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ABSTRACT

This paper deals with the fimitng behavior of a harmonic oscillator under
the external random disturbance that is a process of the white noise type.
Influence of noises is investigated in resonance and non-resonance cases.
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1. Introduction

We investigate the harmonic oscillator as a system of motion described by a linear differential
equation of the second order

mii(t) + ku(t)= q(t)while m > 0 and k > O,

where q(t) is an external disturbance force. In the case, where q(t) is a nonrandom periodic
function, the instantaneous energy of the oscillator (t)_ [ku2(t)l -I- mit2(t)] is bounded if

the period of the function q(t) is not equal to 27rv/m/k and (t) t2 as t---+c if period of function
q(t) is equal to 2rx/- (resonance).

A model of the random harmonic oscillator with e(t) t as t-cx3 was considered by Papanico-
lau [8] for the case when q(t) is a stationary random process; a model in which In e(t) tc was

considered by nendersky and Pastur [1] for the case when q(t)= 0 and k = k(t)is a stationary
random process; a model in which (t),, V/ as t---,cx was considered by Kulinich [7] for the case

when q(t)- g(w(t))iv(t), with (t) as a "white" noise, g(x) a nonrandom function and g2(x)
integrable over R.

In the present paper, we consider the external random disturbance of the type q(t)
f(t)g(w(t))iz(t), where f(t) and g(x) are nonrandom functions and f2(t)is a periodic function

with the period 2L.

The limiting behavior (for t---c) of the joint distribution of the random variables (u(t),it(t))
the distribution of the random variable (t) is investigated in the following cases:

1) 2L : 2rv/-; 2) 2L-

It is shown in particular that (t),- if g2(x),,b =0 as I1- (Theorem 1) and
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+1
Es(t) t 2 if g2(x) b(x) lx c- 1, while c > 0 and b(x) bI for x > 0, and b(x) b2 for
x < 0 (corollary of Theorem 2).

Let u(t) be the distance of a particle from its equilibrium position. We assume that the
particle has mass m and that it is fastened to an immobile support by a spring with the
coefficient of stiffness k. Then u(t) satisfies the following equation:

m(t) + ku(t) q(t) while u(0) uo and/t(0) -/t0 (/t ttu). (1)

Here q(t) is an external force, u0 is an initial position and/t0 is an initial velocity of the particle.
We assume, then, that u0 0, /to = 0 and q(t)= f(t)g(w(t))iv(t), where w(t) is a Wiener process.
In this case, equation (1) can be considered as a system of stochastic It6 equations:

md/t(t) ku(t)dt + f(t)g(w(t))dw(t)
(2)

du(t) -/t(t)dt

Lemma: Let function f(t) satisfy the condition, f f(s)ds < C, for every finite t, and let
0 x

g(z) have the second derivative g"(z) almost everywhere while f g"(v) dv o(1 a
z I- oo with > O. Then, o

a+l r
lim t 2 EI / :(s)g(w(s))ds 0
t--oo .1

0
where w(t) is a Wiener process.

Proof: Since the functions f(t) and g"(x) are integrable over every bounded domain, because

of Krylov [5], we can apply ItS’s formula to the process dp(t,w(t)), where (t,x)- f f(s)dsg(x),
and obtain 0

s

/ f(s)g(w(s))ds- / f(s)dsg(w(t))- f [/ f(Sl)dsa]g’(w(s))dw(s)
0 0 0 0

8

2 f(sl
0 0

It is easy to see that the following inequalities hold true:

t 2 EIil(t) <Ct 2 E Ig(w(t))

8

-(c+l)g/ [/ f(81)dSlg,(w(8))]2d8
o o_

C2t- ( + 1)E f [g’(w(s))]2ds
0

(3)

-}-I
2 Ell3(t) <1/2Ct-

c+1
2 Ef

0
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Next, applying the It6 formula to the processes O(w(t)) and (I)l(W(t)) where

x z x z

(I)(x)- 2 f [/(g’(v))2dv]dz and (I)l(X)- 2/ flg"(v) ldv]dz,
0 0 0 0

we obtain the equations

and

t-(s + 1)E / [g,(w(s))]2ds
o

s+l
E I"(w())ld- t

0

-(s+l)Eo(w(t))

1(()/.

(4)

The conditions of the Lemma require that g(x) o(Ix s + 1), (I)(x) o(]x 2s + 1) and (I)l(x)
1

o(ix is+l). When we take into account that w(t)t 2 for every t> 0 is standard normal

it is easy to ensure that E Ig(w(t))l"-"s+l ---, O, E w(
,-lj’s"’ 0 and E(ltW(t)Is+l’’’" 40 as tc. These con-

2 2

vergences along with (3) and (4) yield the Lemma. El

In what follows, we assume that f(t) in the equations is a continuously differentiable function
and that f() has period 2L. Let us denote

2L 2L

a-i f2(l)dt’ cO i f’(t)cs(2v/klm
o o

2L

al-a0+c0, a2-a0-co and a3-/ f2(t)sin(2v/k/rnt)dt.
0

Theorem 1" Let the function g(x) in equation (2) have a second derivative with
x x

lim / g2(v)dv b and xli / g’(v) 9- (v)g"(v) dv O.
o o

1. Suppose 2L ,V",I. o,- any n-1,2,.., or 2L-nor/k and at the same time,
co 0 and a3 O. Then the following hold:

a) o itto o o ((t)/,(t)/), t, cov
to the distribution of (1, m s2’ where 1 and (2 are independent standard normal
random variables.

b) The distribution of the random variable t-le(t), as t, converges to the exponential
distribution with the parameter m(aob -1.

2. Suppose 2L no/k and that co 0 or a3 O. Then the following hold:

in(t) (t)a) P < Xl, < x} Ft(Xl,X2)O, where for each > O, Ft(x1,x2) is bivariate

normal with the density:

1 exp{ 1 )lAx21 2BXlX2 -}- Cx]} (5)pt(xl’x2)
27rrl(2V/1 r2 2(1 r2
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where

b)
density:

A sin2s 2rSins coss cos2s
0.10.2 0.

B sins cosa rSin2 s cos2s sins coss

0-12 + 0-10-2 -["
0-

C cs2s 2rSins coss sin2_____a
0-12 0-162 + 0-

r--
a3

a’ 0- alb’ 0- a2b and

The distribution of the random variable t-l:(t) converges to the distribution with the

exp{ xm(al -+" a2).} (R)
2b(ala2 -a])

Io b(ala2-a]) (ai- a2 -Fa32 x>0, (6)

where Io(x is the modified Bessel function of the first kind with zero index and p(x)- O, when
x<0.

Proof: We can write the solution of equation (2) in explicit form [2]"

i

V/ f(s)g(w(s))sin(v/k]m(t s))dw(s)
0

0

Let us introduce the parameter T > To > 0 and denote

uT(t u(tT)/v/, itT(t it(tT)/ and wT(t w(tT)/vf.

and

where

and

Then,

UT(t 7,)(t)sin(x/mtT)- 7)(t)cos(/k]mtT)]

iT(t lm-7)(t)cos(v//mtT + 7)(t)sin(v/k/mtT)], (7)

7)(t) f g(wT(s)v/’)f(sT)cos( v/kv/kv/sT)dwT(s)
0

t/)(t)- J g(wT(s)V/)f(sT)sin(v/k/msT)dwT(s)"
0

Since each process 7)(t) for i- 1,2 is a martingale with respect to the 0--algebra, 0-(WT(S),
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s _< t), and since each satisfies the Skorohod condition of compactness of random processes [9], we
can assume, without loss of generality, that 7)(t)-.7(i)(t)for i- 1,2 and WT(t)--.w(t in proba-
bility as Tc at every point t > 0, where w(t) is a Wiener process and each 7(i)(t) is a martin-
gale with respect to the rr-algebra r(w(s),s <_ t).

Thus, (7) implies the convergencies

aT(t 7(1)(t)sin(v/-]mtT) 7(2)(t)cos( v/k/mtT)]--O
and (8)

iT(t) lm-(’)(t)eOs(vi-lmtT) + ()(t)sin(vitlmT)]-->O,
in probability, as Tcx.

Consider now characteristics of martingales:

(7)(t))- i g2(wT(s)V/)f2(sT)cs2(v/k/msT)ds
0

(7)(t))- S g2(wT(s)v/)f2(sT)sin2(v/k/msT)ds
0

(7)(t), ")’)(t)) 1/2 i g2(wT(s)v/-)f2(sT)sin(2v/k/msT)ds"
0

Suppose that for the function f2(t) the first assumption of Theorem 1 is satisfied. It is easy
to verify that, in this case,

f2(t)cos2(v//mt a0 + ell(t), f2(t)sin2(x/7t)- a0 + c2(t),

and (9)
1/2f2(t)sin(2v//mt)- %(t),

2L
where ao f f2(s)ds, and there is a constant C > 0 that for all t _> 0 satisfies the inequality,

0

i () <_ c, 1,2, 3.

0

2Then (7)(t))- ao f g2(wT(s)x/)ds + f g (WT(S)V/)ai(sT)ds IT(t + JT(t).
0 0

Kulinich [6] implies IT(t)--.fl(t in probability as T---.cxz, where fl(t)- aobt, and due to the
Lemma, EIJT(t) I-+O. Therefore, (@ (t))--+aobt in probability as T--+oo for i= 1,2. And for

the joint characteristic of martingales 7 and 7)(t), we have the equality,

(’)’)(t)")’)(t))- i g2(wT(s)vr-)%(sT)ds’
0

which, due to the Lemma, implies the convergence,

E (@)(t), V)(t)) --+0 as t-+oo.
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Hence, for characteristics of the limit martingales we have

(7(i)(t)) aobt i- 1,2 and (7(1)(t), 7(2)(t)) 0. (10)

It is easy to see that martingales 7(1)(t) and 7(2)(t) are continuous with probability 1. There-
fore, due to [3], there are independent Wiener processes w(1)(t) and w(2)(t) such that

7(1)(t)- 0bw(1)(t)and 7(2)(t)- V/-0bw(2)(t).

Thus, taking into consideration convergencies (8), we have

p{u (1) <

-P Vm(, < Xl’ km

where (11)

and

< w(1)( i )sin(vmT) w(2)(1)cos(v/k/mT)

) w(1)(1)cos(vIk/mT) + w(2)(1)sinvlk/mT).
Independence of the normally distributed random variables w(1)(1) and w(2)(1) implies that

they have a bivariate normal distribution. Hence, due to [4], )’and ) are also bivariate
normal for every T.

It is easy to verify, that for every T,

E(’)-0, D)-landE)(’)-0.

Therefore, the random variables, ) and ), are independent standard normal. Convergence
(11) yields the proof of statement la) of Theorem 1.

Since for instantaneous energy (t) in system (2) we have the equality,

T- lg(T) 1--([7)(1)]2 + [7)(1)12), (12)

then, for all x > 0,

aob ]2 [w(2)( x}.lim P{T I(T)< x} P{--([w(1)(1) + 1)]2) <
T-+oo

According ,to Gnedenko [4], the random variable [w(1)(1)]2 + [w(2)(1)]2 has a X
2 distribution with

two degrees of freedom and it coincides with the exponential distribution with parameter 1/2.
Hence, the distribution of the random variable T-le(T), as T+oo converges to the exponential
distribution with parameter m[aob]- 1. This proves statement lb) of Theorem 1.

Next, suppose that 2L- nor-/k and that at least one of the constants, co or a3, is not
equal to zero. Then (9) can be represented in the form:

f2(t) cos2(v/k/rnt) a A-al(t),f2(t) sin2(v/k/rnt) a2 A-c2(t

and 1/2f2(t)sin(2/rnt) a3 -4-c3(t ).
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Therefore, in this case we have

and
0 0

i- 1,2,

0 0

As in the proof of statement 1 of Theorem 1, we obtain characteristics of the limit martingales:

{’(1)(t))- albt {/(2)(t))- a2bt and {/(1)(t),’)’(2)(/))_ a3bt"

Also,

")’(i)(t) X//[bilW(1)() -]- bi2w(2)(t)] 1,2,

where w(1)(t) and w(2)(t) are independent Wiener processes and (bil, bi2 is the i-th row of the

matrix B1/2, where B-( al a3 -). The independence of the Wiener processes, w(1)(t)and
\ a3 a2 ]

w(2)(t), implies that random variables 7(1)(1) and 7(2)(1) have normal distributions with
2 2parameters (0,ri) where . alb and r a2b are bivariate normal with the coefficient of corre-

lation r- a3(ala2) -1. Hence, according to Gnedenko [4], the joint density of the random
variables,

7(1)(1) sin(v/k/roT -7(2)(1)cos(v/k/rnT
and

3’(1)(1) cos(v/k/mT + 3,(2)(1) sin v/k/rnT),

is of the form (5) with t- T. To complete the proof of statement 2a) of Theorem 1, we use

convergencies (8). Equality (12) implies that the limit distribution of the random variable

T-iv(T) coincides with the distribution of the absolute value of a bivariate normal random
vector. El

Corollary: Under the conditions of Theorem 1,

blim (El- lg(t)) -(a1 + a2);

lim Dt- l(t b2m2kal, 2 + a) while a3-0;

lim Dt- le(t) b2
t (ag + ga3),32 while a3 0 and co O;

limDt-l(t)_ b2 2 3a fl) while 0 co d(a + a + + a3 0 an
t

fl
(al a2)4{4a[a al

2a (aI a2)2 1/2(a1 a2)2]
2 4_ 2] 2(ala2a3)2 a.--[al4 --(a- a2)v/a1 (a1 -a2) } -4-

In this case we can change the order of limit and expectation (variance). We use the latter,
the explicit form of the limit value 7(i)(1) for every and equality (12) to prove the statement. El
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Theorem 2: Let the function g(x) in equation (2) have a second derivative almost everywhere
and for some a > 0 satisfy the conditions:

and

Then

lim 1 g2(v)dv b( O, with b(z) bl’
I1--’\ I1" ’20

lim 1

0

g’(v) + g(v)g"(v)ldv O.

x>O

(t)P
t(, + 1)/4

6(t) }< xl, < x2 -P{v(t)< X1 /)(t)< X2}"-+0 as tx,t(, + a)/4

where v(t) is the position and i(t) is the velocity of the homogeneous harmonic oscillator

.6"(t) + v(t) o, t > o (13)

with the initial condition

1 ~(2)(1 and b(O) 7(1)(1).v(O)- -/.
Here each 7(i)(t) is a martingale with respect to the a-algebra tr(w(s),s <_ t) with characteristics"

(7(i)(t)) ai(t), i-- 1.2 and (7(1)(t). 7(2)(t))- a3fl(t),

while fl(t) i o() I"- lb(w(s))sign w(s)ds.
0

Proof: The proof is similar to that of (8) in Theorem 1, with the difference that, in this case,

UT(t T (" + 1)/4u(tT), fiT(t) T (" + 1)/4it(tT),

and

7)(t) T(1 -.)/41 g(wT(s)Y/-)f(sT)cs(v/k/msT)dwT(s)’
0

7)(t) T(1 .)/4 f g(wT(s)v/)f(sT)sin (v/k/msT)dwT(s)
0

with characteristics

(7)(t)) air(1-a)/2f g2(wT(s)v/-)ds + r(1- .)/2 J g2(wT(s)v/)ai(sZ)ds, 1.2.
0 0

and

(yl>(t), ")’>(t)>- a3T(1- ">/2 i g2(wT(s)v/r)d8 - T(1 -">/2 i g2(wT(8)V/)o3(sT)ds.
0 0

Due to the Lemma.
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and

(7)(t)) aiT(1-a)/2 / g2(wT(s)/’)ds + o(1)
0

(7)(t), 7)(t) a3T(1 c)/2 / g2(wT(s)x/-)ds + o(1),
0

where o(1) is such that E o(1) I-,0 as T-c for all t > 0. Next, Kulinich [6] established that

T(1- a)/2 J g2(wT(s)x/-)ds__,(t
0

in probability as To, where

w(t)

0 0

Since a > 0, using It6’s formula, we have

fl(t) / w(s) - lb(w(s))sign w(s)ds.
0

Hence,

(14)

(7)(t)>--aifl(t), i-- 1,2 and (7)(t),7)(t)>---a3(t)
in probability as T---,c. Thus, we obtain convergence (8), where each 7(i)(t) is a continuous,
with probability 1, martingale with respect to r(w(s),s

_
t), with characteristics:

(7(i)(t))- ai(t),i- 1,2 and (7(1)(t)(t),7(2)(t))- a3/9(t),

where /(t) has the form (14). Using convergence (8) for t-1 and an explicit form of the solu-
tion of problem (13), we complete the proof of Theorem 2.

Corollary: Under the conditions of Theorem 2,
1

lim Et ( + 1)/2c(t) (al + a2) ] E lb(w(s))sign w(s)ds.
0

This equality is a consequence of the following statements:
1) the equality (12);.
2) the equality E[7)(t)]2- E(7)(t))
3) the possibility to change the order of limit and expectation.

Pemark: Let q(xl,x2) be a joint density of the distribution of 7(1)(1) and 7(2)(1) and

flt(Xl, X2) be a joint density of the distribution of the position v(t) and the velocity /(t) at the
moment t, described by (13). Then,

fit(x1, X3) q[x1V/sin V//mt) + x2m cos x/k/mt),

X1 cos(v’--]mt + x2msin(v/k/mt)]mV/. (15)

Using the explicit form of the solution to equation (13) we get



274 G.L. KULINICH

and

which yields (15).

7(1)(1) v(t)x/-ff-sin(v/k/mt)+ cos

7C2)(1) v(t)V/---rcos(v/k/mt)+/(t)msin (V/k/mt)
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