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ABSTRACT

In this paper we show that the second-order differential solution is L2-almost
periodic, provided it is L2-bounded, and the growth of the components of a non-
linear function of a system of parabolic equation is bounded by any pair of con-
secutive eigenvalues of the associated Dirichlet boundary value problems.
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1. Introduction

Foais et al. [2] proved that if a solution of some system of parabolic equations in C2(t) and
L2-bounded satisfying certain conditions then it is a L2-almost periodic solution.

Recall that a continuous function f:,X is X-almost periodic if for every there is a

relatively dense subset T C N such that

p II f(t + 7-)- f(t)II X < , W" e T,,

where X is some Banach space.

Recently, Corduneanu [1] and Yang [4] extended the results of Foias to nonlinear parabolic
equations. In this paper we extend the results of Corduneanu [1] and Yang [4] to the following
system of nonlinear parabolic equations,

Otu--Au+f(t,x,u
uloa-O,
(0, ) o,

(1)

where u, and f E m are m-vector valued functions, 0 --, and is some bounded domain in

Nn with sufficiently smooth boundary 0f. Moreover, we assume that f:N x f x NmNTM satisfies

the following conditions (of. [1, 4]):
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(CI) f(t,x,u) is continuous and l_2-almost periodic in t, and uniformly continuous with
respect to uj.

(CII) The matrix D(f)- (fi,j) is diagonalizable, with eigenvalues #j, and for every
j 1,2,..., m, there exists some integer i(j) such that Ai(j)_ 1 < #j < Ai(j)-

Ofi, and I_2- 52(f)x... x L2(f), m-times. We call matrix O(f) diagonalizable ifHere fi, j Ouj
there exists a nonsingular matrix M such that MD(f)M-1_ I, at every triple (t,x, u), where I
is the identity matrix. Similarly, M is nonsingular if det M 5 0 and # is an eigenvalue of matrix

O(f) if det(O(f)- #)- O. Notice that condition (CII)implies that #j > 0, since Aj is the
eigenvalues of Laplacian in the domain f corresponding to the eigenfunction Cj, which satisfies

Aej+a j-0

 loa-0.
We arrange ,j in the ascending order

0 < "1 < "2 -< h3... for j 1, 2,

To simplify the notation,
C2() ... C2(), m-times.

we use ,k
0 to denote 0, and the .function space C2()

2. Main Result

Before we prove the main theorem of this paper we first derive a useful a priori estimate of
the following problem,

(3)

where w, v are m-vector valued functions, D (6i, jVj) is a diagonal matrix, and 6i, j is the
Kronecker delta, b,j are positive real numbers satisfying, hi(j) < vj < hi(j). Here i(j) is the
same as in the condition (CII).

Lemma 1" Let w, vE C2() be L2-bounded satisfying problem (3). If uj satisfies the
assumption ahoy.e, then

suPt /w(t,x)dx _< max{(j- "i(j) 1) -2, (j- ,ki(j))-2}sp ] v(t,x)dx. (4)

Proof: It is well known that {j}j=l form an orthogonal basis of L2(f), thus we have

for j- (5)

The Parseval formula and the assumption of L2(f)-boundedness imply that
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Jw2 ( c,
(6)

for some positive constant c which is independent of t.

Substituting equation (5) into equation (3) yields

a’.3, k (t) + (hk uj)aj, k(t) bj, k(t)’

for j 1,...,m, k 1,2, Thus for any to E R we have

aj, k(t)--e
(j ,k)(to t) / (uj ,k)(S t)

aj, k(tO) + e bj, k(S ds.

o

Since "i(j)- 1 < uj < ,i(j), we have uj- "k > 0 for k <_ i(j) 1. Thus for o > t, the following is
true

-(j-’k)(to -t)(uj ,kk)(t0 t)
aj, k(to) + 1 e

aj, k(t)

Using (5), (6), and the fact that aj, k, bj, k are bounded functions of t, and letting t0oc the
above inequality yields

szP aS, k(t) <-- 1 sup lbj, k(t)
b’j--Ak

Similarly, the above inequality is true for k >_ i(j) which implies

sp aj, k(t) <_ cjszp bj, k(t) (8)

where

{ 1 1 }ctj max
vj hi(j)_ 1’ hi(j)- vj

Thus the assertion of the lemma holds.

Theorem 2: If u is a C2(), L2-bounded solution of problem (1), and if fj, is a

continuous function satisfying conditions (CI) and (VII), then u is L2-almost periodic.

Proof: Let u be a solution of equation (1) then for a given r E R we define the vector

valued function w u(t + r,x)- u(t,x). Then w satisfies the following equation,

w Aw f(t + v,w,x,u(t + v,x))- f(t,x,u(t,x)),

wloa-O.

Applying the mean value theorem to fj with respect to the component u and letting aj, be a

constant in the interval (0, 1), we have that

ej, aj, iui( + 7, x)+ (1-aj, i)ui(t,x),
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satisfies

fj(t,X, ttl(t, X),... U l(t, X), tti(t -- T,X),..., ttm(t + T,X))

fj(t,x, Ztl(t, X),... Ui(t,X), tt q_ l(t + 7",X),..., ttm(t + T,X))

fj, i(t,X, ttl(t,X),...,i, tti + l(t q- 7",X),...,Um(t -t- 7",X))Wi(t,X ).

Let the vector valued functions j, be

j,i- (ttl(t’ X)’"" tti- l(t’X)’j,i’Ui + 1( t - 7",X),’’"ttm( -t- 7",X)),

then wj satisfies

+ fj(t + ’,x, u(t,x))- fj(t,x, u(t,x)),
(9)

and boundary condition

Wjloa-O.

Since wj are L2(f)-bounded, we have

wj(t,x)

_
aj, k(t)k,

k

for j- 1,..., m. The condition (VII)implies that for every j there exist two constants j and
and some integer i(j) >_ 1 such that

/i(j)- < Oj -- j Oj < /i(j)"
Recall that A0 is 0.

Equation (9) can be rewritten as

Otwj--(Awj+uj)- -fj, i(t + r,x,i)wi+(fj, j-uj)wj
=1

+ fj(t + r,x,u(t,x))- fj(t,x,u(t,x)),

where Oj < uj < Oj. Observe that the uj are real; and they will be determined later. By inequal-
ity (8), we immediately obtain

where

kj ozj j,i

for j 1,..., m. Let ei > 0, satisfy

i=1

j
, "/j oj max

vj- "i(j)- 1’ /i(j) lj
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Let (1,"’, em), and rewrite the above equation as

M.w-+G.v, (10)
where

M-(_mi, j), G-(6i, jTj) are m xm matrices, where mi, j- i,j, for j 5 i, and mj, j-1-kj.
Since Oj < uj < Oj, and using condition (CII), we may choose suitable uj such that 1- kj > O,
and M is diagonalizable. By linear algebra we have

w-(+G.w.

Since (l,...,m) and i > 0, we have

for j- 1,...,m,

and some constant cj > 0. This completes the proof of the theorem.

We can easily generalize Theorem 2 to the following system of nonlinear parabolic equations

Otuj- Ljuj fj(t,x,u),
(11)

Bu oa O,

where Lj and Bj are elliptic operators and boundary operators respectively satisfying

Lj- Z Aj, a(x)Da’

OuBju bj, 1--+ bj,oU.

We denote by D cO ...Ox: c (Cl,..., a,) and c 1 -t-...s -t- ctn.

Furthermore, we assume that the principal parts of Lj be

Pj- Z Aj, c(x)Dc’

such that Aj, c E C c () and bj, C1() are real, and Lj are self-adjoint operators such that

ker(Lj-cj) {0} for some real cj. Denote by r(Lj) the spectrum of Lj, for j- 1,...,m and
replace the assumption (CII) by the following,

(CII)’ The matrix D(/)- (Ii, j)is diagonalizable with eigenvalue #j and for every
j- 1,2,...,m, there exists some integer i(j) such that "j,i(j)-I < #j < j,i(j)’
where {Aj, k}= are the eigenvalues of the operators Lj.

Then by the same argument as used for Theorem 2, we have the following results.

Theorem 3: If u is a C2(), k2-bounded solution of equation (11), and if f is a

continuous function satisfies conditions (CI), (CII)’, then u is k2-almost periodic.

Consider the solution u of equation (11) in the sense that u C1([,t2), where 2_ H(f)
x H2rn(fl), and

2-- {UIlt W2 2Hj (a)is real, and Bju oa 0}.
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Here W2’2(t) is the Sobolev space (cf. Ladyenskaja [3]). Let the operator .5-(L1,...,Lm)
.5:_2_2 with domain 0(.5) 2. Then we have a similar result as Theorem 2 (cf. Yang [4]).

Theorem 4: If u is a C1(,2), and L2-bounded solution of equation, and if f satisfies
conditions (CI), (VII)’, then u is [_2-almost periodic.

lmark: The condition (CII) implies the uniqueness of L2-bounded solution to problem (1).
To prove the uniqueness, we assume that u,v are the solution to problem (1), and let

wj uj- vj then w (Wl,... Wm) satisfies

Otwj Awj fj, i(, x, j, i)wi.

Applying Lemma 1, we see that
M.w<O

where M is defined as in equation (10). By linear algebra, we obtain w 0.
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