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ABSTRACT

Sharp error estimates for optimality are established for a class of distributed
parameter control problems that include elliptic, parabolic, hyperbolic systems
with impulsive control and boundary control. The estimates are obtained by
constructing manageable dual problems via the extremum principle.
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1. Introduction, Notation and Definitions

We develop a method that generates computable error estimates for optimality as well as

dual problems for the optimal control of distributed systems described in the classic work of J.L.
Lions [4] and [5]. The approach that we use relies on establishing manageable dual problems as

opposed to formidable convex conjugate dual problems. Our approach is elementary in that the
quadratic nature of the cost functionals is exploited. The resulting cost functional of the dual sys-
tem is more explicit than those given in [4] and [5]. Furthermore, we can bypass the requirement
of the system equation to be an isomorphism when a conjugate function method is taken in deve-
loping a duality theory and our framework permits constrained control sets. The basic idea of
our approach is the extremum-principle, which is developed in finite dimensional space in [8] and
[1], and here, we successfully extend it to infinite-dimensional problems. Other duality studies for
distributed systems can be found in [2, 3, 6, 7].

In the following three sections, we treat error estimates and duality theorems on systems gov-
erned by elliptic, parabolic, and hyperbolic equations, respectively. Illustrative examples are

given including those involving impulsive control and boundary control. In fact, we believe that
the method developed here can cope with almost all situations studied in [4].

We begin with real Hilbert spaces V, H, ell and . Assume that the injection V C_ H is contin-
uous and V is dense in H. Identify H with its dual, denote by V’ the dual of V and we may
write
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VCHCV’.

Both the dual pairing of V and V’ as well as other Hilbert spaces and their duals are denoted by
1

(-,-). We write (.,.)v for the inner product of the Hilbert space V, II II v for nd

drop V when it is clear from the context which space we are referring to. Inner products and
norms of other Hilbert spaces are denoted similarly. We denote by (X,Y) the space of contin-
uous linear mappings between the topological vector spaces X and Y.

2. Elliptic Systems

Assume that we are given operators B (,V’) and A (V,V’) such that the bilinear
form (Au, v) on V is coercive.

For a given f V’ and a control u , we are interested in the system given by

Ay- f + Bu, y Y (2.1)
with state y: -y(u). We are also given an observation equation

and a cost functional

J(u, y) (Cy(u), Cy(u))5 + (Nu, u)q (2.3)
where C C (V, 5) and N is a Hermitian positive definite operator on q.t.

Let q.l,
ad (the set of admissible controls) be a given closed convex subset of . We are inter-

ested in the optimal control problem of finding u0 and Y0: -y(uo) such thatthey satisfy (2.1)
and

d(u0, Y0) inf{J(u, y): u e q-Lad}. (2.4)
We shall develop a dual problem for this optimal control problem and use it to obtain error
estimates for optimality. We now introduce a dual problem.

Let A be the canonical isomorphism of 5 onto its dual :’, C* C (5’, V’) be the adjoint of
C. Then for , C V we have

(C*A:C, > <A:C, C> (C, C)5. (2.5)

Let A% be the canonical isomorphism of into its dual %’, B* @ (V, q.l.’) be the adjoint of
B. Then for u , V we have

<Bu, ) <B*, u) (AcB*, u). (2.6)

Let A* (Y,Y’) be the adjoint of A. The state ’- (y) Y of the dual system is
defined and given by

A* C*ACy ’ Y. (2.7)
For Y and given by (2.7), we are interested in those u ad, satisfying

(AIB* + Nu, w- U)q_l >_ 0 for all w e Cad. (2.8)
This restriction on u shall form a characterization for the optimal control. Please see Theorem
2.2 for details. The dual cost functional is

"j(v,)- -(C’,C)-(Nv, v)%+2(f,)+inf 2(AcIB* +Nv, w)q.L. (2.9)
w CI.Lad
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The dual problem is to find Vo,o such that (2.7) holds and

(Vo, o) sup{? (v,’ E V, v ad)" (2.10)
We have thefollowing lemma regarding the difference between the primal and dual objective func-
tions J and J.

Lemma 2.1: Suppose that u,v ad, Y satisfies (1.1), " V and is given by (2.7). Then

J(u,y)- "J (v,y (C(y- ), C(y- y ))+ (N(u- v),u- v), + 2(AIB* + Nv, u)

Proof:
sum of

and twice

But

-inf 2(AcIB* + Nv, w).
w E Clad

(2.11)

It follows immediately from the definition of J and J that J(u,y)-J (v,) is the

(C(y ), C(y )) + (N(u v), u v)

(C’ Cy) + (Nv, u) (f,’ inf (AcIB* + Nv, w).
w Cad

(2.12)

(Cy Cy) (C*ACy, y) (A*’, y) (Ay, " (f + Bu, " (f, " + (AIB*, u).

In the above, we have used respectively (2.5), (2.7), (2.1) and (2.6). Now substitute it into (2.12)
and we are done. El

Theorem 2.2: Suppose that there is u > 0 such that for u ,
(Nu, U)cu. >_ (u, u). (2.13)

(i) For all u,v CUad all y satisfying (2.1), all " V and all dual state " given by (2.7),
we have

Y (v,’5) <_ J(u, y). (2.14)

(ii) Let uo and Yo be the unique solution of (2.1), (2.7) and (2.8) with y-’, then uo is the
optimal control for the cost functional J of the elliptic system. Furthermore,
J(uo, Yo) J (Uo, Yo), i.e.,

supY (v,y) -infJ(u,y)- J(uo, Yo) (2.15)

where the supremum is taken over " V and v Cad and the infimum is over u Cad
and y V satisfying (2.1).

Proof: From Lemma 2.1, we see that

J(u,y)-J(v,)>_O.

The statement about the optimal control uo is just Theorem 1.4 of [4], p. 49.

J( o,

J(uo, Yo) J(uo, Yo)- 2(AcIB*o, u0) + 2(AqIB*o, Uo).

To show that

(2.16)

From (2.13),
J(Uo, Yo) (CYo, Cyo) + (Nuo, Uo),

and from the proof of Lemma 2.1,



180 W.L. CHAN and S.P. YUNG

(AcIIB*0, u0) (Cy0, CYo) (f "rio)"

Substituting into (2.16) we get

J(uo, Yo) (CYo, CYo) (Nuo, Uo) + 2(f Po) + 2(AIB*0 + Nuo, Uo)"

But at optimal control Uo, the variational inequality (2.8) is equivalent to (cf: [4], p. 49 (1.31))

Hence we get

AcIB*o + Nuo, Uo) inf (AcIB*o / Nuo, w).
wE Clad

J(o, Vo) a (o, Vo)
which yields (2.15). Vi

The error estimates for optimality are as follows.

Theorem 2.3: Let uo be the optimal control for the cost functional J given by (2.3) under
constraints determined by the elliptic system (2.1) and suppose that (2.13) holds. For any
u G Cllad, y y(u), " " (y) and Yo Y(Uo), we have the following error estimates

and

J(u,y)-J(uo, Yo) <__ 2(AcIB* +Nu, u)-2inf (AcIB* +Nu, w),
w ECad

(2.17)

II C(yo y)II + (N(uo ), o ) + 2(AcIB* + Nu, Uo) <__ 2(AcIIB* + Nu, u). (2.18)

Furthermore, both estimates are sharp.

Proof: From Theorem 2.2,

and so by Lemma 2.1,
J(Uo, o) > a (v, )

a(, u) Z(o, Vo) <_ j(u, v) a (v, v)

(N(u v), u v) + 2(AcIB* + Nv, u) -inf 2(AcIB* + Nv, w).
w E Cl-[,ad

Thus, if we put v equals to u we get (2.17).
To prove (2.18), we apply Lernma 2.1 to both sides of the following inequality

We get
J(uo, Yo) J (v, y) <_ J(u, y) J (v, y).

II C(yo- y II 2 + (N(u v), uo v)+ 2(AcIB* + Nv, Uo)

<_ (N(u v), u v) + 2(AIB* + Nv, u).

Putting v u completes the proof.

Example 2.4: Let f be a bounded open set in Nn such that its closure f is a compact mani-
fold with boundary F, which is an (n-1)-dimensional smooth manifold. The Euclidean norm of
Nn is denoted by and the inner product in n is denoted by ordinary multiplication for brev-
ity. Set V U(12), V’- H-1(12), U- L2(12). Let A be the second order elliptic operator

,j
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for e H() such that

aij, a0 C L(Q)
and almost everywhere in gt,

E aij(xlij >- (( + + 2n)’
i,j-1

and
ao(x) >_ .

c>O

Let the space of controls be L2(fl). Define the set of admissible controls by

Clad {u cU.: u

_
0 almost everywhere in }.

Let :E- H and let C be the injection of V into H. Take A and B be the identity operator on

n2(), and let f H-1(12) and N be a positive definite Hermitian operator on L2(fl) satisfying
(2.13). If the primal problem is to find the optimal control minimizing cost

under the constraints

J(u,y) / y(x) 2dx + /(Nv)(x)v(x)dx
Ay-f+u infl
y-0 onF
u _> 0 almost everywhere in ,

then the dual problem is to maximize the cost function

(v, /1 (x)12dx f (Nv)(x)v(x)dx +2(f, )+2

under the constraints

A* y in
-0 oar.

inf/ ( + Nv)(x)w(x)dx
w E Clad 12

Furthermore, the error estimates of Theorem 2.3 hold for this problem.

3. Parabolic Systems

We continue to use the notation of Section 2 and introduce additional notation.

If V is a Hilbert space, we write L2(0, T; V) for the space (of equivalence classes) of functions
defined on the open interval ]0, T[ with values in V such that

T

II f(t)II 2d < .
0

We define

W(0 T)- (f:f L2(0 T;V), df L2 (0, T; V’)}.

Suppose that we are given a family of operators A(t)e (L2(0, T; V),L2(O,T; V’)) such that
for , V, the function

t(A(t),) (3.1)
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is continuously differentiable in [0, T],

and there exists a I such that for E V, 0 < t < T,

(3.2)

Assume that the cost functional is given by

J(, y) II Cy()II + (Nu, u)% (3.3)

where y(u)e W(O, T), the observation operator C e (W(0, T),:), and N e (,) with

(3.4)

Let B e (%,L2(O,T;V’)), I e L2(O,T;V’) and Y0 e H be given. We study (cf: [4], p. 114,
Theorem 2.1) the problem of minimizing cost J over a parabolic system given by

ty + A(t)y f + Bu

(0) o,

For u in the set Cad of admissible controls and y E L2(0, T; V).
Let the dual system by given by

-t + A*(t) C*ANC
(T)-O,

where L2(O, T; V). We shall be interested in those u qJ’ad satisfying

(AcIB* + Nu, w U)cu. >_ O, for all w CU,ad (3.7)

with satisfying (3.6). We define the dual cost functional by

"J (v,V II c (v) II m -(Nv, v) + 2(f, + 2(y(0), (0)) + in_f 2(AcIB* + Nv, w).
w E ClJ,ad

The dual problem is to maximize (v,) subject to e L2(O,T,V), satisfying (3.6) and
v E Cad

Lemma 3.1: If u, v Ckl., y(u) satisfies (3.5), y V and " satisfies (3.6) then

J(u,y)- (v,)- IIC(y-)ll+(N(u-v),u-v)/2(AlB* +Nu, u)

inf 2(AlB*" -Jr Nv, w).
w E CLLad

(3.9)

Proof: One can verify this lemma directly as before. Alternatively, we can estimates J(u,v)
-J (v,) from below and see how J (v,y) drops out. First of all, for any symmetric bilinear
form we have an identity
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(a, a) + (b, b) 2(b, a) + (a b, a b).

Applying the identity to the bilinear forms (., "):E and u,v--(Nu, v), we see that J(u,y)
J (v, y equals

II C(y y II 2 + (N( v), v) + 2 [(Cy, Cy) + (Nv, u)

-(f,)-(y(0),(0))-inf (AcIB* +Nv, w)].
w Ecl.l,ad

On the other hand, we have

(a.10)

So by (3.6),
(cy c) (c*hcy ).

T

0

0
where we have used Green’s formula and

Using (3.5) we get

T T

0 0

(cy, c) <f, >+ (B, )+ ((0), (0)).
Substituting this into (3.10), we get

(AcIB* + Nv, u) -inf (AIB* + Nv, w)
w E Cl-ad

and the proof is now complete.

Theorem 3.2: Assume that (3.1), (3.2), (3.3) hold. Then
() The cost functional J(u,y) of the system (3.5) and the dual cost functional J (v,y of

the system (3.6) satisfy

j (v,y) <_ j(, )

(it)

(iii)

for all u, v E qlad, all y satisfying (3.5), all y e V, and all dual state " given by (3.6).
The optimal control uo and the corresponding Yo are characterized by (3.5),(3.6), (3.7)
with " taken to be y. Furthermore, we have

supJ (v,)- infJ(u,y) J(uo, Yo)
where the infimum is taken over all u Cad and y satisfying (3.5), and the supremum is

over all (’,’ satisfying (3.6) and v e Ckl.ad.
If we put Yo" Y(Uo), " (Y) and take u in Cad v in Uad( ), then we have the fol-
lowing error estimates:

II C(y yo) II 2 + (N(uo v), u0 v) + 2(AcIB* + Nv, u0 v)

and
<__ (N(u v), u v) + 2(AcIB* + Nv, u v),
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d(u,y)-d(uo, Yo) < (N(u-v),u-v)+2(A@lB* +Nv, u)-2 inf (A@IB* +Nv, w).
wECU,ad

Proof: Same as corresponding theorems in Section 2. The characterization of the optimal
control is in [4], p. 114, Theorem 2.1. [:l

Example 3.3: Take Q as in Example 1.4. Put Q gt x ]0, T[, E F x ]0, T[. Let aij be func-
tions in Q such that

ae(Q)
, n (3.11)

i,j=l i=1

For e H(), define A(t) by

A(t)- El-i aij(x,t)-j
Let VEH(Q), H-L2(fl), %-%’-L2(Q), :E-:E’-L2(Q). Also take B and A% to be the
identity mapping, C" L2(0, T; V)--L2(Q) be the injection map and let

Lad {u ’u >_ 0 almost everywhere in Q}. (3.12)

For f L2(O,T;H-I()), we consider a mixed Dirichlet problem for a second order parabolic
equation:

in Q

(3.13)

The optimal control problem is to minimize the cost given by

J(u, y) i (] y(x, t)[ 2 + (Nu)(x, t)u(x, t))dx dr.

Q

We define the dual problem to be maximizing the dual cost functional

(v, I (- (v)v), + (,>+ f.(o,
2 inf l( +Nv)w dxdt+
w E Cad JQ

over the adjoint system governed by

(3.14)

p-0

(, r)-0
p e L2(0, T; H()).

in Q

on F,
(3.15)
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The techniques we have used can also be applied to construct the dual problem to the pro-
blem of impulsive control of linear evolution problems. We use on in [5] Chapter 2 as an exam-
ple.

Example 3.4: Suppose that the regularity conditions in [4], p. 182 are imposed on , which is
a domain in Rn, with n _< 3. Let A be the elliptic operator described in Example 2.4. Unless
otherwise specified, we shall continue to use the notation of Example 3.3. Let b be given in .
We denote by 5(x- b) the Dirac mass at the point b. Let the cost functional be

T

J(u, y) / y(x, T; u) 2dx + k / / u(x, t) 2dx dt (3.16)

where k is a given positive real number and y y(x, t; u) is the state of the system given by

The space of controls is

with norm

dy- + Ay u(t)5(x b) in Q

y-0 one

y(x, 0) 0 in f.

% {u: u e L2(0, T), y(., T; u) e L2(D)},

]1 u II cu. u 2dt -t- y(x, T; u) 12dx
o fl

and we assume that the admissible controls clJ,ad is a closed convex non-empty subset of q.L.

Let the dual state be the solution of the backward system

dt t- A* -0 inQ

-0 on

(x,T) (x,T) in f.

(3.17)

(3.18)

(3.19)

By defining the dual cost functional to be

" (v, / "ff (x, T; v) 2dx k / v(t) 12dt + 2 J
Ft o o

T

+2 inf / ( (b,t) + kv)wdt,
wECad 0

T

v(t)(b,t)dt

(3.20)

we may conclude, thorough proving parallel results of Theorem 3.1 and Theorem 3.2, and the prob-
lem of maximizing J with (x, T) and given by (3.19), is a dual problem to that of minimizing
J with u E q-Lad for the system (3.17). Corresponding error estimates may be established
similarly.

4. Hyperbolic Systems

We continue to use the notation of Section 2. Consider a family of operators A(t) L(V, V’)
satisfying conditions (3.1), (3.2) and for all , . V
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(A(t), ) (A(t), ). (4.1)

duppose B C (q-L, L2(O,T;H)), f C L2(O,T,H), Yo C V, Yl C H and y C L2(O,T;V)such that
E L2(0, T; H). The system that we are interested in is

d2-y + A(t)y f + Bv

y(O)-yo (4.2)
dy
-(o) .

The observation operator is C E (L2(0, T; H); :) and the cost functional is

g(u, y) II Cy(u) II + (Nu, u)q1 (4.3)

where N is as in Section 2 satisfying (2.13). The problem is to minimize J(u, y) for u C %Lad.
For L2(0, T; H), L2(0, T; V) and -t L2(0, T; H), we define the dual system

d2 ,
-p + A(t) C A3Cy

(T)-0
d~- (T) 0

and the cost functional by

(4.4)

(0)) +( (0), tv(0))J (v, I] Cy II 2 (Nv, v) + 2(f + By, 2(y(0),p

+ inf 2(A/I1B* +Nv, w).
w E Ckl,ad

The proofs of the following lemma and theorem are the same as those in Section 3.

Lemma 4.1: If y(u) satisfies (4.2) and " (v) satisfies (4.4), then

(4.5)

J(u, y) "J (v, II C(y II 2 + (N(u v), u v)

+ 2(AIB* + Nv, u)- inf 2(AIB* + Nv, w).
w E Cad

(4.6)

Theorem 4.2: Assume that (3.1), (3.2), (3.3) hold. Then
(i) For all u,v %Lad all y satisfying (4.2), all L2(O,T;H) and all dual state given

by (4.4), we have the inequality
(v, y <_ (, ).

(ii) The optimal control uo is characterized by (4.2) and (4.4) with y,’ C L2(0 T;V), ou

Ox G n2(0, T; H) and y" y such that

(A1B* + Nv, u v)cll >_ O, VU Cad.

(iii) If uo and Yo give the optimal control, then

supJ (v,) -infJ(u,y)- J(uo, Yo),

where u, v C ad, Y satisfies (4.2) and ( satisfies (4.4).
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(iv) If we put Y0:- Y(Uo), - (Y) and take u,v @ ad, then we have the following error
estimates:

I] C(y Yo) II 2 + (N(uo v), u0 v) + 2(AIB* + Nv, u0 v)_
(N(u v), u v) + 2(AIB* + Nv, u v),

and

J(u,y)-J(uo, Yo) < (N(u-v),u-v)+2(AlB* +Nv, u)-2 inf
wECU,ad

(AcB* + Nv, w).

The condition of optimality in (ii) is just Theorem 2.1 of [4], p. 284.

We demonstrate below that a similar approach may be applied to boundary control problems
(cf: p. 321 of [4]).

Example 4.3: We use the same notation as Example 3.3 with the requirement that aii
for all i, j. The state y is the solution of the state equation (A is the outward normal of)

02Y Ay f
coy
OA

in Q

(., 0) 0(*), e n
0(,0)

Ot

(4.7)

Let the. primal cost function be

J(u,y) / y(u) 12dxdt + (Nu, U)L2(2) (4.8)

such that g e (L2(E); L2(E)) satisfies (3.4) for some , > 0. Let %tad be a closed convex subset
of L2(E). Then there exists an optimal control u in Uad (see p. 321 of [4]).

Now the dual system given by Theorem 4.2 is to maximize

(, I ee (Nv, vl + (I, p) + (v, P/- N. /(0,)e

+ 2 / p(0, x)-Yx(0, x)dx + 2 inf (p + Nv, w)
w E q2,ad

subject to

02P b Ap- f inQ
0t2

-A
p 0 on E

p(x, T) 0 x f

-O x f.

(4.9)

The error estimates can be constructed similarly.
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