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ABSTIACT

In this paper explicit formulas are given for the distribution functions
and the moments of the local times of the Brownian motion, the reflecting Brown-
ian motion, the Brownian meander, the Brownian bridge, the reflecting Brownian
bridge and the Brownian excursion.

Key words: Distribution Functions, Moments, Local Times, Brownian
Motion, Brownian Meander, Brownian Bridge, Brownian Excursion.

AMS (MOS)subject classifications: 60J55, 60J65, 60J15, 60K05.

1. Introduction

We consider six stochastic processes, namely, the Brownian motion, the reflecting Brown-
ian motion, the Brownian meander, the Brownian bridge, the reflecting Brownian bridge and the
Brownian excursion. For each process we determine explicitly the distribution function and the
moments of the local time. This paper is a sequel of the author’s papers [37], [41] and [42] in
which more elaborate methods were used to find the distribution and the moments of the local
time for the Brownian excursion, the Brownian meander, and the reflecting Brownian motion. In
this paper we shall show that we can determine all the above mentioned distributions and
moments in a very simple way. We approximate each process by a suitably chosen random walk
and determine the moments of the local time of the approximating random walk by making use
of a conveniently chosen sequence of recurrent events. By letting the number of steps in the ran-
dom walks tend to infinity we obtain the moments of local times of the processes considered. In
each case the sequence of moments uniquely determines the distribution of the corresponding local
time and the distribution function can be determined explicitly. It is very surprising that for each
process the moments of the local time can be expressed simply by the moments of the local time
of the Brownian motion.

In this section we introduce the notations used and describe briefly the results obtained.
The proofs are given in subsequent sections.

Throughout this paper we use the following notations:

1 e- 2/2 (1)

the normal density function,
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x

1 / u2(1- v_ - /d,

the normal, distribution function, and

[1
_

Hn(x n! (- 1)xn
o j!(n j)’

the nth Hermite polynomial (n- O, 1,2,...). We have

Hn(x xHn l(X) -(n 1)Hn 2(x) (4)

for n > 2 where Ho(x 1 and Hl(x x. The jth derivative of (x) is equal to

(J)(x) 1)J(x)H

We define

jr(a cr + 1 / e-a2x2/2(x_ 1)rdx
1

for c > 0 and r- O, 1, 2, In particular,

J0() v[-

(6)

(7)

and

J(<) e </ cV[1 I:,(c)]. (8)

We have

Jr -I- 1() rJr- 1() Jr() (9)

for r- 1, 2,

The Brownian motion: Let {(t), 0 _< t _< 1} be a standard Brownian motion process. We
have P{(t) <_ x} (xlV/) for 0 < t _< 1. Let us define

r(a)- il measure (t:a <_ (t)< a + , 0 <_ t <_ 1} (10)

for any real a. The limit (10) exists with probability one and r(a) is called the local lime al level
a. The concept of local time was introduced by P. Lvy [26], [27]. See also H. Trotter [43], K.
It6 and H.P. McKean, Jr. [19], and A.N. Borodin [6].

Our approach is based on a symmetric random walk {r,r > 0} where r- 1 "+" 2 q"

+ r for r >_ 1, 0- 0 and {tr,r _> 1} is a sequence of independent and identically distributed
random variables for which

P{r- 1} P{r- 1} 1/2. (11)
Let us define rn(a (a- 1,2,...) as the number of subscripts r- 1,2,...,n for which

(r-l-a-land (r-a" If a>_l, (r-l-a-land r-a, then we say that in the symmetric
random walk a transition a- 1-a takes places at the rth step and vn(a is the number of transi-
tions a- 1-a in the first n steps. In a similar way we define rn(- a) (a 1, 2,..., n) as the num-
ber of subscripts r- 1,2,...,n for which (r-1 --a + 1 and (r- -a, that is, Vn(- a) is the
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number of transitions -a + 1--,- a in the first n steps.

By the results of M. Donsker [11], if uoc, the Jut] V/process { / n, 0 < t < 1} converges
weakly to the Brownian motion {(t),0 < < 1}. See also I.I. Gikhman and A.V. Sorokhod [16],
pp. 490-495. By using an argument of F. Knight [24], we can prove that

{2’([aV/-])< z}- P{r(a) < x} (12)nlirn P X/r
for any c and x > 0. By calculating the left-hand side of (12) and letting n--,cx3 we obtain that

P{-(a) < x} 2(I)( + x)- 1 (13)

for x > 0. Hence it follows that

2Sr( )/V (14)

for a > 0 and r > 1.

We shall prove also that

nlirnE V mr(a (15)

for r- 1,2,

The reflecting Brownian motion: We use the same notations as we used for the Brownian
motion. The reflecting Brownian motion process is defined as. { [((t)[,0 < t < 1}. Its local time
at level a > 0 is ’(c)+ v(- a). In the same way as (12) we can prove that

{2"rn([CV#])+ 2"rn(- [cV/-])< x} P{’r(a) +’r( a) < x} (16)lirn P

for a > 0 and x > 0. By calculating the moments of rn(a + rn(- a) and determining their limit
behavior as noc we obtain that

E{[r(a) + 7-( a)]r} 2
r 1

mr((2/ 1)a) (17)e 1

for a > 0 and r _> 1 where mr(a is defined by (14). By using (17) we shall prove that

P{v(a) + v( a) <_ x} 1-4 E (- 1)t-l[1-(b((2e- 1)c+x)]
/=1

+4E 1 (--1)(--1)-lxj 9(j-1)
j=i J -! ((21- 1)a + x)

if x > 0 and a > 0.

(18)

The Brownian meander: Let { + (t), 0 < _< 1} be a standard Brownian meander. The
Brownian meander is a Markov process for which P{+ (0)- 0}- 1 and P{+ (t)> 0}- 1 for
0 < t < 1. If 0 < t < 1, then + (t) has a density function f(t, x). Obviously, f(t, x) 0 if x < 0.
If 0 < t < 1 and x > 0, we have,,, [2ff -1]. (19)

The Brownian meander is the subject of the papers by B. Belkin [2], [3], E. Bolthausen
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[5], D.L. Iglehart [18], R.T. Durrett and D.L. Iglehart [12], R.T. Durrett, D.L. Iglehart and D.R.
Miller [13], W.D. Kaigh [20], [21], [22], K.L. Chung [7] and E. Cski and S.G. Mohanty [9], [10].
Let us define the local time r + (-) for a >_ 0 by

r+(a)_liml measure{t:a<+(t)<a+e, 0<t<l}. (20)

The limit (20) exists with probability one and r + (a) is a nonnegative random variable.

Let us define a random walk in the following way: Denote by Sn the set of sequences
consisting of n elements such that each element may be either / 1 or 1 and the sum of the first
elements is >_ 0 for every 1,2,..., n. The number of such sequences is

ISnl- [n/21
for n- 1, 2, Let us choose a sequence at random in Sn, assuming that all the possible choices
are equally probable. Denote by ( (i- 1,2,...,n) the sum of the first elements in a random
sequence and set ($- 0. The sequence {(, 0i n} describes a random walk which is
usually called a Bernoulli meander. We are concerned with the random variable r (a) defined
as follows: v: (a)- the number of subscripts i-1,2,...,n for which ( -a-1 and ( -a

wheren>l anda>l.

If n, the process { +([nt]/,O t 1} converges weakly to the Brownian meander
{{+ (t),0 t 1} and in the same way as (12) we can prove that

{2v, ([a])< z}_ p{r + (a) < x} (22)iP
for any a 0 and x > 0. By calculating the moments of r (a) and determining their limit be-
havior asn we obtain that

E{v + (,)} 2V/[(I)(2,) (23)

and

e 1 [mr- 1((21 1)-)- mr 1(2-)]
=1

for r _> 2 where mr(. is defined by (14). By (23) and (24) we obtain that
cx) k-1 ()klP{r + (.) _< x} 1 + 2X Z --!.xjr(J),2k.( + x) (J)((2k 1). + x)]
k=l j=0 J

for x > 0.

The Brownian bridge: Let {ri(t),0 _< _< 1} be a standard Brownian bridge.
P{ri(t) <_ x} ep(x/v/t(1 t)) for 0 < t < 1. Let us define

(24)

(25)

We have

w(.)-i 1. measure {t’. _< ri(t)<. + c, 0 _< t _< 1} (26)

for any real .. The limit (26) exists with probability one and w(.) is a nonnegative random
variable which is called the local time at level ..

We consider a tied-down random walk defined in the following way" Let us denote by

T2n the set of sequences consisting of 2n elements such that n elements are equal to + 1 and n ele-
ments are equal to -1. The number of such sequences is T2n -(2nn ). Let us choose a se-
quence at random, assuming that all the possible ( 2nn choices are equally probable. Denote by rir
(r- 1,2,...,2n) the sum of the first r elements in a random sequence and set rio- 0. The se-
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quence {rl0 ril"’" ri2n) describes a random walk which is called a tied-down random walk. In this
random walk ri2n rio 0. The stochastic law of the tied-down random walk {rio, ri1,’", ri2n} is
identical to the stochastic law of the symmetric random walk {0, (1,’", (2n} under the condition
that (2n 0.

Let us define w2,(a (a- 1,2,...) as the number of subscripts r- 1,2,...,2n for which

rir-l-a-1 and rir-a" If a>l, rib_l-a-land rir-a, then we say that in the tied-down
random walk a transition a- la occurs at the rth step and W2n(a is the number of transitions
a- 1--+a in the 2n steps. In a similar way we define 2n(- a) (a- 1,2,...,2n) as the number of
subscripts r- 1, 2,...,2n for which ri_ 1 -a + 1 and ri- -a, that is, w2n(-a) is the number
of transitions a + 1 a in the 2n steps.

for any cr>l and x>0.
that

By the results of M. Donsker [11], if n---+cx3, the process {ri /,0 < t < 1} converges
weakly to the Brownian bridge {ri(t),0 < t < 1}. See also I.I. Giklman and A.V. Skorokhod [16],
pp. 490-495. By using an argument similar to the one F. Knight [24] used for the symmetric
random walk, we can prove that

nlirnP V/
< x x

By calculating the left-hand side of (27) and letting nc we obtain

P{(c) < x} 1- e-(21 +z)2/2 (28)

for x > 0. Hence it follows that

E{[w(a)]r} #r(a) rJr 1(2a) (29)

for a > 0 and r > 1. We shall prove also that

lim E{(2W2n([V/]))r}-Pr(O (30)

for c > 0 and r- 1,2,

The reflecting Brownian bridge: We use the same notations as we used for the Brownian
bridge. The reflecting Brownian bridge is defined as { ri(t)1,0 _< t _< 1}. Its local time at level
> 0 is w()+ w(- ). In the same way as (27) we can prove that

limP {2w2n([a])+2w2"(- [a])< x}-P{w(a)+w(-a)<x} (31)

for a > 0 and x > 0. By calculating the moments of w2n(a)+ w2n(- a) and determining their
limit behavior asn we obtain that

E{[(,)+(_,)]}_2 (r-l)1 P(") (32)
=1

where r() is defined by (29). ny using (32) we shall prove that

P{w() + w( ) x} 1 2
g 1 1 lxJ (J)(2 + X) (33)

=1 3=0 J
if x > 0 and > 0.

The Brownian excursion: Let { + (t), 0 t 1} be a standard Brownian excursion. The
Brownian excursion is a Markov process for which P{+(0)-0}- 1, P{+(1)- 0}- 1 and
P{ + (t) 0} 1 for 0 t 1. If 0. < < 1, then + (t) has a density function g(t,x). Obvious-
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ly, g(t,x)-0ifx<0. If0<t<landx>0, wehave

g(t, x) 2x2 x2/(2t(1 t))

2rt3(1_t)3
e

Let us define the local time w + (c) for >_ 0 by

(34)

w+(c)-liml measure {t’a<r/+(t)<a+e O<t<l}. (35)
--0

The limit (35) exists with probability one and / () is a nonnegative random variable.

Let us define a random walk in the following way: Let us consider a set of sequences each
consisting of 2n elements such that n elements are equal to -t- 1, n elements are equal to 1, and
the sum of the first elements is

_
0 for every i- 1,2...,2n. The number of such sequences is

given by the nth Catalan number,

Cn _(2n) l
n n+ 1" (36)

We have C0- 1, C1 1, C2 -2, C3 -5, C4 14, C5 -42, Let us choose a sequence at a

random, assuming that all the possible Cn sequences are equally probable. Denote by r//+ (i- 1,
2,...,2n) the sum of the first elements in a random sequence and set r/0+ -0. The sequence

+ + +{r/0 r/1 ,"’,r/n} describes a random walk which is usually called a Bernoulli excursion. We
have r/2+n =r/o"-=0. If n--oc, then the finite-dimensional distributions of the process

{r/[T2nt]/’r-, 0 <t< 1} converge to the corresponding finite-dimensional distributions of the
nrownian excursi-n rocess {r/+ (t), 0 < t < 1}, and we have weak convergence too.

In the same way as (27) we can prove that

nlirnP . _< x P{w + (c) _< x} (37)

for any >_ 0 and x > 0. By calculating the moments of w2+n(a) and determining their limit
behavior as nc we obtain that

E{[ +(a)]r}_2r(r_l) (_l)_(r-l)e 1 #r-2(ga) (38)
6--1

if r >_ 3 where #r(a) is defined by (29). If r- 1, we have

E{w + (c)} 4ae- 2c2 (39)

and if r 2,

E{[w + (a)]2} 4[e- 2a2 e-8a2]. (40)

By (38), (39)and (40)we obtain that
oo k-l(V{w+(a)_< x}- 1-2E E
k=l j=0

for x > 0.

k-j 1 ) -fir
xj E(j + 2)(2ka + x) (41)

2. Recurrent Events

In proving the various results mentioned in the Introduction, we shall make frequent use



Brownian Local Times 215

of the notion of recurrent events. This section contains the basic material needed.

Let us suppose that in the time interval (0, c) events occur at random at times 01 d-
02 +... + Ok (k 1, 2,...) where {Ok} is a sequence of independent random variables which take
on positive integers only. The variables 0/ (k- 2,3,...) are identically distributed, but 0a may
have a different distribution. Let

and

for k-2,3,.., and zl _<1.
(0, n], and let u0 -0. Clearly,

E P{01 n}zn *(z) (42)
n--1

E P{Ok n}zn (z) (43)
n----1

Denote by un the number of events occurring in the time interval

{b’n k k} {01 d-...-}-Ok

_
n} (44)

for k- 1, 2,... and n- 1, 2, The expectation

un k
p{un_ k}

is called the rth binomial moment of un and by (44) we have
oo {( )} r-1

zn(1 z)E E un *(z)[(z)]
n 1

r [1 (z)]r

forr-l,2,...and [zl <1. By(44)

(1 z) P{un k}zn *(z)[(z)]k- 1

n=l

ifk>_l and Izl,or

(45)

(46)

(47)

(1 z) E P{un k}zn *(z)[1 (z)][(z)]k- 1 (48)
n--1

ifk>_l and zl <1. If we multiply (48) by(rk ) and add the product for k l, 2, ., we obtain

(46).
We note that if An denotes the event that a random event occurs at time n, then

P{An} E{/zn} E{/Zn- 1} for n 1,2,... and if r 1 in (46), we obtain that
o *(z)EP{An}zn= (49)
n= 1

1- (z)
for [z 1. We say that {An} is a sequence of recurrent events.

3. A Symmetric Random Walk

Let us recall some results for the symmetric random walk {ffr, r >_ 0} which we need in
this paper. See Wakcs [34], [35]. We have

(50)
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for j 0, 1,..., n and by the central limit theorem

imP{--n < x} (x)

where (x)is defined by (2). We have also

for r O, 1,2,... where o() is defined by (1).
Let us define p(a) as the first passage time through a, that is,

(51)

(52)

p(a) -inf{r: r a and r >_ 0}. (53)

We have

a (aW.2J) 1 [(aW2j--1) (aW2j--1)] 1P{p(a) a + 2j}
a + 2j 2a+ 2j

:
j j- 1 2a+ 2j

for a >_ 1 and j >_ 0. By the reflection principle it is evident that

(54)

P{p(a) n} 21-[P{(n_ 1 a 1} P{(n- 1 a + 1}] (55)

fora>l andn>l.

By (54)

fora>_l and ]z _<1 where

We note that the identity

E P(p(a)- n}zn --[7(z)]a

7(z) 1 X/1 z2
Z

E P{p(a) j}P{p(b) n j} P{p(a + b) n}
j=o

is valid for anya>_l, b>_l andn>_l.

Furthermore, we have

(56)

(57)

(58)

( n )z’= z (59)
n-r r (1 z)r + 1

for r 0, 1,2,... and [z < 1.

The symmetric random walk {(n,n >_ 0} provides a simple example for recurrent events.
Let us define An {(n- a} for n 1 and a >_ 1. Then {An} is a sequence of recurrent events.
In this sequence 01 has the same distribution as p(a) and 0k (k 2, 3, .) has the same
distribution as p(1)/ 1. Consequently, by (49)

o [,,/(z)]a 2[/(z)]a -F 1

(60)E P{n a}zn 1- zT(z)(1 [’)’(z)]2)zna

for Izl < 1.
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4. The Brownian Motion

Let us consider the symmetric random walk {r, r >_ 0} and denote by An the event that

n-l-a-1 and n-awheren>-i anda>_l. Then {An} is a sequence of recurrent events for
which 01 has the same distribution as p(a) and 0k (k >_ 2) has the same distribution as p(2). Now
vn(a is the number of events occurring among A1, A2,... An. Thus

P{vn(a > k} P{01 +... + Ok + 1 <- n} P{p(a + 2k) <_ n}

P{n -> a + 2k} + P{n > a + 2k}
(61)

fork>landa>land

P(vn(a -0} P(p(a) > n} P(- a _< n < a}. (62)

By symmetry, vn(- a) has the same distribution as rn(a). By (61) we obtain that

E{[2rn(a)]r} 2E{([n a] + (63)

if n + a is odd and r _> 1, and

E{[2rn(a)]r} E{([n -a] + )r} / E{([n_ a + 2] + (64)

ifn+aisevenandr_>l. Here[x] + -xforx>_0and[x] + -0forx<0.

Theoreml" If a > O and x > O, then

{2v’*([aV]) > x)- 2[l _( / x)nlimP
and

(65)

(66)

for r >_ 1 where mr(a is given by (14).
Proof: If in (61) we put a-[aV where a>0 and k-[xv/-/2 where x>0, then by

(51) we obtain (65). By (12), (65) proves (13) also. If a -[cX where a > 0, then by (63) and
(64) we obtain that

+
E 2E a (67)

as n---co. By (52)

limE ] i
2E{([5-] /) (68)

for r >_ 1 where P{ _< x} -O(x). This proves (15).
In the sequence of recurrent events {An} we have *(z)- [7(z)]a and (z)- IT(z)]2

where 7(z)is defined by (57). Thus be (46) we obtain that

(()}(1 z)E E rn(a) zu
[7(z)]a + 2(r- 1)

n a r (1 -[7(z)]2)r (69)
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for r >_ l, a_> l and ]z] <1.

5. The Reflecting Brownian Motion

The distribution of Vn(a + Vn( a) is determined by its binomial moments. We have

P{rn(a + rn( a) k) rE=k 1)r- k kr E rn(a) +rrn( a) (70)

for k 0,1, 2,..., n.

Theorem 2: If r- 1,2,... and a- 1,2,..., we have

E {( vn(a)+vn(-a)r )}-2(r-1)=ix
g 1

E {( rn((2-1)a-2 +2)r )} (71)

where the right-hand side is determined by (69).
Proof: Let us consider the symmetric random walk {(r,r >_ 0) and denote by An the

event that I(n-ll -a-1 and I(nl -a where n>_l and a>_l. Then {An) is a sequence of
recurrent events and rn(a + rn(-a) is the number of events occurring among A1,A2,...,An.
The generating function of 01 is denoted by *(z) and the generating function of 0k (k >_ 2) by
(z). Now we shall determine these generating functions. By (46)

{( )} 1

(1 z) E E rn(a) + rn(-a) zn (72)

for r- 1,2,... and z < 1. By symmetry, E{rn(-a)}- E{vn(a)} and if r- 1, then by (69),
(72) reduces to

oo a

2(1 z)E E{rn(a)}zn *(z__)_ 217(z)]2 (73), 1 (z) 1 -[7(z)]2"

In order to determine (z) let us consider again the symmetric random walk {r, r >_ 0) and now
define an event Bn in such a way that it occurs if either n-1 1 and n 0 or n-1 2a- 1
and , 2a. Then {Bn} is a sequence of recurrent events for which *(z) (z) where (z) has
the same meaning as above. Now by (49)

oo oo (z)E P{Bn}zn zE [P{(n- 1 1} + P{n- 1 2a 1}]zn 1 (z)" (74)
n=l n=l

Thus by (60) we obtain that

b(Z) ZT(Z q_ Z[,),(Z)]2a- 1 [7(Z)12
__

[7(Z)]2a
1 (z) 211 zT(z)] 1 + [7(z)]2

The two equations (73) and (75) determine (z) and *(z). By (75) we have

(z) +
1 + [7(z)]2a

and by (73)

(76)

for zl <1. Thus by (72)
oo {( rn(a --I- ’.(- a) )}(1 z)E E zn
a r

2[(z)]a([,),(z)]2a _.[.. [,(Z)]2)r 1

(1- [7(z)]2)r

*(z)
1 + [/(z)]2a

(77)
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-2 (r--l) [’(z)](21- 1)a T 2r-2t(1--t tJJ
t7 1 r,.t,(z’12’ rg=l

(78)

In the above sum, each term can be expressed in the form of (69) and thus we get (71).
Now we shall prove some limit theorems"

Theorem 3: If c > 0 and r >_ 1, then the limit

nlirnE
exists and

Mr(c)-2 (r-l)mr((21-l)c)1 (80)
i=1

() eIe (14).
Prf: If in (71) we put a -[] where > 0 and let n, then by (66) we get (80).
Theorem 4: IF > O, hen here exists distribution function () of a noeneaive

random variable such ha

{2rn([]) + 2rn(- [])< } () (81)

in ever continuing poin 4 (). The dislribulion function () is uniquel deermined b ils
moments

i xrdL,(x)- Mr( (82)
-0

for r >_ 0 where Mo(c 1 and Mr(or for r >_ 1 is given by (80).
Proof: Since

Mr(a) _< 2r + 1E{ (I } (83)

for r >_ 1 where P{

_
x} --(I)(x), the sequence of moments {Mr(a)} uniquely determines La(x),

and La(x)- 0 for x < 0. By the moment convergence theorem of M. Fr(chet and J. Shohat [14]
we can conclude that (82)implies (81).

By (16)it follows from (81)that

P{r(c) + r(- c) _< x} (84)

where La(x) is determined by (82). From (82) it follows that (17) is true for all r

_
1. Formula

(17) is a surprisingly simple expression for the rth moment of r(c) + v(- c). If we know the rth
moment of v(c) for c > 0, then by (17) the rth moment of v(c)+ v(-c) can immediately be
determined for c > 0. Moreover, formula (17) makes it possible to determine La(x) explicitly.

Theorem 5: If x >_ O andes>O, we have

L(x) 1 4 1) [1 (I)((2 1)c + x)]
=1 (85)
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+4
i=2

eL1 (-1)(-1)-j J J!
ix3(j- 1)((2 1)a + x).

Proof: For a > 0 the Laplace-Stieltjes transform

/
-0

can be expressed as

(86)

@a(s) (- 1)rMr(a)sr/r! (87)
r--0

and the series is convergent on the whole complex plane. In (87) Mr(a is given by (80). If we
put (80) into (87), express mr(a by (14) and (6) and interchange summations with respect to r
and , we obtain that

c(S) 1 -t- 4 (t
1 d[1 ((2g 1) + )] ld
-1) dxg ]=1 0

1 + 4 1)[1 (I)((2g 1)a)] (88)
g=l

Hence we can conclude that
o -l)g (d-i[l-(((2-l)a+x)]xg-il

L,(x)- 1 +4Z I1_ 1)!

for x >_ 0. This proves (18) and (85).

(89)

6. The Brownian Meander

Let us consider again the symmetric random walk {(r,r >_ 0} and define the following
event-

An {(n- 1 a- 1, (n a and (r >- 0 for 0 _< r _< n} (90)

for n >_ 1 and a _> 1. Then {An} is a sequence of recurrent events. By the reflection principle we
obtain that

P{An} 21-[P{ffn- 1 a 1} P{ffn- 1 a + 1}] P{p(a) n}. (91)

As before let us denote the generating function of 01 by *(z) and the generating function of 0k
(k _> 2) by (z). Our next aim is to determine these generating functions. By (49) and (56) we
have

oo *(z) (92)Z P{A,}zn -[7(z)]a 1 (z)"n--1
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In order to determine (z) let us consider again the symmetric random walk {r,r >_ 0}
but now define an event Bn in the following way"

Bn {n- l l,n O and r -< a + l for0_<r_<n}. (93)

Then {Bn} is again a sequence of recurrent events for which *(z)- (z) where (z) has the
same meaning as in (92). By the reflection principle

P{Bn} 1/2[P{n- 1 1) P{n- 1 2a / 1}] (94)

and by (60)

p(Bn}z. z(7(z) -[7(z)]2a + 1)
n-- 1 211 zT(z)]

[7(z)]2(1 -[’)’(z)]2a)
1 [7(z)]2 1 (z)"

The two equations (92) and (95) determine (z) and *(z). By (95) we have

(z) [7(z)]2(1 [7(z)]2a)
1 -[7(z)]2a + 2

and by (92)

*(Z) [(z)]a(1 --[(Z)]2)
1 [7(Z)]2a + 2

(95)

(96)

(97)

Let us consider the sequence of events {An} defined by (90). We can interpret r (a) as

the number of events occurring among A1,A2,...,An given that Dn {r >- 0 for 0 _< r _< n}
occurs. Since

we obtain that

(n)lP{Dn}- [n/2] ’

Since by (56)

( n P{01 +... + Ok j}P{p(a + 1) > n-j}.P{vn+ (a))_ k} In/2]
3= 1

by (99) we obtain that

Since

by (101)

(1 z) P{p(a + 1) > j}zj 1 -[’(z)]a + 1

j--O

( )(1 z) P(rn+ (a) > k)
n zn ]a 1 -1

n--1 In/2] ff (l_[7(z) -t-),(z)[(z)]k

E (( vn+r(a) )) _k_ r( k
r P{rn-t’(a)-k)-k=r( k-1)r 1 P{vn+(a)>k)’-

(98)

(99)

(100)

(101)

(102)
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[,,f(z)]a + 2r- 2(1 [,,/(z)]a + 1)( 1 [(Z)]2a)r 1

(_ 1)g_ 1 (r-l)[7(z)](2-1)a+2r-2-[7(z)]2&+2r-1e 1 ii_[7(z)]2)r-1g=l

fo z < 1. Comparing (69)and (103)we can conclude that

E{r+ ()} P{p(2a + 1) > n} P{p() > n}

and

(105)

for r >_ 2 where the right-hand side can be obtained by (69). The distribution of r (a) is deter-
mined by its binomial moments. We have

P{vn+(a) k} E (- 1)r-
r=k

k
E

r (106)

for k 0,1, 2,..., n. Now we shall prove the following limit theorems:

Threm 6: If a > 0 and r > 1, then the limit

eiss where

(107)

M1+ (c) 2V/[(2c)- O(c)] (108)

and

Mr+(O)-rv/-- (-1)’-l ( r-1 )e 1 [mr l((2g 1)a)- m_ l(2ga)] (109)
g=l

for r >_ 2. In (109) mr(c is defined by (14).
Proof: If in (104) and (105) we put a -[a] where c > 0 and let n---,cx, then by (66)

we get (108) and (109). Here we used that

In/2] ’ n2 (110)

as n---(x).

Theorem 7: /f c > O, then there exists a distribution function La+ (x) of a nonnegative
random variable such that

{2rn+ ([cv/])< x}-L+ (x) (111)nlirnP X/
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in every continuity point of L+ (x).
its moments

The distribution function La+ (x) is uniquely determined by

x dLa (x)- Mr+ (a)
-0

(112)

for r > 0 where Mo+ (a) 1, M1+ (a) is given by (108) and Mr+ (a) for r > 2 is given by (109).
Proofi Since

Mr+ (a) _< rx/2E{ -} (113)

for r > 2 where P{(<x)-O(x), the sequence of moments {Mr+(a)} uniquely determines

L+ (x), and L+ (x)- 0 for x < 0. By the moment convergence theorem of M. Fr$chet and J.
Shohat [14] we can conclude that (112)implies (111).

By (22) it follows from (111) that

P{r + (a) < x} L (x) (114)

where L+ (x) is determined by (112). This proves (23), and (24) for all r > 2. Formula (24) is a

very simple expression for the rth moment of r + (a). If we know the rth moment of r(a) for
a > 0, then by (24) the rth moment of r +(a) can immediately be determined for a > 0.
Moreover, formulas (23) and (24) make it possible to determine L (x) explicitly.

Theorem8: If x O ands>O, we have

L:(x)- 1+2 j0(k-I xJ[(j, x) (J’
i + + ( 15)

forzO.
Prf: For > 0, the Laplace-StielQes transform

2 (s) / e-SZdL2 (x) (116)
-0

can be expressed as

+ (s)- E (- 1)Mr+ a)sr/r! (117)
r----0

and the series is convergent on the whole complex plane. Here Mr+ (a)is given by (108) and
(109). If we put (108) and (109) into (117), express mr(a by (14) and interchange summations
with respect to r and , we obtain that

1 fox3 sxdkxk lh(2ka + X)dx2(s)--1+ h(2ka)+ (k_l)j e-
dxk

(118)
k=l k=l 0

wher

: (_,):/:h(x) 2[e- z /2 e ]. (119)

From (118) it follows that

L+ (x)- 1 + (k- 1)’k=l

for x > 0. This proves (115) and (25),

dk 1zk I h(2ka + x)
dxk 1 (120)
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In a different setting, the distribution function L (x) was found by E. Cski and S.G.
Mohanty [10]. They expressed L (x) in the form of a complicated complex integral.

7. The Brownian Bridge

We use the .same notations as in Section 4. We consider the symmetric random walk
{r,r > 0} and denote by An the event that n-1 a- 1 and n a where n > 1 and a > 1.
Then {An} is a sequence of recurrent events for which 01 has the same distribution as p(a) and 0k
(k > 2) has the same distribution as p(2). We can interpret w2n(a) for a > 1 as the number of
events occurring among A1, A2,...,A2n given that {2n- 0} occurs. We have

p{2n- 0} _(2n) 1 1
n -gg" (121)

as rt--+oo. Now

P{2n O}P{w2n(a) > k} P{2n 2a + 2k}, (122)

or

fork>0, a>landn>l. For

n P{w2n(a) > k} + a + (123)

P{2n- O}P{w2n(a) > k}

= E P{l +... +0k+l a+2j}P{(2n_a_2j = a} (124)
3--0

--a

= E P{p(a + 2k) a + 2j}P{2n_ a- 2j -- a} P{2n 2a + 2k}.
3--0

We obtain the last equality if we take into consideration that the event 2n- 2a + 2k can occur
in such a way that the smallest r- 1,2,...,2n for which r-a + 2k may be r-a + 2j where
j--O, 1,...,n-a.

If we use (55), then by (122) we have

P{(2n O}P{w2n(a) k} 2P{p(2a + 2k- 1) 2n + 1} (125)

for k > 1.

By (123) we obtain that

() n-a (n 2n )2n
E{[w2n(a)]r] } E [(J + 1)r- jr] + a + jn

j=o

if r> 1.

or

(126)

For each r 1,2,... we can express (126) in a compact form. If v 1, then by (126)

(2n)E{w2n(a)’--a(n 2n )--22nn + a + j P{2n 2a} (127)
j=0
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P((2n O}E(w2n(a)} P(2n > 2a}. (128)

For r 2 and r 3 we obtain that

P{2n O}E{[w2n(a)]2} (n + a)P{2n 2a} (2a 1)P{2n > 2a} (129)

and

P{(2n O}E{[w2n(a)]3} (-+ 3a2- 3a + 1)P{2n > 2a} -(n + a)(2a 1)P{(2n 2a}. (130)

In a similar way we can express (126) for all r > 3 as a combination of the two probabilities
P{(2n 2a} and P{2n > 2a}.

Theorem 9: If a > O and x > O, then

lim P 2w2n([aV/])

and

< x}- 1-e-2(2a+x)2
(131)

(132)

for r > 1 where #r(c)is given by (29).
Proof: If in (123) we put a- [cy/-] where c > 0, and k- [x/2] where x > 0, then

by letting ncx we obtain (131). By (27), (131) proes (2S). If in (128) we put a- [c-]
where c > 0, then by lettingn we obtain (132) for r 1. If r > 2, then we can express (126)
in the following form:

p{2n_O}E{[w2n(a)]r}_P{2n > 2a} +r1 (r)E{([2 _2a] +)s}2_ s

s--1
8 n (133)

and by (121), we obtain that
r-1

(134)

as n---,cxz. Accordingly, for r > 2

nlimE 2W2n([V/])lr}-. rE{([ 2a] + )r- 1} (135)

where P{ < x} q)(x). This proves (132) for r > 2 and completes the proof of (29) for r > 1 and
a>0.

If we use (56), then by (125) we obtain that

n=lEP{2n O}P{w2n(a) k}z2n + 1 217(z)]2al[?(z)]24-2k 1

(136)

for ]z < 1 where 7(z) is given by (57). If we multiply both sides of (136) by (kr) and form the
sum for k > r, then we obtain that

E W2n(a) 2n z2n 4- [7(Z)]2a 4- 2r-

r n 22.+1 (1-[7(z)]2)r +1 (137)
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for Izl <1, r>_landa>_l.

We note that

E{[w(a)]r} r-E{[v(2c)]r- 1}/2 (138)

for r >_ 2 where v(a)is defined by (10).
The distribution and the asymptotic distribution of w2n(a have already been determined

by V.S. Mihalovi [29] and N.V. Smirnov [32] in the context of order statistics.

8. The Reflecting Brownian Bridge

We use the same notation as in Section 5. We consider the symmetric random walk
{(r,r>-0} and denote by An the event that I(n-1] -a-1 and I(nl -a where n_>l and
a >_ 1. Then {An} is a sequence of recurrent events for which 91 has the generating function *(z)
given by (77) and 9k (k >_ 2) has the generating function (z) given by (76).

The distribution of w2n(a / w2n(- a)is determined by its binomial moments. We have

P{w2n(a + W2n a) k} E 1)r- k r W2n(a) -" W2n a)
r=k

k
E

r

for k 0, 1,2,...,n.

Theorem 10: If r- 1,2,... and a- 1, 2,..., we have

r-1E{( w2n(a) "-w2n( -a) )} 2 ( 1)E{(r
=1\

(139)

w2n(t!a- +1)r )} (140)

where the right-hand side is determined by (137).
Proof: We can interpret W2n(a + w2n(--a) for a >_ 1 as the number of events occurring

among A1,A2,...,A2n given that {2n 0} occurs. Thus we can write that

P{w2n(a + w2n a) > k)( 2n ) 1
2n

\/n 22---- EP{01+’"+0k-J}P{(2n-j=a)" (141)
j’-I

Since by (60)

E P{n a}zn + 1 z[/(z)]a 2[’)’(z)]a + 1

n 1
1 zT(z) 1 -[7(z)]2

(142)

fora_>l and ]zl <l, by(141) we obtain that

E P{w2n(a) + W2n( a) ) k}
2n Z

2n + 1 [f(Z)]a + l)*(Z)[(Z)]k 1

n 1
n 22n + 1 1 -[7(z)]2

(143)

where (z)is given by (76) and *(z) by (77). If we multiply (143) by (kr-l) and add for k _> r,
then we obtain that

{(E E w2n(a) + w2n( a) 2n z2n +1
n 1

r n 22n + 1
[,(z)]a + l,(z)[(z)]r 1

(1 -[7(z)]2)[1 (z)]r

2[/(z)]2a + l([,(z)]2a ._ [(z)]2)r
(1 [7(z)]2)r+l --2 (r--l) [7(z)]2ga+2r-2+1(l_t

,J
, 1 [,),[Z]2r "f" 1

=1

(144)
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exists and

In the above sum each ,term can be expressed in the form of (137) and thus we get

Now we shall prove some limit theorems"

Ira > 0 and r > 1, then the limit

lim E W2n([CV]) + 2W2n(-[c]) Qr(c) (145)

Theorem 11:

(
=1\

where #r(C) is defined by (29).
Proof: If in (140) we put a -[aV where > 0 and let n---,oc, we get (145).

(146)

Theorem 12: If > O, then there exists a distribution function Ta(x of a nonnegative
random variable such that

+ < To(c (147)

The distribution function Ta(x is uniquely determined by its

/ xrdTa(x) Qr(a)
-0

(148)

lim P {
in every continuity point of Ta(x).
moments

for r >_ 0 where Qo(a) 1 and Q(a) for r >_ 1 is given by (146).
Proofi Since

Qr(a) <_ 2r#r(a) _< 2rr J X
r- le-x2/2dx (149)

0
for r > 1, the sequence of moments {Qr(a)} uniquely determines Ta(x), and Ta(x) 0 for x < 0.
By the moment convergence theorem of M. Frchet and J. Shohat [14] we can conclude that (148)
implies (147). By (31)it follows from (147)that

P{w(a) + w(- a) < x) Ta(x) (150)

where Ta(x) is determined by (148). From (148) it follows that (32) is valid for all r > 1. If we
know the rth moment of w(a) for a > 0, then by (32) the rth moment of w(a)+ w(-c) can

immediately be determined for a > 0.

The moments (146) uniquely determine the distribution of w(a)+ w(-a) for a > 0 and
we have the following result.

Theorem 13: If x >_ O and a > O, we have

Ta(x 1 2V/ E - 1 (- 1) lxJ (J)(2c + x) (151)
=1 j=O J J!

Proof: For c > 0 let us define the Laplace-Stieltjes transform of T(x) by

aa(s)- J e-S:dTa(x)"
-0

(152)
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We have

aa(s)- E (- 1)rQr(()sr/r! (153)
r--0

and the series is convergent on the whole complex plane. Here Qr(c)is given by (146) and #r()
by (29). If we put (146) into (153), express #r(c) by (29) and interchange summations with res-

pect to r and , we obtain that

a(s)- 1 + 2V/ E (
1 +

(154)

Hence we can conclude that

(-l)(d-ip(2+x)x-l) (155)T,(x)- 1 + 2X/r E--1 (g- 1)! dx 1

for x >_ 0. This proves (151).
The distribution function T,(x) was determined by N.V. Smirnov [32], [33] in 1939 in the

context of order statistics. In 1973 in the context of random mappings G.V. Proskurin [30] also
found the distribution function Ta(x). Recently D. Aldous and J. Pitman [1] proved the result of
G.V. Proskurin [30] by using a Brownian bridge approach.

9. The Brownian Excursion

We use the same notation as in Section 6. The distribution of w2+n(a) is determined by
its binomial moments for which we have the following formulas:

Theorem 14: If a >_ 1, then

CnE{w2+n(a)} 22n + 1p{p(2a + 1)- 2n + 1} (156)

and

E{(w2+n(a) )}-22n[P{2n-2a+2}-P{2 -4a+2}]Cn 2 n

where Cn is defined by (36). If r>_3 and a- l,2,..., we have

E{(w2+n(a) )}-(n+1)(-1)g-l(r-l)E1 {( w2n(a+2)r-2 )}r
=1

( 57)

(158)

where the right-hand side is determined by (137).
Proof-. Now w2+n(a) for a _> 1 is the number of events occurring among A1,A2,...,A2n

given that {(2n 0} occurs. Thus we can write that
2n

P{w2+n(a) >_ k} 2E P {01 +"" -]- Ok j}P{p(a + 1) 2n + 1 j}.
j:l

(159)

Since by (56)
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E V{p(a -4- 1) n}zn [7(z)]a + 1 (160)
n=l

fora>l and zl <l, by(159) we obtain that
cx Cnz2n + 1

E P{w2+n (a) > k} 22n + 1 [7(z)]a + l*(z)[(z)Jk- 1 (161)
n----1

where (z) is given by (96) and *(z) by (97). If we multiply (161) by ( rk- ) and add for k > r,
then we obtain that

E{(W?n(a))} Cnz2n+122n+ln=l
r

[7(z)]o +

[7(z)]2a + 2r- 1(1 [7(z)]2a)r 1

(1 [7(z)]2)r-1 -(-1)-1( r-1 ) (l[’/(z)]2a+2r-1-l.,]J]
=1

for z < 1. If r 1 and r 2 in (162), by (56) and (60) we obtain (156) and (157). Compar-
ing (162) and (137) we obtain (158) for r >_ 3.

Now we shall prove some limit theorems.

Theorem 15: If > 0 and r >_ 1, then the limit

exists and

lim E w2+n([a-]) Qr+ (163)

Q1+ (a) 4ae- 2"2, (164)

Q2+ (c) 4[e 22 e 82] (105)

and

Qr+(c)--2r(r-1)(-1)f’-l( r-1 )1 #r-2(ta) (166)
=1

Prf: If in (156), (157) and (158) we put a -[a] where a > 0 and let n, we get
(164), (16)and (166).

Threm 1: g > O, hen here eiss dislribuion function T () 4 a nonnealive
random variable such Chal

iP x T2 (x) (167)

in every continuity point of T: (x). The distribution function T: (x) is uniquely determined by
its moments

rdT() Q() (168)
-0

for r >_ 0 where Qo+ () 1 and Qr+ () for r >_ 1 is given by (164), (165) and (166).
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Proof: Since

Qr+ (a) _< 2r#r(a) _< 2% / xr- le- z212dx
0

(169)

for r > 3, the sequence of moments {Qr+ (a)} uniquely determines Ta+ (x), and Ta+ (x)-0 for
x < 0. By the moment convergence theorem of M. Frchet and J. Shohat [14] we can conclude
that (168)implies (167). By (37)it follows from (167) that

P{w + (a) _< x} T (x) (170)

where Ta+ (x)is determined by (168). Now (168) proves (39), (40), and (38) for all r > 3. If we
know the rth moment of w(a) for a > 0, then by (38), (39), and (40) the rth moment of w + (c)
can immediately be determined for a > 0 and r > 1.

The moments (168) uniquely determine the distribution of w + (a) for a > 0 and we have
the following result.

Threm17: If x O ands>O, we have

T:(x) 1--2k=1 j0(k-l-j xJ(J+2)(2ka+x) (171)

forxO.
erf: For a > 0 let us define the Laplace-Stieltjes transform of T2 (x) by

-sx +fl: (s) e dTa (x). (172)
-0

We haye

fla+ (s)- E (- 1)’Qr+ (173)
r----0

and the series is convergent on the whole complex plane. Here Qr+ (a)is given by (164), (165)
and (166) and #r(a) by (29). If we put these formulas into (173), express #r(a) by (29) and inter-
change summations with respect to r and , we obtain that

+ (s) 1 + h(2ka) + (k- 1)!
e

k=l k=l 0

-sxdkxk-lh(2kce -[- X).dx (174)
dxk

where

h(x) 21- z2/2(1 x2).
From (174) it follows that

for x > O.

Ta+(x)-l/E(k_l)!
k=l

This proves (171) and (41).

dk lxk- lh(2ka + x)
dxk 1

(175)

(176)

In various forms, the distribution function Ta+ (x) was found by V.E. Stepanov [31] in
1969 in the context random trees, D.P. Kennedy [23] in 1975 in the context of branching
processes and J.W. Cohen and G. Hooghiemstra [8] in 1981 in the context of queueing processes.
See also K.L. Chung [7], R.K. Getoor and N.J. Sharpe [15], G. Louchard [28], E. Cski and S.G.
Mohanty [10], Ph. Blase and M. Yor [4], F.B. Knight [25], G. nooghiemstra [17] and L. Takcs
[36], [37], [38], [39], [401.
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