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ABSTRACT

In this paper we extend the method of quasilinearization to stochastic initial
value problems. Further we prove that the iterates converge uniformly almost
surely to the unique solution and the convergence is quadratic.
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1. Introduction

Quasilinearization is a well known technique for obtaining approximate solutions of nonlinear
differential equations [1, 2]. It provides a monotone sequence of approximate solutions that
converges quadratically to the unique solution of the IVP (initial value problem)

u’ f(t, u), u(0) uo on J [0, T], (1.1)

if f is convex. Recently, this method has been generalized and extended using less restrictive
conditions on f so as to be applicable to a large class of problems [4-10, 12]. In particular, in [4,
8], this technique has been extended to obtain monotone sequences that converge quadratically to
the unique solution of (1.1) when f can be decomposed into a difference of two convex functions.
In this paper we extend the technique used in [8] to stochastic initial value problems.

2 Main Result

Let (f, t, P) be a probability measure space and u0: --, N be a given measurable function.
Consider the stochastic initial value problem (SIVP)
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u’(t, w) f(t, u(t, w), w) + g(t, u(t, w), w), a.e. on J [0, T], (2.1)

where f: Jxxandg: Jxx---,Rsatisfy:
(i) f(t, u,. and g(t, u,. )are measurable for all (t, u);
(ii) f(., u,. and g(., u,. )are measurable for every u;
(iii) f(t, .,) and g(t,., ) are continuous for all (t,w).

Suppose that
1) If(t,x,w)]<K(t,w) on Jxaxf2, where K:Jxf2---- N+ is measurable in t and

T
f K(s,w)ds < oc on .
0

A stochastic process u’g x ---N is called a sample solution of (2.1) if u(0,.)-u0 and is
absolutely continuous (a.c.) on J and satisfies u’(t, w) f(t, u(t, w), w) + g(t, u(t, w), w), a.e. on J.

A stochastic process a:J x ---, is said to be a sample lower solution of (2.1) if for almost
all w E , c(., w) is a.c. and a’(t, w) < f(t, a(t, w), w) + g(t, a(t, w), w), a.e. on J. The definition of
sample upper solution is obtained by reversing the inequality above. For further details we refer
to [3].

in

Theorem 2.1: Assume that
A1) (o and o are lower and upper sample solutions of (2.1) such that co < o on J x ;
A:) f.(t, f..(t, co. i..ou i. u,

w, measurable in (t,w) and satisfy fuu(t, u,w) >_ O, guu(t, u,w) <_ O;
fu, gu, fun and gun satisfy (2.1) with different bounds.

Then there exist monotone sequences {an(t,w)}, {fln(t,w)} which converge uniformly, for
almost all w , to the unique sample solution of (2.1) and the convergence is quadratic.

Proof." Let us first observe that (A2) implies, for any u _> v,

f(t, u, w) >_ f(t, v, w) + fu(t, v, w)(u v),
g(t, u, w) > g(t, v, w) + gu(t, u, w)(u v).

(2.2)

Moreover, for any ul, u2 such that ao(t,w) <_ u2 5 u1 <_ o(t, tz), it follows that

f(t, ul,w)- f(t, u2, w < Ll(t,w)(u 1 u2)
(2.3)

g(t, Ul, w) g(t, u2, w) < L2(t w)(u 1 u2)
T

a.e. on J, where Li(t,w > O, is measurable for every and f Li(t w)ds < c on , for 1, 2.
0

Let cl(t,w), flx(t,w) be sample solutions of the linear SIVPs

a’ f(t, ao, W)+ fu(t, Cro, W)(al-Ceo) A- g(t, ao, W)+ gu(t, flo, W)(a -ao), O1(0,09 /t0(W ),

fl’l f(t,/o,W) + fu(t,co,W)(fll flo) + g(t, flo, W) + gu(t, flo, W)(fll flo), ill(0’w) U0(W)’

(2.4)
a.e. on J, where c0(0,w <_ Uo(W <_ o(0, w).

We shall prove that so <_ ax on J x 2. To do this, let p=cto -a so that p(O, a) _< O. Then,
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using (2.4), we get

pl Co c

<_ f t, %, w) + g( t, ao, w) If(t, %, w) + fu( t, ao, CO)(Ct CtO)

q- g(t, 00, CO) q- gu(t, 0’ O)(Ctl CO)]

[fu(t, ao, w) + gu(t,/o, w)]p, a.e. on J.

This implies, by Theorem 1.1 [11], that p(t,w) <_ 0 on J x . Now set p c --/0 and note that
p(0, co) _< 0. Using (2.2) and (2.4), we obtain

pl c1 --/0

< If(t, ao, w) + f(t, ao, w)(a ao) + g(t, ao, co) + g(t, o, O)(Ctl (tO)]

f(t,o,w) g(t,/3o, W)

<_ If(t, Co, w) + fu(t, ao, O)(Ct 00) q- g(t, 0’ CO) gu(t, 0’ CO)(tO CtO)

nt- gu( t’ t0’ a))(Cl CtO)] f(t, ao, w) fu(t, Co, co)(to %) g(t, o, w)

[fu(t, ao, w) + gu(t,/o, w)]p, a.e. on J,

which again implies p(t,w) <_ 0 on J xf. As a result we have Co(t,w <_ Cl(t,w _< o(t,w) on

J x Ft. Similarly, we can find that %(t,w) <_ 51(t,w) _< o(t,w) on J x Ft. We need to show that

al(t,w _</311(t,w on J xfl so that it yields

Cto(t,w <_ Cl(t, w _< l(t,w) _< to(t,w) on ar Xa.

Using (2.2)and (2.4), we see that

ci f(t, ao, w) + fu(t, ao, w)(aI %) + g(t, ao, w) + gu(t, o, 0)(Ctl CtO)

<_ f(t, Ctl co) nt- g(t, OZl co) gu(t, Ctl, o)(o Cto) q- gu(t, flo, c)(Ctl Cto)

f t, Cel, co) nt- g( t, Ctl, o) -t- gu( t, to, o) gu( t, Ctl, o)](c Cto)_
f(t, Ctl, co) -Jr- g(t, Ctl, (.o), a.e. on J,

because of the fact that gu(t, u,w) is nonincreasing in u and o

_
fl0 on J x Ft.

(2.2) again, we obtain
Similarly, using

i f(t, o, co) 4- fu(t, co, CO)(/ 0) q- g(t, 0’ CO) -t- gu(t, 0’ W)(fll flO)

>_ f(t,/31. w) + fu(t, 1’ CO)(fll --/0) -1- fu( t, ao, 0)(/1 --/0) q- g(t, ill’ (.0)

f(t,/1’ CO) q- fu(t,/1’ 0) -- fu(t, CtO, a))]( --/0) q- g(t, ill’

>_ f(t, t1’ 0) q- g(t,/1’ cO), a.e. on J,

because of the fact that fu(t,u,w) is nondecreasing in u and % _< 1 on J x f. It then follows
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from Theorem 1.1 [11] and (2.3), that al(t,w) _< fll(t, co) on J x which shows that (2.5) is valid.

Assume that for some k > 1, a’k <_ f(t, ak, w) + g(t, ak, co), /3’ >_ f(t, ilk, w) + g(t,/3k, w), a.e. on

J and ak(t w) <_/3k(t w) on J f. We shall prove that

ck(t,w) <- ck + l(t, w) <-- flk + l(t, w) <-- k(t, w) on J xa, (2.6)

where ak + l(t,w) and k + l(t, w) are sample solutions of the linear stochastic SIVPs

Ctk + 1 f(t, ok, co) + fu(t, Ok, co)(ck + 1 ok) + g(t, ak, w)

and

1(0, CO) nO(CO

tk + f(t,/3k, w) + fu(t, ak, w)(k + ilk) + g(t, k’ CO)

/k + 1(0, CO) tt0(CO)’

a.e. on J.

Setting p ck ck + 1’ We have, as before, that p’ _< [:u(t, ck, CO) + gu(t,/k, CO)]P, a.e. on d
and p(O,w)-O. This proves that p(t,w)<_O on d xf. On the other hand, letting
P Ck + -/k yields

< f(t, Ck, CO) + fu(t, Ck, CO)(ak + Zk) -I- g(t, Ok, CO) -1- gu(t, ilk, CO)(k + 1 Ctk)

f(t, ilk, w) g(t, ilk, w).
Since ck <_ ilk, (2.2) gives, after some computation,

p’ <_ [fu(t, ck, w) + gu(t, k, w)]p, a.e. on J.

Thus we have ck(t,w <_ ck + l(t,w) _< k(t,w) on J xft. Similar arguments yield ck(t,w <_
/3k + l(t,w) _< flk(t,w) on J xf. Now to show that o + -< f(t, ctk + 1,w)+g(t, ctk + 1,w), we

proceed as before. Utilizing (2.2), (2.7) and (A2) we get

Ct + -- f(t, Ck + 1’ CO) + g(t, Ctk + 1’ CO) gu( t’ Ctk + 1’ CO)(Ctk + Ctk) + gu( t’ k’ CO)(OZk + Ok)

f(t,Ok+l,W)+g(t,Ok+l,CO)+[gu(t, flk, W)--gu(t,Ok+l,W)](Ctk+l--Ok)

<__ f(t, Ck + 1’ CO) + g(t, Ctk + 1’ CO)’ a.e. on J.

In a similar manner, we can prove that /3 + >-- f(t,/3k + 1’ CO) + g(t,/3k + 1’ CO)’ a.c. on J and
hence Theorem 1.1 [11] shows that ck + l(t,w) < k + l(t, w) on J x ft which proves (2.6) is true.
Hence by induction we have for all n,

CtO -- Cel -- 02 --’’"-- Ctn -- fin --’’"-- ]2 -- fll -- /0 on J x

Let us note that for each fixed E J,
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a(t, w)--sup an(t

b(t, ) inf n(t, w) --n//__,m/n(,
n>O

exist and a(t,), b(t,) are measurable functions in for each t d. We obtain, from (2.7) and
(2.s),

On + l(t’ w) /tO(W + j’ [f(S,k(S,W),W + fu(S,Ck(S,W),W)(C
0

q- g(s,Ok(8,)),) - gu(S, flk(8, og),w)(ok + l(S, w) --Ok(8, w))]ds

and

/k h- 1 (t’w) ZtO(W) + j [f(s’/k(S’W)’W) + fu(S’Ck(S’W)’W)(k + (8’) k
0

+ g(s, ilk(S, w), w) + gu(S, ilk(S, w), w)(flk + l(S, w) ilk(S, w))]ds.
By standard arguments, it is easily seen that {an+l(t,w)} and {n+l(t,w)} are sample

bounded and equicontinuous and consequently, (2.3) together with Lebesgue dominated conver-

gence theorem yields that

a(t, w) Uo(W)+ / {f(s, a(s, w), w) + g(s, a(s, w), w)}ds
0

and

b(t, w) Uo(W + / {f(s, b(s, w), w) + g(s, b(s, w), w)}ds.
0

In view of (2.3), it is clear that a- b on J , and as a result, a- b-u on J is the unique
sample solution of (2.1).

Next we shall show that the convergence of the sequences {cn(t,w)} {fln(t,w)} to u(t,w)is
quadratic. Let pn(t, w) u(t, w) cn(t, w) >_ O, qn(t, w) n(t, w) u(t, w) >_ O, and note that
pn(O,w)- O, qn(0, w)=0. From (2.7)and the mean value theorem together with (A2) we obtain
successively,

P’n f(t,u,w)+ g(t,u,w)--[f(t, Ctn-l,w)+ fu(t,Cn-l,W)(Cn--Cn-1)

+g(t,On- ,co) q- gu(t,n 1,c)(Ctn- On-1)]

fu(t, 5, co)pn -[- gu( t, or, co)pn 1 q- fu( t, cn 1, co)( Pn 1 q- Pn)

q- gu(t’ n 1’ aO)( Pn 1-t-Pn)

<_ [fu(t, u, co) fu(t, n 1, )]Pn [gu( t, n 1’ CO) gu(t, On 1’ Co)]Vn

+ [fu(t,a_ 1,00) q- gu(t, fln_ 1, o)]Pn

fuu( t, 51, )p2n guu( t, (:rl, )(n ten 1)Pn

+ [fu(t, Ctn_ 1, a)) q- gu(t, fln_ 1, ao)]Pn,
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where an < (, (7 < u and an < 51 < u, an < ’1 < fin- 1"

But

--guu(t,(71,w)[/n_1--On_l]Pn_ 1

_
N2(t,w)[qn_ -t- Pn-1]Pn-1

=N2(t’w)[P2n 1 -t- Pn- lqn- 1]

Thus

-< 2N2(t, w)p2n -1 +/2(t’ w)q2n 1"

Pn <- M(t,W)Pn + [Nl(t,w) + 2N2(t,w)]p2n- 1 + N2(t,w)q2n- 1’

where If(t,u,w)[<_ Ml(t,w),
N2(t,w),

and

I(t, , )1<_ M2(t w), f(t, , )1 <_ Nl(t, w), guu(t, u,

T T

M M1 + M2, / M(t,w)dt- Q(w)<oc, / Nl(t,w)dt- R(w)< oc

0 0

T

N2(t,w)dt- S(w) < oo.

0

Thus, by Gronwall’s lemma, we get

0

exp / M(s,w)ds}[{Nl(S,w + 2N2(s,w)}p2n_ l(S, w)-t- N2(s,w)q2n l(S,w)]ds
8

T T

P / M(s’w)ds}[{Nl(S’W)+ 2N2(s,w)}p2n_ l(S, w) + N2(s,w)q2n_ l(s,w)]ds.
0

It therefore follows that

rrx u(t, w) On(t w) eQ(w)[iR(w) -- 2S(w)}x u(t, w) n l (t, w)12
+ S(w)wx]fln l(t, w) u(t,w) 12],

for almost all w .
Similarly we can proved that

x (t, w) u(t, w) eQ()[{S(w) + 2R(w)}x[ u(t, w) n -1 (t, W) 2

+ R(w)wxln l(t, w) u(t,w)12],
for almost all w . This completes the proof.
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