ALMOST PERIODIC SOLUTIONS TO SYSTEMS OF PARABOLIC EQUATIONS

JANPOU NEE

Academia Sinica Institute of Mathematics Nankang, Taipei, 11529, Taiwan, ROC

(Received February, 1994; revised May, 1994)

ABSTRACT

In this paper we show that the second-order differential solution is \mathbb{L}^2 -almost periodic, provided it is \mathbb{L}^2 -bounded, and the growth of the components of a nonlinear function of a system of parabolic equation is bounded by any pair of consecutive eigenvalues of the associated Dirichlet boundary value problems.

Key words: Almost Periodic Solutions, System of Nonlinear Parabolic Equations.

AMS (MOS) subject classifications: 35B15, 35K55, 35K99.

1. Introduction

Foais et al. [2] proved that if a solution of some system of parabolic equations in $C^2(\overline{\Omega})$ and L^2 -bounded satisfying certain conditions then it is a L^2 -almost periodic solution.

Recall that a continuous function $f: \mathbb{R} \to X$ is X-almost periodic if for every ϵ there is a relatively dense subset $T_{\epsilon} \subset \mathbb{R}$ such that

$$\sup_{\star} \| f(t+\tau) - f(t) \|_X < \epsilon, \quad \forall \tau \in T_{\epsilon},$$

where X is some Banach space.

Recently, Corduneanu [1] and Yang [4] extended the results of Foias to nonlinear parabolic equations. In this paper we extend the results of Corduneanu [1] and Yang [4] to the following system of nonlinear parabolic equations,

$$\left\{ \begin{array}{l} \partial_t u = \Delta u + f(t, x, u) \\ u \mid_{\partial\Omega} = 0, \\ u(0, x) = u_0, \end{array} \right. \tag{1}$$

where u, and $f \in \mathbb{R}^m$ are *m*-vector valued functions, $\partial_t = \frac{\partial}{\partial_t}$, and Ω is some bounded domain in \mathbb{R}^n with sufficiently smooth boundary $\partial\Omega$. Moreover, we assume that $f:\mathbb{R} \times \Omega \times \mathbb{R}^m \to \mathbb{R}^m$ satisfies the following conditions (cf. [1, 4]):

JANPOU NEE

- (CI) f(t, x, u) is continuous and \mathbb{L}^2 -almost periodic in t, and uniformly continuous with respect to u_i .
- respect to u_j . (CII) The matrix $\mathbf{D}(f) = (f_{i,j})$ is diagonalizable, with eigenvalues μ_j , and for every j = 1, 2, ..., m, there exists some integer i(j) such that $\lambda_{i(j)-1} < \mu_j < \lambda_{i(j)}$.

Here $f_{i,j} = \frac{\partial f_i}{\partial u_j}$, and $\mathbb{L}^2 = L^2(\Omega) \times \cdots \times L^2(\Omega)$, *m*-times. We call matrix $\mathbf{D}(f)$ diagonalizable if there exists a nonsingular matrix M such that $M\mathbf{D}(f)M^{-1} = I$, at every triple (t, x, u), where I is the identity matrix. Similarly, M is nonsingular if $\det M \neq 0$ and μ is an eigenvalue of matrix $\mathbf{D}(f)$ if $\det(\mathbf{D}(f) - \mu) = 0$. Notice that condition (CII) implies that $\mu_j > 0$, since λ_j is the eigenvalues of Laplacian in the domain Ω corresponding to the eigenfunction ϕ_j , which satisfies

$$\begin{cases} \Delta \phi_j + \lambda_j \phi_j = 0 \\ \phi_j \mid_{\partial \Omega} = 0. \end{cases}$$
(2)

We arrange λ_i in the ascending order

$$0 < \lambda_1 < \lambda_2 \leq \lambda_3 \dots$$
 for $j = 1, 2, \dots$

To simplify the notation, we use λ_0 to denote 0, and the function space $\mathbb{C}^2(\overline{\Omega}) = C^2(\overline{\Omega}) \times \cdots \times C^2(\overline{\Omega})$, *m*-times.

2. Main Result

Before we prove the main theorem of this paper we first derive a useful a priori estimate of the following problem,

$$\begin{cases} \partial_t w - (\Delta + D)w = v, \\ u \mid_{\partial \Omega} = 0, \end{cases}$$
(3)

where w, v are *m*-vector valued functions, $D = (\delta_{i,j}\nu_j)$ is a diagonal matrix, and $\delta_{i,j}$ is the Kronecker delta, ν_j are positive real numbers satisfying $\lambda_{i(j)-1} < \nu_j < \lambda_{i(j)}$. Here i(j) is the same as in the condition (CII).

Lemma 1: Let $w, v \in \mathbb{C}^2(\overline{\Omega})$ be \mathbb{L}^2 -bounded satisfying problem (3). If ν_j satisfies the assumption above, then

$$\sup_{t} \int_{\Omega} w_{j}^{2}(t,x) dx \le \max\{(\nu_{j} - \lambda_{i(j)-1})^{-2}, (\nu_{j} - \lambda_{i(j)})^{-2}\} \sup_{t} \int_{\Omega} v_{j}^{2}(t,x) dx.$$
(4)

Proof: It is well known that $\{\phi_i\}_{i=1}^{\infty}$ form an orthogonal basis of $L^2(\Omega)$, thus we have

$$w_{j}(t,x) = \sum_{k} a_{j,k} \phi_{k},$$

$$v_{j}(t,x) = \sum_{k} b_{j,k} \phi_{k}.$$
for $j = 1, 2, ..., m$
(5)

The Parseval formula and the assumption of $L^2(\Omega)$ -boundedness imply that

$$\sum_{j,k} a_{j,k}^{2} = \int_{\Omega} w^{2} \leq c,$$

$$\sum_{j,k} b_{j,k}^{2} = \int_{\Omega} v^{2} \leq c,$$
(6)

for some positive constant c which is independent of t.

Substituting equation (5) into equation (3) yields

$$a'_{j,k}(t) + (\lambda_k - \nu_j)a_{j,k}(t) = b_{j,k}(t),$$
(7)

for j = 1, ..., m, k = 1, 2, ... Thus for any $t_0 \in \mathbb{R}$ we have

$$a_{j,k}(t) = e^{-(\nu_j - \lambda_k)(t_0 - t)} a_{j,k}(t_0) + \int_{t_0}^t e^{-(\nu_j - \lambda_k)(s - t)} b_{j,k}(s) \, ds$$

Since $\lambda_{i(j)-1} < \nu_j < \lambda_{i(j)}$, we have $\nu_j - \lambda_k > 0$ for $k \le i(j) - 1$. Thus for $t_0 > t$, the following is true

$$|a_{j,k}(t)| \le e^{-(\nu_j - \lambda_k)(t_0 - t)} |a_{j,k}(t_0)| + \frac{1 - e^{-(\nu_j - \lambda_k)(t_0 - t)}}{\nu_j - \lambda_k} |b_{j,k}(t)|$$

Using (5), (6), and the fact that $a_{j,k}$, $b_{j,k}$ are bounded functions of t, and letting $t_0 \rightarrow \infty$, the above inequality yields

$$\sup_t \mid a_{j,k}(t) \mid \ \leq \frac{1}{\nu_j - \lambda_k} \sup_t \mid b_{j,k}(t) \mid \$$

Similarly, the above inequality is true for $k \ge i(j)$ which implies

$$\sup_{t} |a_{j,k}(t)| \leq \alpha_{j} \sup_{t} |b_{j,k}(t)|, \qquad (8)$$

where

$$\alpha_{j} = max \left\{ \frac{1}{\nu_{j} - \lambda_{i(j)-1}}, \frac{1}{\lambda_{i(j)} - \nu_{j}} \right\}.$$

Thus the assertion of the lemma holds.

Theorem 2: If u is a $\mathbb{C}^2(\overline{\Omega})$, \mathbb{L}^2 -bounded solution of problem (1), and if $f_{j,i}$ is a continuous function satisfying conditions (CI) and (CII), then u is \mathbb{L}^2 -almost periodic.

Proof: Let u be a solution of equation (1), then for a given $\tau \in \mathbb{R}$ we define the vector valued function $w = u(t + \tau, x) - u(t, x)$. Then w satisfies the following equation,

$$\begin{cases} w_t - \Delta w = f(t+\tau,w,x,u(t+\tau,x)) - f(t,x,u(t,x)), \\ w\mid_{\partial\Omega} = 0. \end{cases} \end{cases}$$

Applying the mean value theorem to f_j with respect to the component u_i and letting $\alpha_{j,i}$ be a constant in the interval (0,1), we have that

$$\psi_{j,i} = \alpha_{j,i} u_i(t+\tau, x) + (1-\alpha_{j,i}) u_i(t, x),$$

satisfies

$$\begin{split} f_{j}(t,x,u_{1}(t,x),\ldots,u_{i-1}(t,x),u_{i}(t+\tau,x),\ldots,u_{m}(t+\tau,x)) \\ &-f_{j}(t,x,u_{1}(t,x),\ldots,u_{i}(t,x),u_{i+1}(t+\tau,x),\ldots,u_{m}(t+\tau,x)) \\ &=f_{j,i}(t,x,u_{1}(t,x),\ldots,\psi_{i},u_{i+1}(t+\tau,x),\ldots,u_{m}(t+\tau,x))w_{i}(t,x). \end{split}$$

Let the vector valued functions $\Psi_{j,i}$ be

$$\Psi_{j,i} = (u_1(t,x), \dots, u_{i-1}(t,x), \psi_{j,i}, u_{i+1}(t+\tau,x), \dots, u_m(t+\tau,x)),$$

then w_j satisfies

$$\partial_t w_j - \Delta w_j = \sum_i f_{j,i}(t+\tau, x, \Psi_i) w_i$$

+ $f_j(t+\tau, x, u(t, x)) - f_j(t, x, u(t, x)),$ (9)

and boundary condition

$$w_j \mid_{\partial \Omega} = 0.$$

Since w_j are $L^2(\Omega)$ -bounded, we have

$$w_j(t,x) = \sum_k a_{j,k}(t)\phi_k,$$

for j = 1, ..., m. The condition (CII) implies that for every j there exist two constants $\overline{\theta}_j$ and $\widehat{\theta}_j$, and some integer $i(j) \ge 1$ such that

$$\lambda_{i(j)-1} < \overline{\theta}_j \le \mu_j \le \widehat{\theta}_j < \lambda_{i(j)}.$$

Recall that λ_0 is 0.

Equation (9) can be rewritten as

$$\begin{split} \partial_t w_j - (\Delta w_j + \nu_j) &= \sum_{\substack{i \ \equiv \ i \ \neq \ j}} f_{j,i}(t + \tau, x, \psi_i) w_i + (f_{j,j} - \nu_j) w_j \\ &+ f_j(t + \tau, x, u(t, x)) - f_j(t, x, u(t, x)), \end{split}$$

where $\overline{\theta}_j < \nu_j < \widehat{\theta}_j$. Observe that the ν_j are real; and they will be determined later. By inequality (8), we immediately obtain

$$\sup_{t} ((1-k_{j}) | w_{j} | -\sum_{\substack{i=1\\i\neq j}} \beta_{j,i} | w_{i} |) \leq \gamma_{j} \sup_{t} | v_{j} |,$$

where

$$k_j = \frac{|f_{j,j} - \nu_j|}{\alpha_j}, \ \beta_{j,i} = \frac{|f_{j,i}|}{\alpha_j}, \ \gamma_j = \frac{1}{\alpha_j}, \ \alpha_j = max \bigg\{ \frac{1}{\nu_j - \lambda_{i(j)-1}}, \frac{1}{\lambda_{i(j)} - \nu_j} \bigg\},$$

for j = 1, ..., m. Let $\epsilon_i > 0$, satisfy

$$\sup_{t} \{(1-k_j) \mid w_j \mid = \sum_{\substack{i=1\\i \neq j}} \beta_{j,i} \mid w_i \mid \} = \gamma_j \sup_{t} \mid v_j \mid +\epsilon_i.$$

Let $\xi = (\epsilon_1, \dots, \epsilon_m)$, and rewrite the above equation as

$$M \cdot w = \xi + G \cdot v, \tag{10}$$

where

$$w = (\sup_{t} \mid w_1 \mid, \dots, \sup_{t} \mid w_m \mid), \quad v = (\sup_{t} \mid v_1 \mid, \dots, \sup_{t} \mid v_m \mid),$$

 $M = (m_{i, j}), G = (\delta_{i, j}\gamma_j)$ are $m \times m$ matrices, where $m_{i, j} = \beta_{i, j}$, for $j \neq i$, and $m_{j, j} = 1 - k_j$. Since $\overline{\theta}_j < \nu_j < \widehat{\theta}_j$, and using condition (CII), we may choose suitable ν_j such that $1 - k_j > 0$, and M is diagonalizable. By linear algebra we have

$$w = \xi + G \cdot w.$$

Since $\xi = (\epsilon_1, \dots, \epsilon_m)$ and $\epsilon_i > 0$, we have

$$\sup_t \int_{\Omega} w_j^2(t,x) dx \leq c_j \sup_t \int_{\Omega} v_j^2(t,x) dx, \quad \text{for } j = 1, ..., m,$$

and some constant $c_i > 0$. This completes the proof of the theorem.

We can easily generalize Theorem 2 to the following system of nonlinear parabolic equations

$$\begin{cases} \partial_t u_j - L_j u_j = f_j(t, x, u), \\ B_j u_j \mid_{\partial \Omega} = 0, \end{cases}$$
(11)

where L_i and B_j are elliptic operators and boundary operators respectively satisfying

$$\begin{split} L_{j} &= \sum_{\alpha \leq 2} A_{j,\,\alpha}(x) D^{\alpha}, \\ B_{j} u &= b_{j,\,1} \frac{\partial u}{\partial n} + b_{j,\,0} u. \end{split}$$

We denote by $D^{\alpha} = \partial_{x_1}^{\alpha_1} \dots \partial_{x_n}^{\alpha_n}$, $\alpha = (\alpha_1, \dots, \alpha_n)$ and $|\alpha| = \alpha_1 + \dots^s + \alpha_n$.

Furthermore, we assume that the principal parts of L_i be

$$P_{j} = \sum_{|\alpha| = 2} A_{j,\alpha}(x) D^{\alpha}$$

such that $A_{j,\alpha} \in C^{|\alpha|}(\overline{\Omega})$ and $b_{j,i} \in C^1(\overline{\Omega})$ are real, and L_j are self-adjoint operators such that $ker(L_j - c_j) = \{0\}$ for some real c_j . Denote by $\sigma(L_j)$ the spectrum of L_j , for j = 1, ..., m and replace the assumption (CII) by the following,

The matrix $\mathbf{D}(f) = (f_{i,j})$ is diagonalizable with eigenvalue μ_j and for every (CII)'j = 1, 2, ..., m, there exists some integer i(j) such that $\lambda_{j, i(j)-1} < \mu_j < \lambda_{j, i(j)}$, where $\{\lambda_{j,k}\}_{k=1}^{\infty}$ are the eigenvalues of the operators L_{j} . Then by the same argument as used for Theorem 2, we have the following results.

If u is a $\mathbb{C}^2(\overline{\Omega})$, \mathbb{L}^2 -bounded solution of equation (11), and if f is a Theorem 3: continuous function satisfies conditions (CI), (CII)', then u is \mathbb{L}^2 -almost periodic.

Consider the solution u of equation (11) in the sense that $u \in C^1(\mathbb{R}, \mathbb{K}^2)$, where $\mathbb{K}^2 = H^2_1(\Omega)$ $\times, \ldots, H^2_m(\Omega)$, and

$$H_{j}^{2}=\{u\mid u\in W^{2,\,2}(\Omega) \text{ is real, and } B_{j}u\mid_{\partial\Omega}=0\}.$$

JANPOU NEE

Here $W^{2,2}(\Omega)$ is the Sobolev space (cf. Ladyženskaja [3]). Let the operator $\mathcal{L} = (L_1, \ldots, L_m)$, $\mathcal{L}: \mathbb{L}^2 \to \mathbb{L}^2$ with domain $D(\mathcal{L}) = \mathcal{H}^2$. Then we have a similar result as Theorem 2 (cf. Yang [4]).

Theorem 4: If u is a $C^1(\mathbb{R}, \mathbb{H}^2)$, and \mathbb{L}^2 -bounded solution of equation, and if f satisfies conditions (CI), (CII)', then u is \mathbb{L}^2 -almost periodic.

Remark: The condition (CII) implies the uniqueness of \mathbb{L}^2 -bounded solution to problem (1).

To prove the uniqueness, we assume that u, v are the solution to problem (1), and let $w_j = u_j - v_j$ then $w = (w_1, \ldots, w_m)$ satisfies

$$\partial_t w_j - \Delta w_j = \sum_i f_{j,i}(t, x, \Psi_{j,i}) w_i.$$

Applying Lemma 1, we see that

 $M \cdot w \leq 0$

where M is defined as in equation (10). By linear algebra, we obtain $w \equiv 0$.

References

- [1] Corduneanu, C., Almost periodic solution to nonlinear elliptic and parabolic equation, Nonlinear Anal.-TMA (1983), 357-363.
- [2] Foias, C., and Zaidman, S., Almost periodic solutions of parabolic systems, Ann. Scuola Norm. Sup. Pisa (1961), 247-262.
- [3] Ladyženskaja, O.A., Solornikov, V.A., and Uralćeva, N.N., Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc. Trans. of Math. Monographs, 1968.
- [4] Yang, Y., Almost periodic solutions of nonlinear parabolic equations, Bull. Aust. Math. Soc. (1988), 231-238.