l2|2u(da)}? < +oo. @)
Rd
The space M,(R?) is equipped with a topology determined by a special metric
p2( P, Q) defined by

pP,Q=infl [ (Iz=y|*ADF(dzxdy)}, Q

RIx R?
where P,Q € M,(R?) and the infimum is taken over the space M(R?x R¥) of all
probability measures F on R? x R? such that F has marginal measures P and Q.
It is known [9] that (M,(R%),p,) is a complete metric space and a sequence p,, of
probability measures converges in (M,(R?),p,) to a probability measure p if and

only if (a) g, converges to u weakly in M(R?) and (b) the second moments

| 1 2 converges to || u |3

We denote by C([0,00), M,(R?)) the metric space of continuous functions
from [0,00) to M,(R?) with the metric:

(1A ) =3 Skl sup pou(t) (1) A1)

N=1 0Lt<N
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=5 SRDMHOMH) AL, @

where p( - ) and v(-) belong to C([0,00), M (R?)).

We consider the ItG stochastic differential equation (1) and assume that
(Al): The operator A is a d xd-dimensional matrix such that the associated
semigroup S(t) = exp(— At), t>0, of bounded linear operators on R?
satisfies

S| < exp(—wt)
for some strictly positive constant w, where || S(t)|| denotes the operator
norm.
(A2): The function f: R? x M,(R?)—R? satisfies
| £z, 1) = F) |2 < k(|2 =y |* + pi(p,v))
| fl@m) 1?10+ [z ]2+ | ull3)
where k and [ are positive constants.

Theorem 1:  Suppose that conditions (Al) and (A2) are satisfied.
Then for any z € Ly(Q, F,, P; R?), stochastic differential equation (1) has a unique
solution X = {X(t):t > 0} with X(0) =

Proof: We use the classical Picard iteration scheme. Define

Xo(t) = S(t)zx
t t

§ Xot) =S+ [S(t=5)f(Xn1(s)pn-1(ds+ [S(t=5)W(s)  (5)
0 0

n=12,..

\
where 4,(t) denotes the distribution of X ,(¢). Then

K 41(8) = Xl / S(t = ) f(Xna(s), #al9)) = F(X - 1(8), #n—1(s))lds  (6)

and it follows from the assumptions (A1) and (A2) that for any T > 0,
E( sup |Xn+1(t)“Xn(t) |2)
0<t<T

T
< TE(/ 1S(t =) 17 F(Xa(5)s 1(5)) = f(Xn—1(), #a =1(5)) | *ds)
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<T

(E| Xa(s) = Xn-1(s)|* + p3(n(8), tn —1(3)))ds. (7)

o\h}

Since by the definition (3) of metric p, we have that

P3(n(8) n —1(5)) S E | X o(8) = X _4() %, (8)
it is easy to verify that

B( sup | Xo(t) = Xo(t)|) < 2Tk / B( sup | Xain(8) = Xo(0)]7)ds.
N 2 ©)
Writing ®,(t) = E( sup | X,(s)—X,._1(5)|?) and a = 2TkM?, we have
0<s<t
@ 42(T) < / @, (t)dt (10)
Hence by repeated substitution of (10) into its definition, we obtain
®,42(T) < @"L78,(T) (1)
Since
()= E( sup | X,(t)=Xo(t)|?)
0<t<T
T T
<2TE [ ||5(t-9) 17| F(Xols),als)) | %ds+2 [ || S(t—9)1 s
0 0
T
<271 (14 B[ Xofs) |2+ || o(s) | Dds + 27
0
T
§2Tl/(1+2E|x|2)ds+2T
0
<2TIT(1+42E|z|?)+2T
< Cp=(aT +bT?), a,b>0, (12)
we have
E( 052‘%’ | X 41(t) = Xa(t)|?) = 6p11(T) < C'TCY o (13)
Thus
P sup | Xnsa(t) = Xo(t)] >} < Crlde) Ty (14)
0<t< !

By Borel-Cantelli’s lemma, the processes X ,(t) converge uniformly on (0,7 for

arbitrary T' > 0. The limit process X(t) is then continuous and solves equation
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(1). This proves the existence of a solution of equation (1).

To prove uniqueness, we let X(t) and X,(t) be two solutions of equation
(1) such that X,(0) = X5(0). The corresponding distribution of X,(t) and X,(t)
will be denoted by p,(t) and u,(t), respectively. Let ol =inf{t: |X1(t)| > N}
and o =inf{t: | X,(t)| >N} We show that for each N =1,2,..., ol =o¥
and X,(t) = X,(t) for all t < o). We have

X tAN Aad) = X,(t A A o)

tnaN Aol

=/ S(t = FXx() () — F(Xols) malsDds;  (15)

so, for any t € [0, T,
E|X,tAoN AoY) =Xt Ao AoY)|?

tA d{v A aév
<TkE | (1 X1(3) = X(5) | 2 + polia(8)), ia(5)))ds
STkE](]X (sAoN Aol) = X, (s Aol Aal)|?

0

+p3(m(s Aot A oY), pa(s Aoy Ao 2)))ds
< 2Tk / E| X, (sAoY Aod) = X (s Aol Aal)|?))ds. (16)

Hence the Gronwall’s inequality yields
E|X,tANAo)) =Xt A Aal)|2=0, Vte[0,T). (17)
Letting T—o0 we obtain
X, tAN ANod) = X,(t Aol AcY) as. for all ¢ > 0. (18)

Since X, and X2 are continuous processes, we can conclude that X;(t) = X(t)

for all t € [0,0¥ A ol). This implies oV = o} a.s. and the uniqueness is proved.O
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3. A GENERAL CRITERION FOR INVARIANT MEASURES

In this section we provide a general result on the existence of invariant
measures for the nonlinear Markov processes described by the following It&
equation in R9:

dX(2) = b(X(2), u(®)dt + o(X(2), u(E)AW (D), 20
u(t) = probability law of X(t), (19)
o = the initial law of X(0), p, € M,(RY),

where W is a d-dimensional Wiener process, b and o are continuous functions
from RY x M,(R?) to R? and R¥®9 respectively, satisfying the conditions

|5(z, 1) = b(y,v) | + | oz, 1) = oy, v) |2 < k(|2 =y |* + p3(,v))

|5(z, 1) |2+ oz, ) |2 <1+ |22+ |6 ]13)
where z,y € R?, u,v € M,(R?) and k, [ are two positive constants. Using Picard

iterative technique similar to that used in the previous section, one can show

(4):

that equation (19) has a unique continuous solution.

Let X denote the unique solution of equation (19) and let p(t) denote the
probability law of X(t). Then by It3’s formula the measure valued function u(-)
satisfies the McKean-Vlasov equation

Liu(t),9) = (W), L)), t>0, Vi € CR(RY)

(20)
p#(0) = pq
where for each p € M,(R?), L(p) is given by
d 9? d 0
Huele) =} 3 aufonlgap+ 3 ban o) (21)
t,) = L = ]

d
for a;4(z, 1) =k};1‘7 k(2 p)o iz, ).
Definition 1: A probability measure p € M(R?) is said to be an

invariant measure associated with system (19) if (p,L(p)p)=0 for all

¢ € CR(RY).

For each given p € M,(R?), consider the following stochastic differential
equations

(22)

dX(t) = b(X(t), p)dt + o(X(t),p)dW(t), t>0.
X(0) has the initial law gq, o € My(RY).
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Under the assumption (A), equation (22) has a unique continuous solution. Let
X, denote the unique solution of (22). Then the process X, is a time

homogeneous Markov-Feller process. The associated transition semigroup
{T ,(t):t > 0} has the form

T, (@)= [e)P,(t,2,d), € CyR), (23)

Rd
where P,(t,z,B)=P(X,(t)e B|X,(0)=z), t>0, € R¢, BeB(R?), is the
usual transition function of a Markov process. Let u,(t) denote the probability

law of X (t). Then the associated McKean-Vlasov equation becomes

Li(1),0) = (,(8), L(p) ), ¢>0, Yoo € CR(R?)

(20)

1p(0) = pro-
Clearly if p is an invariant measure of system (19), then it is also an invariant
measure of the diffusion process X,. This observation suggests that in order to
find invariant measures for the nonlinear Markov process defined by equation
(19) (which is hard in general) one should search among the invariant measures
of the time homogeneous Markov process defined by equation (22) (which is

relatively easy in general). With this strategy in mind, we now define for each
p € M,(R?) a subset ¥, of M,(R?) as following:

7, = {Q € My(R™:(Q, L(p)p) = 0 for all ¢ € CR(RY)}. (25)

Proposition 1:  The following two conditions are equivalent
() Qe

(i) S (T, 0)Qd) = J ¢(@)Qds) for all p € CR(EY).
R R

Proof:  (i)—(#). For any ¢ € CR, we have T (t)p—p = jt'L(p)(Tp(s)
0
@)ds. Since T (s)p € C®, condition (z) implies

[T @) - [ee)
Rd R4

= (T ,(t)p, Q) — {p, Q)

= [(L)T () @)ds = 0. (26)
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(#8)—(i). For any ¢ € CR, we also have T (t)p—p = sz(s)(L(p)¢)ds, so ()
implies

[T ) Lloe), Qs =o. (@7)

It follows that °
(L(p)e, Q) =Tim, 3 [ (T,(s)(L{p)¢), Q)ds = 0. (28)
° O

For each positive integer N > 1, let Q% be defined by

N
F=% / u(£)dt. (29)
()
Proposition 2:  Suppose Q, is a limit point of {Q%}. Then Q,€¥,.

Proof:  Let Q, € M,(R?) such that {Q%,} converges weakly to Q, as k
goes to infinity, where {Q% } is a subsequence of {Q%}. As in (22) we let yo(dz)
be the initial distribution of the process X,(0). Since X, is a Feller process,
T ,(t)p € C,(R?) for each ¢ € C,(R?). Thus we have

d R4
Ny
= lim 3, [ FUT,ERK, i
Ny
= lim - / (T, + hp)ld=)ds
R
t+ Nk
=tim [ [@s)e)e)noldz)ds
t Rd
t+ Nk
= lim t+ Ny
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= lim - / / (T o) )(@ho(da)ds

Ny
—’zﬁ’wfvl‘; / Ep(X ,(s))ds
0

=lim_ [ ¢(2)Q%,(d=)
RY

= [0(=)Q,(da) (30)

This shows that ), is an invariant measure corresponding to X,. Thus, by
proposition 1, @, satisfies (Q,, L(p)p) = 0 for all p € C%®(R%), andso Q, €9, O

The following theorem gives a general result on the existence and
uniqueness of invariant measures of the nonlinear Markov processes described by
equation (19).

Theorem 2: Suppose that there ezists a nonempty closed subset = of
M,(R?) such that the following three conditions are satisfied:
(@) foreachpe=, £,CE,
(b) foreachp€eZ, supt>0th]X (s)|%ds < oo,

(c) there exzists a constant ¢ € (0,1) such that for any p,q,P and Q in =,

we have

lim_py(pp(ts P), 1g(t; Q) < cpa(p,9),

where p,(t;1o)(p = p,q; o = P, Q) denotes the probability law of X (t)
of (22) with initial condition p,(0;ug) = .
Then the nonlinear Markov process X determined by (19) has an invariant

measure.

Before proving this theorem we first state a generalized Banach fixed-

point theorem for multivalued maps on metric spaces (see, for example, [27]).

Definition 2: Let (X,d) be a metric space. If A,B are two subsets of
X, then the Hausdorff matrix H(A, B) between them is defined as
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H(A, B) = maz{sup d(a,B),sup d(b,A)},
a€A beB
where d(a, B) = inf, ¢ gd(a,b) is the distance of the point a from the set B.
Theorem (Generalized Banach fixed-point theorem for multivalued maps):

Let (X,d) be a metric space and K be a subset of X. Let I: K—2K (2K
denotes the collection of all subsets of K) be a multivalued map. Suppose that
(¢) K is nonempty and closed;
(17)  for each z € K, the set I'(x) is nonempty and closed;
(217) there exists a constant c € (0,1) such that the condition

H(I'(z),I(y)) < cd(z,y) (31)

18 satisfied for all z,y € K.
Then T' has a fized point x*, that is, z* € I'(z¥).

Proof of theorem 2: Let I:=—2= be the multivalued map defined by

M) =1, (52)
Then by assumption (a) the map I' is well defined. Suppose that the map T’ has
a fixed point p*, that is, p* € T'(p*). Then, by the definition of ¥,, this fixed
point p* must satisfy the equation (p*, L(p*)p) = 0 for all ¢ € CP(R?). Thus p* is
an invariant measure of system (19) and so the proof of theorem 2 will be
finished. Since I' is defined on the nonempty and closed subset = of the metric
space (My(R?),p,), we apply the generalized Banach fixed-point theorem to this
multivalued map. Thus we need to check if the conditions (i) and (i) of

generalized Banach fixed-point theorem are satisfied.

On condition (iz):  We first show that, for each p € Z, the set I'(p) is
nonempty. Let Q% be defined as in (29). Then according to proposition 2 it
suffices to show that {Q%} is relatively compact. By the assumption (b) of
theorem 2 we have

] 2] ?Q4(dz) =& [E|X,(s)|%ds <o, VN 21 (33)
Rd

o~~—2

For each € > 0, Chebyshev’s inequality then implies that there is an R, > 0 such
that

z|2Q%(dz
Q’,’\,({m:|x|2>Re})§fRd| }IzQN( )se, VN>1 (34)
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Thus, for each € > 0, there is a compact set K, = {z: |z|? < R} such that

inf Q¥KJ)>1-e (35)
N>1
Thus {Q%} is relatively compact according to Prohorov’s theorem.
Next we show that the set §,is closed in = for each p € Z. Let {Q,} be a
sequence of measures in ¥, such that @, converges to some Q € M,(R?) in the

metric space (M,(R?),p,). Then Q, converges to Q weakly in M,(R?). Since for
any ¢ € C%, the function L(p)p is continuous and bounded, we have

(@, L(p)e) = lim, (Qn, L(p)p) = 0. (36)
Thus Q€ ¥, and so ¥, is closed in M,(R?). Moreover, Q €= because, by

assumption (a), each @, belongs to =, and = is closed. Thus ¥, is a closed subset
of =.

On condition (iz): We now show that the generalized contraction

condition

H(T(p),I(q)) < cpa(p,q) (37)

is satisfies for all p,q € = and a fixed ¢ € (0,1).

Let P eT(p) and Q €T(g) be arbitrary two elements. Let X ,(-;P) and
X,(+;Q) be the unique solution of equation (22) with p replaced by p and ¢, and
po replaced by P and @, respectively. The probability law of X (¢, P) and
X, (t;Q) will be denoted by u,(t; P) and p,(tQ), respectively. Since P € ¥, and
Q € ¥,, they are invariant measures of the corresponding processes X ,(t; P) and
X,(tQ), that is, P = p,(t;P) and Q = p,(t;Q) for all ¢ > 0. Thus assumption (c)

implies

po(P5 Q) = lim_pa(pp(t; P), po(t; Q)) < cpo(p, @) (38)
It follows from (38) that

H(P(p),P(Q)) = maz'{sup an p?(P1 Q),sup an p2(Q’P)} S CPZ(pv Q)' (39)
Pef,Qed, Qef,ped,

This completes the proof of theorem 2. 0
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4. EXISTENCE AND UNIQUENESS OF INVARIANT MEASURES

We are now going to apply the general result in section 3 to our original
equation (1). To this end we consider the following stochastic differential
equation

{ dX(t)=[- AX(t)+ f(X(t),p)ldt + dW(t), t>0. (40)

X(0) has the initial law py € M,(R?),
where p € M,(R?).

Proposition 3: Assume the conditions of theorem 1 hold. Then,
(@) for each p € Z, equation (40) has a unique solution X, which can be

written as
X,(8) = SEX,(0)+ [ S(t = (X, (s), p)ds + [ S(t = )aW(s)

where S(t) = exp( — At is the semigroup generated by A;
(b)  if the two constants w and | in assumptions (Al) and (A2) satisfy
w? >3, then we have that sup, E|X,(t)]*< -j—;%—l < 400 holds
true for any p € My(RY), where o is a finite positive constant

depending on p.

Proof: (a) For a given p € Z, equation (40) is an ordinary stochastic
differential equation. Thus the Lipschitz and linear growth conditions, as
specified by (Al) and (A2), ensure that the same Picard iteration scheme used in

the proof of theorem 1 will result a unique solution X, of the form in (a).

(b) For ¢>0, using (a+b+¢)*<3(|a|?+ |b]%+ |c|?) and Hélder’s

inequality, we have

E|X,() | S3]S() 2B X,(0)|*+3E| [S(t—s)dW(s)!?
+3E| [S(t—9)f(X,(s),p)ds |?
<SE|X,0)12+3 [ 115(5)|I%s

+ [USG) 1dsE [ 11S(t=9)1l | F(X,(5),p) |%ds. (41)
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Since [ [[S(s)|ds SH{1—eop(~wh)] and | f(X,(s),)|2SUL+ | X,(5) |2+
2 113), (41) can be reduced to

E|X,(t)|?<a+3 / exp{ — w(t — $)}E| X (s) | *ds (42)

where a =3E| X, (0)|2+23+ -3'5(1 + ||pll3). Denote &(t)=exp(wt)E|X(t)]|?
and f(t) = exp(wt)e. Then (42) has the form of

o(t) = £(t)+ 3 [@(s)ds (43)
and so the Gronwall’s inequality gives °
2(t) < f(&)+ 3 [eap(l(t - o)} f(s)ds (44)
0

Thus for w? > 3l, we have

¢
sup E| X (t)]? §a+a%dlsup /emp{—(w——%)(t—s)}ds
t>0 20/

< —_— — —_ L
a+a—; 313?50[1 exp{ — (w—%)t}]

wla
Sorog <o (45)

a

Let p,(t) denote the probability law of the unique solution X, of (40) and

N
define Q% =% [ ,(t)dt for each N >1. Let ¥, be the subset of M,(R?) defined
0

by (25) with L(p)p(z) = 3A¢(z) — (Az — f(z,p), V ¢(z)(z)), where A and V
denote the Laplacian and gradient operator, respectively. Then the sequence of
probability measures {Q%} is relatively compact in M(R?) due to the result (b)
of proposition 3 and ¥, is the set of all limit points of {Q%}. For a given s> 0,
let =, be the subset of M,(R?) defined by

Z, = {ne MyR?): [ || *u(da) < 5} (46)
Rd
Then Z, is a nonempty closed subset of M,(R?).
Proposition 4: Suppose that the two constants w and | in assumptions

(A1) and (A2) satisfy the inequality w® > 6l. Then there ezists a real s >0 such
that for any p € Z,, we have $, C Z,.
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Proof: Let Q,€¢¥, for some peM 2(RY). Then there exists a

subsequence {Q% k} of {Q%} such that Qf converges to Q, as k—oo. Thus for
each positive integer M > 1, by proposition 3 (b), we have

[U21?AMQ,(dz) =lim_ [ (1217 A M)QR,(da)
RY

Rd
Ny
= ’,ETOJV% [ /d (1|2 A M)p,(t)(dz)dt
R

Ny
< zmo-]\-}; / E| X, (t)] %dt
0

2
< e (1)

where @ =3E | X ,(0)|2+3+3(1+ || p||3). Letting M go to infinity we have
that

/WQP ds) < 42 (48)

32 E| X ,(0)| 2 +3w+3l . : :
Let s = £ , then it is easy to check that the right-hand side of

w? —6l
(48) satisfies

wa<sif [pl3<s (49)

Thus Q,€Z, for any p €S, a nd so the proof is completed. 0

Let X,(-;P) and X,(-;Q) be the unique solution of the equation (40)
with p replaced by p and ¢, and p, replaced by P and @, respectively. The
probability law of X ,(¢; P) and X (t;Q) will be denoted by u,(t; P) and p,(t;Q),

respectively.

Proposition 5: If the two constants w and k in assumptions (Al) and
(A2) satisfy the inequality w® > 4k, then there exzists a constant ¢ € (0,1) such that

lim py(py(t; P), pg(£5Q)) < cpa(psq)
for any p,q, P,Q in =,.

Proof: According to the definition of the metric p,, it suffices to show
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that

lim E| X (6 P)— X (t,Q)|* < *pi(p, q)
for any p,q, P and @ in =,. By definition,

X,(6P) = SOX,0P)+ [S(t—9)f(X,(5P),p)s+ [St-s)dW(s)  (50)

and

X(6Q) =SOXG:Q) + [SE-9f(X(5Quads+ [SE-9W(s). G

Using Holder’s inequality and assumption (A2) we have

B X,(6P) - X (@) <2 S() | 2B ] X,(0,P) - X,(0:Q)
¥ 2EZ EoL d/ 15— 9) | £, (5 P p) — F(X,(05Q),0) | ds
<21 S() 7B X,(0;P) - X,(0,0) | + %Z 115G 1 ds
Z 15— )| (B1 X,(5:P) X,(5:@) | + p3(p, ). 52)

Using assumption (A1) the expression (52) can be reduced to
E| X, (tP)— X (tQ)|* < exp( — wt)f(t)

+2k [exp{—w(t—)E| X,(sP) - X (5:Q) | %ds, (53)

where f(t) = 2E| X ,(0; P) = X(0;Q) | * + Zgexp(wt)pi(p,q)

Denote ®(t) = ezp(wt)E | X ,(t; P) — X (@) | ?, then (53) can be rewritten
as

¥t < f()+ % ]@<s>czs (54)
and so Gronwall’s equality gives t °
(1) < £(6) + % [ eap(BE(t— o)} f(s)ds. (55)
0
Thus

E| X, (tP)— X (tQ)]? < exp( — wt)f(2)
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Bheap( - wt) | cap(@h(t - (M. (56)
In the limit of t—oo, the first t(;rm on the right-hand side of (56) becomes
lim exp(—wt)f(t)
= lim 2exp(— wt)E| X,(0;P) - X,(0;Q)1* +2/¥(p,q)
=2k 53(p,0) (57)

and the second term on the right-hand side of (56) becomes

lim - 2ke:::p wt)/emp{%,k(t —38)}f(s)ds
0

< lim 2B | X,(0; P) - X (0;Q) | (ezp{ — (w — )t} — exp( — wi)]

+tim (DL eilp, 0l - eopl - (0 -
= Lm0 (59)

Thus we have

. L (2k)?
tim E| X,(6P) - X,6Q)1? < 2 + B2 i)
Let ¢® = 22f2k. Then the assumption w? > 4k implies ¢ € (0,1) and so the proof
is completed. ]

We are now ready to state the main theorem of this paper:

Theorem 3: Let the conditions (Al) and (A2) be satisfied. If the three
constants w,l and k in assumptions (Al) and (A2) satisfy the condition

w? > maz(6l,4k)

then the nonlinear Markov process X determined by Ito equation (1) has a unique
invariant measure for any X(0) € Ly(Q, Fo, P; RY).

Proof (Existence): =~ We use theorem 2 of section 3. For each r >0, let
=, be the subset of M,(RY) defined in (46). Then, by proposition 4, there exists

a positive number s such that the corresponding set =, satisfies condition (a) of
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theorem 2. Moreover, by proposition 3 (b), condition (b) of theorem 2 holds.
Finally, by proposition 5, condition (c) of theorem 2 is also satisfied. Hence
existence part of the theorem is true.

(Uniqueness): It is important to note that for multivalued maps on
metric spaces the Banach fixed point theorem does not, in general, imply
uniqueness. Thus to seek uniqueness we have to use other methods,

Suppose that g and v be two arbitrary invariant measures of X. We show
pa(p,v) = 0. Let X denote the unique solution of the equation (1) and let u(t) be
the probability law of X(¢). For t >0, let U(t) denote the nonlinear semigroup
on M,(R?) defined by U(t)uo=u(t) for any uo€ M,(R?). Recall that a
probability measure p € M,(R?) is an invariant measure for the nonlinear
Markov process X if U(t)p = p for all t >0. Let X(¢;z) and X(¢;y) denote the
unique solution of (1) with initial data X(0;z) = z and X(0;y) = y, respectively.
The corresponding distribution will be denoted by p,(t) and p,(t), respectively.
Since

Pa(m,v) = p3(U(8), U (t)v)

< [ B(IX(2) - X(59) > M) xv)(da, dy) (60)
Rd X Rd
it suffices to show that

E(] X(t;2) — X(t;y) | )0 (61)
for any ,y € R%.
By assumptions (Al) and (A2)

E| X(tz) - X(ty) |*<2|S@)11* 2 —y]?
+2E| Zs(t—S)(f(X(s z), pto(3)) = F(X(59), 1y (s)))ds | *
S2||5(t)|l"’lw—y|2+QZ IIS(S)IIdsEZ ISt—s)l
| F(X(52), 1a(3)) = F(X(539), 11y(5))) | *ds

< 2eap( - wt) |2 -y |+ L1 - eap( — 2wt)] [ eap{ - w(t - 5))
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(B X(552) = X(5;9) |2 + p3(2(s), 1y()))ds

< 2eap( —wt) |5~y |+ 451 - eap( ~ 20t)] [ eop{ ~ wlt ~ 5)}

E| X(s;z) — X(s;y) | *ds. (62)
Denote ®(t) = exp(wt)E | X(¢;z) — X(¢;y) | 2, then (62) can be written as
B(t)<2|z—y|2+ %]@(s)ds. (63)
Gronwall’s inequality then yields °
o(t) < 2|2 —y| *eap({ft}, (64)
that is,
E| X(t;5) - X(t9) |2 < 2| 2 — y| *eap{ - (w - 40)t). (65)

By assumption, w —2E is strictly positive, and so the right-hand side of (65)

tends to zero as t—oo. It follows from the definition (3) that

p(U ()6, U(1)6,) < E| X(t;2) — X(t;y) | =0, as t—oo. (66)
This completes the proof of uniqueness. O

Example: Consider the following equation in R!:

dX(t) = [ — aX(t) + B(X(£))]dt + dW(t), t>0 (67)

where W is a standard one-dimensional Wiener process; « is a positive constant;
E(X(t)) is the mean of X(t). In other words, the function f(z,ux) in (1) now

assumes the simple form f(z,p) = [zu(dz). It is easy to verify that this model
Rl

satisfies conditions (Al) and (A2) with k=!=1 and w=a. According to
theorem 3, system (67) will have a unique invariant measure if a satisfies a’>6
which is true as we will show below. But the following exposition also indicates
that this condition is not a necessary condition for the existence of a unique

invariant measure.

Since (67) is a gradient system, the corresponding invariant measures
have the form
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P, (dz) = %exp{ - (az? — 2maz)}dz, (68)

where Z is the normalizing constant which ensures that P, (dz) is a probability

measure, and the constant m must satisfy the self-consistence equation

m = / zP, (dz). (69)

Rl
By a simple algebraic manipulation, it is easy to see that P,(dz) is a Gaussian
measure on R' with mean % and variance §. Thus the self-consistent equation

reduces to the algebraic equation

m= 7—70[7'— (70)

It follows from (70) that system (67) will have a unique invariant measure
(which is a zero-mean-Gaussian measure) if a # 1 and will have infinitely many
invariant measures if « = 1. This shows that the condition given by theorem 3 is

only a sufficient condition.

It is interesting to point out that even for this simple model of a nonlinear
Markov process, its long time behavior is not trivial. For example, for a # 1,
although system (67) has a unique invariant measure, the distribution of the
process at time ¢ will not always converge to it as ¢t becomes large. This can

easily be seen from the following calculation.

Equation (67) can be rewritten as
t

X(t) = X(0) - /[aX(s) — E(X(s))lds + W (t). (71)
0
Let m(t) denote the mean of X(t) with initial data m(0) = m,. Then by taking
the expectation on both sides of (71) we have

m(t) = mg + / (1 — a)m(s)ds, (72)

and therefore m(t) satisfies the equation
dm(t)
dt

m(O) = My,

= (1 - a)m(1) -

with the solution m(t) = mgexp(l —a)t. Thus for 0 <@ <1, m(t) does not
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converge to mg,, which means that if we start system (67) from any initial
measure other than the invariant measure then the corresponding distribution

will never converge to the invariant measure. On the other hand, if a satisfies
the condition of theorem 3, that is a > /6, then the mean m(t) will always
converge to 0, which is the mean of the unique invariant measure.
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